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Abstract

Generation of stroke-based non-photorealistic imagery,

is an important problem in the computer vision commu-

nity. As an endeavor in this direction, substantial recent

research efforts have been focused on teaching machines

“how to paint”, in a manner similar to a human painter.

However, the applicability of previous methods has been

limited to datasets with little variation in position, scale

and saliency of the foreground object. As a consequence,

we find that these methods struggle to cover the granular-

ity and diversity possessed by real world images. To this

end, we propose a Semantic Guidance pipeline with 1) a

bi-level painting procedure for learning the distinction be-

tween foreground and background brush strokes at train-

ing time. 2) We also introduce invariance to the position

and scale of the foreground object through a neural align-

ment model, which combines object localization and spa-

tial transformer networks in an end to end manner, to zoom

into a particular semantic instance. 3) The distinguishing

features of the in-focus object are then amplified by max-

imizing a novel guided backpropagation based focus re-

ward. The proposed agent does not require any supervi-

sion on human stroke-data and successfully handles varia-

tions in foreground object attributes, thus, producing much

higher quality canvases for the CUB-200 Birds [29] and

Stanford Cars-196 [17] datasets. Finally, we demonstrate

the further efficacy of our method on complex datasets with

multiple foreground object instances by evaluating an ex-

tension of our method on the challenging Virtual-KITTI [2]

dataset. Source code and models are available at https:

//github.com/1jsingh/semantic-guidance.

1. Introduction

Paintings form a key medium through which humans ex-

press their visual conception, creativity and thoughts. Being

able to paint constitutes a vital skill in the human learning

process and requires long-term planning to efficiently con-

(a) (b) (c) (d)

Figure 1. Semantic Guidance. We propose a semantic guidance

pipeline for the “learning to paint” problem. The reinforcement

learning agent incorporates (b) object localization and semantic

segmentation maps for the target image (a), to achieve enhanced

foreground saliency (refer Fig. 3) in the final canvas (d). We also

introduce expert guidance to amplify the focus on small but dis-

tinguishing features of the foreground objects (e.g. bird’s eye), by

proposing (c) a guided backpropagation based focus reward.

vey the picture within a limited number of brush strokes.

Thus, the successful impartation of this challenging skill to

machines, would not only have huge applications in com-

puter graphics, but would also form a key component in the

development of a general artificial intelligence system.

Recently, a lot of research [6, 11, 15, 22, 31, 34] is being

targeted on teaching machines “how to paint”, in a manner

similar to a human painter. A popular solution to this prob-

lem is to use reinforcement learning and model the painting

episode as a Markov Decision Process (MDP). Given a tar-
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get image, the agent learns to predict a sequence of brush

strokes which when transferred on to a canvas, result in a

painting which is semantically and visually similar to the

input image. The reward function for the agent is usually

learnt using a generative adversarial network (GAN) [9],

which provides a measure of similarity between the final

canvas and the original target image.

In this paper, we propose a semantic guidance pipeline

which addresses the following three challenges faced by

the current painting agents. First, the current methods

[6, 15, 22] are limited to only datasets which depict a single

dominant instance per image (e.g. cropped faces). Experi-

mental results reveal that this leads to poor performance on

varying the position, scale and saliency of the foreground

object within the image. We address this limitation by

adopting a bi-level painting procedure, which incorporates

semantic segmentation into the painting process, to learn

a distinction between brush stroke patterns for foreground

and background image regions. Here, we utilize the intu-

ition that the human painting process is deeply rooted in

our semantic understanding of the image components. For

instance, an accurate depiction of a bird sitting on a tree

would depend highly on the agent’s ability to recognize the

bird and the tree as separate objects and hence use corre-

spondingly different stroke patterns / plans.

Second, variation in position and scale of the foreground

objects within the image, introduces high variance in the in-

put distribution for the generative model. To this end, we

propose a neural alignment model, which combines object

localization and spatial transformer networks to learn an

affine mapping between the overall image and the bound-

ing box of the target object. The neural alignment model is

end-to-end and preserves the differentiability requirement

for our model-based reinforcement learning approach.

Third, accurate depiction of instances belonging to the

same semantic class should require the painting agent to

give special attention to different distinguishing features.

