
Rectification-based Knowledge Retention for Continual Learning

Pravendra Singh1,∗, Pratik Mazumder2,∗, Piyush Rai2, Vinay P. Namboodiri2,3

1Independent Researcher, India 2IIT Kanpur, India 3University of Bath, United Kingdom

pravendra1988@gmail.com, pratikm@cse.iitk.ac.in, piyush@cse.iitk.ac.in, vpn22@bath.ac.uk

Abstract

Deep learning models suffer from catastrophic forget-

ting when trained in an incremental learning setting. In

this work, we propose a novel approach to address the

task incremental learning problem, which involves training

a model on new tasks that arrive in an incremental man-

ner. The task incremental learning problem becomes even

more challenging when the test set contains classes that are

not part of the train set, i.e., a task incremental general-

ized zero-shot learning problem. Our approach can be used

in both the zero-shot and non zero-shot task incremental

learning settings. Our proposed method uses weight rec-

tifications and affine transformations in order to adapt the

model to different tasks that arrive sequentially. Specifi-

cally, we adapt the network weights to work for new tasks by

“rectifying” the weights learned from the previous task. We

learn these weight rectifications using very few parameters.

We additionally learn affine transformations on the outputs

generated by the network in order to better adapt them for

the new task. We perform experiments on several datasets in

both zero-shot and non zero-shot task incremental learning

settings and empirically show that our approach achieves

state-of-the-art results. Specifically, our approach outper-

forms the state-of-the-art non zero-shot task incremental

learning method by over 5% on the CIFAR-100 dataset. Our

approach also significantly outperforms the state-of-the-art

task incremental generalized zero-shot learning method by

absolute margins of 6.91% and 6.33% for the AWA1 and

CUB datasets, respectively. We validate our approach us-

ing various ablation studies.

1. Introduction

Deep learning models are used to solve many real-

world problems, and they have even surpassed human-

level performance in many tasks. However, deep learn-

ing models generally require all the training data to be

available at the beginning of the training. If this is not

the case, deep learning models suffer from catastrophic

∗ The first two authors contributed equally.

forgetting [17], and their performance on the previously

seen classes or tasks starts degrading. In contrast, human

beings can continually learn new classes of data without

losing the previously gained knowledge. To avoid catas-

trophic forgetting, deep learning models should perform

lifelong/continual/incremental learning [5, 18]. Deep learn-

ing models also require all the classes to be present in the

train set. When the test set contains classes not seen during

training, the performance of these models degrades signif-

icantly [27, 39]. This is known as the zero-shot learning

problem. The incremental learning problem becomes even

more challenging when coupled with the zero-shot learning

problem. In this paper, we solve for the task incremental

learning problem in the zero-shot and non zero-shot setting.

The task incremental learning problem involves training

the model on one task at a time, where each task has a set of

non-overlapping classes. When a new task becomes avail-

able to the network for training, the previous task data is

no longer accessible. Training on only the new task data

causes the network to forget all the previous task knowl-

edge. Therefore, the model has to prevent the forgetting of

older tasks when training on new tasks. The task incremen-

tal generalized zero-shot learning problem involves training

the model on one task at a time, where each task has a set of

unseen classes not seen during training, which is the same

as the zero-shot learning setting. The