For instance, while the shape of the beak may be a key fea-

ture for some birds, it may be of little consequence for other

bird types. We thus propose a novel guided backpropaga-

tion based focus reward to increase the model’s attention on

these fine-grain features. The use of guided backpropaga-

tion also helps in amplifying the importance of small image

regions, like a bird’s eye which might be otherwise ignored

by the reinforcement learning agent.

In summary, the main contributions of this paper are:

• We introduce a semantically guided bi-level painting

process to develop a better distinction between fore-

ground and background brush stroke patterns.

• We propose a neural alignment model, which com-

bines object localization and spatial transformer net-

works in an end to end manner to zoom in on a partic-

ular foreground object in the image.

• We finally introduce expert guidance on the relative

importance of distinguishing features of the in-focus

object (e.g. tail, beak etc. for a bird) by proposing a

novel guided backpropagation based focus reward.

2. Related Work

Stroke based rendering methods. Automatic genera-

tion of non-photorealistic imagery has been a problem of

keen interest in the computer vision community. Stroke

Based Rendering (SBR) is a popular approach in this re-

gard, which focuses on recreating images by placing dis-

crete elements such as paint strokes or stipples [14].

The positioning and selection of appropriate strokes is

a key aspect of this approach [33]. Most traditional SBR

algorithms address this task through either, greedy search

at each step [13, 19], optimization over an energy function

using heuristics [28], or require user interaction for super-

vising brush stroke positions [12, 27].

RNN-based methods. Recent deep learning based solu-

tions adopt the use of recurrent neural networks for stroke

decomposition. However, these methods like Sketch-RNN

[11] for drawings and Graves et al. [10] for handwriting

generation, require access to sequential stroke data, which

limits their applicability for most real world datasets. Stro-

keNet [11] addresses this limitation by using a differentiable

renderer, however it fails to generalize to color images.

Unsupervised stroke decomposition using RL. Recent

methods [6, 15, 22, 31] use RL to learn an efficient stroke

decomposition. The adoption of a trial and error approach

alleviates the need for stroke supervision, as long as a re-

liable reward metric is available. SPIRAL [6], SPIRAL++

[22] and Huang et al. [15] adopt an adversarial training ap-

proach, wherein the reward function is modelled using the

WGAN distance [1, 15]. Learning a differentiable renderer

model has also been shown to improve the learning speed

of the training process [5, 15, 23, 34].

The above methods generalize only for datasets (e.g.

cropped, aligned faces from CelebA [21]), with limited

variation in scale, position and saliency of the foreground

object. We note that while Huang et al. [15] evaluate their

approach on ImageNet [4], we find that competitive results

are achieved only after using the division parameter at in-

ference times. In this setting, the agent divides the overall

image into a grid with 16 / 256 blocks, and then proceeds

to paint each of them in parallel. We argue that such a divi-

sion does not follow the constraints of the original problem

formulation, in which the agent mimics the human painting

process. Furthermore, such a division strategy increases the

effective number of total strokes and tends towards a pixel-

level image regression approach, with the generated images

losing the desired artistic / non-photorealistic touch.
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Semantic Divide and Conquer. Our work is in part

also motivated by semantic division strategies from [20,30],

which propose a division of the overall depth estimation

task among the constituent semantic classes. However, to

the best of our knowledge, our work is the first attempt on

incorporating semantic division (with model-based RL) for

the “learning to paint” problem.

3. Overview of the Painting Agent

Similar to Huang et al. [15], we adopt a model-based

reinforcement learning approach for this problem. The

painting episode is modelled as a Markov Decision Pro-

cess (MDP) defined by state space S , transition function

Ppst`1|st, atq and action space A.

State space. The state st P S at any time t is defined by

the tuple pCt, I,SI ,GI , tq, where Ct is the canvas image at

timestep t and I is the target image. SI ,GI represent the

semantic instance probability map tP r0, 1sHˆW u and the

guided backpropagation map for the target image.

Action space. The action at at each timestep, depicts the

parameters of a quadratic Bézier curve, used to model the

brush stroke. The stroke parameters form a 13 dimensional

vector as follows,

at “ px0, y0, x1, y1, x2, y2, z0, z2, w0, w2, r, g, bq, (1)

where the first 10 parameters depict stroke position, shape

and transparency, while the last 3 parameters pr, g, bq form

the RGB representation for the stroke color.

Environment Model. The environment model / transi-

tion function Ppst`1|st, atq is modelled through a neural

renderer network Φ, which facilitates a differentiable map-

ping from the current canvas Ct and brush stroke parame-

ters at to the updated canvas state Ct`1. For mathematical

convenience alone, we define two distinct stroke map defi-

nitions Φ,Φc . ΦpatqtP r0, 1sHˆW u represents the stroke

density map, whose value at any pixel provides a measure

of transparency of the current stroke. Φcpatq is the colored

rendering of the original stroke density map Φpatq on an

empty canvas.

Action Bundle. We adopt an action bundle approach

which has been shown to be an efficient mechanism for en-

forcing higher emphasis on the planning process [15]. Thus,

at each timestep the agent predicts the parameters for the

next K “ 5 brush strokes.

4. Introducing Semantic Guidance

In the following sections, we describe the complete

pipeline for our semantic guidance model (refer Fig. 2).

We first outline our approach for a two class (foreground,

background) painting problem and then later demonstrate

its extension to more complex image datasets with multiple

foreground instances per image in Section 5.

4.1. The Bi­Level Painting Process

The human painting process is inherently multi-level,

wherein the painter would focus on different semantic re-

gions through distinct brush strokes. For instance, brush

strokes aimed at painting the general image background

would have a different distribution as compared to strokes

depicting each of the foreground instances.

Motivated by this, we propose to use semantic segmenta-

tion to develop a distinction between the foreground and the

background strokes. This distinction is achieved through a

bi-level painting procedure which allocates a specialized re-

ward for each stroke type. More specifically, we first mod-

ify the action bundle at to separately predict Bézier curve

parameters for foreground and background strokes, i.e.

at “ tab,afu, (2)

where af ,ab represent the foreground and background

stroke parameters, respectively. Next, given a neural ren-

derer network Φ, target image I and semantic class proba-

bility map SI , the canvas state Ct is updated in the follow-

ing two stages,

Cb
t`1

“ r1 ´ Φpabqs d Ct ` Φ
cpabq d r1 ´ SI s, (3)

Ct`1 “ r1 ´ Φpaf qs d Cb
t`1

` Φ
cpaf q d SI , (4)

where d indicates element-wise multiplication and Φ
cpaq

is the colored rendering of the stroke density map Φpaq.

The reward for each stroke type is then defined as,

rbt “ DwganpI, Ct`1q ´ DwganpI, Ctq, (5)

r
f
t “ DwganpI d SI , Ct`1 d SIq

´DwganpI d SI , Ct d SIq,
(6)

where r
f
t , r

b
t represent the foreground and background re-

wards, respectively, and DwganpI, Ctq is the joint condi-

tional discriminator score for image I and canvas Ct.

4.2. Neural Alignment Model

The accuracy of the foreground rewards computed us-

ing Eq. 6, depends highly on the ability of the discrimi-

nator to accurately capture the similarity between the fore-

ground regions in target image I and the current canvas state

Ct. However, the input to the discriminator of the WGAN

model would have high variance, if the position and scale

of the foreground object varies significantly amongst the in-

put images. This high variance poses a direct challenge to

the discriminator’s performance while training on complex

real world datasets. To this end, we propose a differentiable

neural alignment model, which combines object localiza-

tion and spatial transformer networks [16] to zoom into the

foreground object, thereby providing a standardized input

for the discriminator.
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Figure 2. Overview of Semantic Guidance Pipeline. Our semantic guidance pipeline consists of three parts. 1) The bi-level painting

process (Section 4.1) develops a distinction between painting foreground and background brush strokes. 2) The Neural Alignment Model

(Section 4.2) provides a differentiable cropping of the foreground object regions for the target image and the updated canvas state. These

cropped object images are then used to compute the foreground reward (refer Eq. 12). 3) Finally, we use guided backpropagation maps

from an expert model, to specifically boost the importance of distinguishing object features in the final canvas (Section 4.3).

First, we modify the segmentation model to predict both

the foreground object mask SI and bounding box coordi-

nates pxb, yb, wb, hbq of the foreground object in the target

image. We then use a spatial transformer network Ω, which

uses the predicted bounding box coordinates to compute an

affine mapping, from the overall canvas image Ct to the

zoomed foreground object image ZC
t . Mathematically,

SI , pxb, yb, wb, hbq “ ΨpIq, (7)

ZC
t “ ΩpCt, pxb, yb, wb, hbqq, (8)

ZI “ ΩpI, pxb, yb, wb, hbqq, (9)

ZS “ ΩpSI , pxb, yb, wb, hbqq, (10)

where Ψ represents the foreground segmentation and lo-

calization network. The 3 ˆ 2 affine matrix for the spatial

transformer network Ω, given bounding box coordinates

pxb, yb, wb, hbq and overall image size pH,W q, is defined

as,

A “

„

W {wb 0 ´Wxb{wb

0 H{hb ´Hyb{hb

T

. (11)

The modified foreground reward (r
f
t ) is then computed

using the WGAN discriminator scores for the zoomed-in

target and canvas images, as follows,

r
f
t “ DwganpZI d ZS , ZC

t`1
d ZSq

´DwganpZI d ZS , ZC
t d ZSq.

(12)

4.3. Guided Backpropagation Based Focus Reward

The semantic importance of an image region is not nec-

essarily proportional to the number of pixels covered by

the corresponding region. While using WGAN loss pro-

vides some degree of abstraction as compared with the di-

rect pixel-wise l2 distance, we observe that a painting agent

trained with a WGAN score based reward function, does

not pay adequate attention to small but distinguishing ob-

ject features. For instance, as shown in Fig. 3, for the CUB-

200-2011 birds dataset, we see that while the baseline agent

captures the global object features like shape and color, it

either omits or insufficiently depicts important bird features

like eyes, wing texture, color marks around the neck etc.

In order to address this limitation, we propose to incor-

porate a novel focus reward in conjuction with the global

WGAN reward, to amplify the focus on the distinguishing

features of each foreground instance. The focus reward uses

guided back propagation maps from an expert task model

(e.g. classification) to scale the relative importance of dif-

ferent image regions in the painting process. Guided back-

propagation (GBP) has been shown to be an efficient mech-

anism for visualizing key image features [24, 25]. Thus by

maximizing the focus reward, we encourage the painting

agent to generate canvases with enhanced granularity at key

feature locations.

Mathematically, given the normalized guided back-

propagation map GItP t0, 1uHˆW u for the target image,
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object bounding box coordinates pxb, yb, wb, hbq and neural

alignment model Ω, we first define the GBP distance LG
t as,

ZGI “ ΩpGI , pxb, yb, wb, hbqq, (13)

LG
t “

›

›ZGI d
`

ZI ´ ZC
t

˘›

›

2

F

}ZGI }F
, (14)

where }.}F represents the Frobenius norm. Here we nor-

malize the weighted difference between neurally aligned

target and canvas images, using the total number of non-

zero pixels in the guided backpropagation map. Thus, the

scale of GBP distance LG
t is invariant to extent of activa-

tions in the zoomed key-point importance map ZGI .

The focus reward is then defined as the difference be-

tween GBP distances at successive timesteps,

r
focus
t “ LG

t ´ LG
t`1

. (15)

5. Handling Multiple Foreground Instances

The semantic guidance pipeline discussed in Section 4,

mainly handles images with a single foreground object in-

stance per image. In this section, we show how the proposed

approach can be used to “learn how to paint” on datasets de-

picting multiple foreground objects per image.

At training time, we maintain the bi-level painting pro-

cedure described in Section 4.1. The action bundle at each

timestep describes the brush stroke parameters for the back-

ground and one of the foreground instances. The fore-

ground instance for a particular painting episode is kept

fixed and is selected with a probability proportional to the

total number of pixels covered by that object.

At inference time however, the agent would need to pay

attention to all of the foreground instances. Given N total

foreground objects, the agent at any timestep t of the paint-

ing episode, would choose to predict brush stroke parame-

ters for the foreground class with the highest l2 difference

in the corresponding areas on the canvas and the target im-

age. Mathematically, the foreground instance puq at each

timestep t is selected as,

u “ argmax
i

}Si d pI ´ Ctq}F , (16)

where Si represents the foreground segmentation map for

the ith object. We also note that the distinction between

foreground and background strokes allows us to perform

data augmentation with a specialized dataset to improve the

quality of foreground data examples. Thus, in our experi-

ments, we augment the Virtual KITTI dataset with images

from Stanford Cars-196 in ratio of 0.8:0.2 while training.

6. Experiments

6.1. Datasets

We use the CUB-200-2011 Birds [29] and Stanford Cars-

196 [17] dataset for performing qualitative evaluation of

our method. The above datasets mainly feature one fore-

ground instance per image and hence can be trained using

the bi-level semantic guidance pipeline described in Section

4. We also use the high-fidelity Virtual-KITTI [2] dataset to

demonstrate the extension of the proposed method to multi-

ple foreground instances per image.

CUB-200-2011 Birds [29] is a large-scale birds dataset

frequently used for benchmarking fine-grain classification

models. It consists of 200 bird species with annotations

available for class, foreground mask and bounding box of

the bird. The dataset features high variation in object back-

ground as well as scale, position and the relative saliency of

the foreground bird with respect to its immediate surround-

ings. These properties make it a challenging benchmark for

the “learning to paint” problem.

Stanford Cars-196 [17] is another dataset used for test-

ing fine-grain classification. It consists of 16185 total im-

ages depicting cars belonging to 196 distinct categories and

having varying 3D orientation. The dataset only provides

object category and bounding box annotations. We compute

the foreground car masks using the pretrained DeepLabV3-

Resnet101 network [3].

Virtual KITTI [2] is a high fidelity dataset contain-

ing photo-realistic renderings of urban environments from

5 distinct scene backgrounds. Each scene contains images

depicting variation in camera location, weather, time of day

and density / location of foreground objects. The high vari-

ability of these image attributes, makes it a very challeng-

ing dataset for training the painting agent. Nevertheless, we

demonstrate that our method helps in improving the seman-

tic quality of the generated canvases despite these obstacles.

6.2. Training Details

Neural Renderer. We closely follow the architecture

from Huang et al. [15], while designing the differentiable

neural renderer Φ. Given a batch of random brush stroke

parameters at, the network output Φrats is trained to mimic

the rendering of the corresponding Bézier curve on an

empty canvas. The training labels are generated using an

automated graphics module and the renderer is trained for

4 ˆ 105 iterations with a batch size of 64.

Learning foreground mask and bounding box. A key

component of the semantic guidance pipeline is foreground

segmentation and bounding box prediction. We use a fully

convolutional network, with separate heads to predict a per-

pixel foreground probability map and the coordinates of the

bounding box. The foreground mask prediction is trained

with the standard cross-entropy loss Lfg , while the bound-

ing box coordinates are learned using Smooth L1 [8] regres-

sion loss Lbbox.

Expert model for Guided Backpropagation. We use

the pretrained fine-grain classification NTS-Net model [32]

as the expert network used for generating guided backprop-
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agation maps on the CUB-200-2011 birds dataset. Note that

we use NTS-Net due the easy accessibility of the pretrained

model. We expect that using a more state of the art model

like [7] would lead to better results with the focus reward.

The expert model for the Standford Cars-196 dataset

is trained in conjunction with the reinforcement learning

agent, with an EfficientNet-B0 [26] backbone network. The

EfficientNet architecture allows us to limit the total number

of network parameters while respecting the memory con-

straints for a NVIDIA GTX 2080 Ti. The expert model is

trained for a total of 200 epochs with a batch size of 64.

EfficientNet-B7 model pretrained on ImageNet [4] dataset,

is used as the expert for the Virtual KITTI dataset.

Overall Training. The reinforcement learning agent fol-

lows an actor-critic architecture. The actor predicts the pol-

icy function πpa|sq, while the critic computes the value

function V psq. The agent is trained using model-based

DDPG [18] with the following policy and value loss,

Lactor “ ´Est,at
rrpst, atq ` γV pst`1qs , (17)

Lcritic “ Est,at

“

prpst, atq ` γV pst`1q ´ V pstqq2
‰

(18)

where γ is the discount factor and the final reward func-

tion rpst, atq is computed as the weighted sum of the fore-

ground, background and focus rewards,

rpst, atq “ rbt ` η r
f
t ` νr

focus
t , (19)

where η, ν are hyperparameters. A hyper-parameter selec-

tion of tη “ 2, ν “ 10u was seen to give competitive results

for our experiments. The model-based RL agent is trained

for a total of 2M iterations with a batch size of 96.

6.3. Results

We compare our method with the baseline “learning to

paint” pipeline from Huang et al. [15] which uses an action

bundle containing 5 consecutive brush strokes. In order to

provide a fair comparison, we use the same overall bundle

size but divide it among foreground and background strokes

in the ratio of 3:2. That is, the agent at each timestep pre-

dicts 3 foreground and 2 background brush strokes.

Improved foreground saliency. Fig. 3 shows the re-

sults1 for the CUB-200 Birds and Stanford-Cars196 dataset.

We clearly see that our method leads to increased saliency

of foreground objects, especially when the target object is

partly camouflaged by its immediate surroundings (refer

Fig. 3a, row-4 and Fig. 3b, row-3). This increased contrast

between foreground and background perception, results di-

rectly from our semantically guided bi-level painting pro-

cess and the neural alignment model.

Enhanced feature granularity. We also observe that

canvases generated using our method show improved fo-

cus on key object features as compared to the baseline. For

1Please refer supp. material for further quantitative results.

instance, the red head-feather, which is an important fea-

ture of pileated woodpecker (refer Fig. 3a: row-1), is prac-

tically ignored by the baseline agent due to its small size.

The proposed guided backpropagation based focus reward,

helps in amplifying the importance of this key feature in the

overall reward function. Similarly, our method also leads to

improved depiction of wing patterns and claws in (Fig. 3a:

row-2), the small eye region, feather marks in (Fig. 3a: row-

3) and car headlights, wheel patterns in (Fig. 3b: row-1,2).

Multiple foreground instances. We use the Virtual-

KITTI dataset and the extended training procedure outlined

in Section 5, to demonstrate the applicability of our method

on images with multiple foreground instances. Note that

due to computational limits and the nature of ground-truth

data, we stick to vehicular foreground classes like cars,

vans, buses etc, for our experiments. Results are shown

in Fig. 4. We observe that due to the dominant nature of

image backgrounds in this dataset, the baseline agent fails

to accurately capture the presence / color spectrum of the

foreground vehicles. In contrast, our bi-level painting pro-

cedure learns a distinction between foreground and back-

ground strokes in the training process itself, and thus pro-

vides a much better balance between foreground and back-

ground depiction for the target image.

7. Analysis

7.1. Ablation Study: Isolating Impact of Focus Loss

In this section, we design a control experiment in order

to isolate the impact of focus reward proposed in Section

4.3. To this end, we construct a modified birds dataset from

CUB-200-2011 dataset. We do this by first setting the back-

ground image pixels to zero, which alleviates the need for

the bi-level painting procedure. We next eliminate the need

for the neural alignment model by cropping the bounding

box for each bird. The resulting dataset is then used to

train the baseline [15], and a modified semantic guidance

pipeline trained only using a weighted combination of the

WGAN reward [15] and the focus reward r
focus
t ,

rpst, atq “ r
wgan
t ` κ r

focus
t , (20)

where κ “ 0 represents baseline model without the focus

loss. We then analyse the effect on the resulting canvas as

the weightage κ of the focus reward is increased. All mod-

els are trained for 1M iterations with a batch size of 96.

Fig. 5 describes the modified training results. We clearly

see that while the baseline [15] trained with wgan reward

captures the overall bird shape and color, it fails to accu-

rately pay attention to finer bird features like texture of the

wings (row 1,3,4), density of eyes (row 3,4) and sharp color

contrast (red regions near the face for row 1,2). We also

observe that the granularity of the above discussed features
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a) Birds Dataset b) Cars Dataset

Figure 3. Results on CUB-200 Birds and Stanford-Cars196 Datasets. Left: Huang et al. [15], Middle: Canvas generated using Semantic

Guidance pipeline (Ours), Right: the original target image. We clearly see that our method results in enhanced foreground saliency and

achieves better granularity of key object features.

Figure 4. Results on Virtual KITTI. Left: Baseline [15], Mid-

dle: Canvas generated using Semantic Guidance pipeline (Ours),

Right: target image. By developing a distinction between fore-

ground and background strokes, our method better captures the

color / saliency of visually small foreground vehicles.

in the painted canvas, improves as the weightage κ of the

focus reward is increased.

7.2. Analysing Effect of Semantic Guidance on
Painting Sequence

Recall that the main goal of the “learning to paint” prob-

lem, is to make the machine paint in a manner similar to a

human painter. Thus, the performance of a painting agent

should be measured, not only by the resemblance between

the final canvas and the target image, but also by the simi-

larity of the corresponding painting sequence with that of a

human painter. In this section, we demonstrate that unlike

previous methods, semantic guidance helps the reinforce-

Figure 5. Ablation results for focus reward. (Column 1-3): From

left to right, the painted canvases for κ “ 0, 5, 10 respectively,

where κ “ 0 represents the baseline [15]. (Column-4): the target

image from modified birds dataset (refer Sec. 7.1). We see a clear

increase in the amount of finer feature details like wing texture,

density of eyes etc, as the weightage of focus loss is increased.
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(1)

(2)

(1)

Figure 6. Effect of Semantic Guidance on Painting Sequence. (1) Baseline [15], (2) Semantic Guidance (Ours). For each target image

in (a), (b-g) represent the canvas state after 10, 20, 30, 50, 100, 200 brush strokes respectively. We observe that there is huge difference

between the painting styles of the two agents. In contrast to the baseline agent (which follows a bottom-up approach), the top-down painting

style of our method offers better resemblance with a human painter.

ment learning agent adopt a painting trajectory that is highly

similar to the human painting process.

In order to do a fair comparison of agent trajectories be-

tween our method and the baseline [15], we select test im-

ages from the Stanford Cars-196 dataset, such that the final

canvases from both methods are equally similar to the target

image. That is, the l2
2 distance between the final canvas and

the target image is similar for both methods.

Results are shown in Fig. 6. We can immediately ob-

serve a stark difference between the painting styles of the

two agents. The standard agent displays bottom-up image

understanding, and proceeds to first paint visually distinct

car edges / parts like windows, red tail light, black region

near the bottom of the car etc. In contrast, the semanti-

cally guided agent follows a more human-like top-down ap-

proach, wherein it first begins with a rough structural out-

line for the car and only then focuses on other structurally

non-relevant parts. For instance, in the first example from

Fig. 6, the semantically guided agent adds color to the tail-

light only after finishing painting the overall structure of the

car. On the other hand, the red brush stroke for the tail-light

region is painted quite early by the baseline agent, even be-

fore the overall car structure begins to emerge on the canvas.

2We note that, in general l2 distance may not be a reliable measure of

semantic similarity between two images. As shown in Fig. 6, two canvases

can be qualitatively quite different while having similar l2 distance with

the target image.

We thus note that the semantically guided agent resem-

bles the human painting style on two broad levels. 1) On

the canvas level, the bi-level procedure allows the painting

agent to learn different stroke patterns for semantically dis-

tinct image regions (as is done by humans). 2) On the object

level, expert guidance and specialization of the foreground

strokes to a specific object class (e.g. cars) leads to a top-

down painting sequence. That is, the model first pays at-

tention to high-level structural features which are shared by

several instances of the foreground object class, and only

then focuses on finer instance-specific lower-level features.

8. Conclusion

In this paper, we propose a semantic guidance pipeline

for the “learning to paint” problem. Our method incorpo-

rates semantic segmentation to propose a bi-level painting

process, which helps in learning a distinction between fore-

ground and background brush stroke patterns. We also in-

troduce a guided backpropagation based focus reward, to

increase the granularity and importance of small but distin-

guishing object features in the final canvas. The resulting

agent successfully handles variations in position, scale and

saliency of foreground objects, and develops a top-down

painting style which closely resembles a human painter.
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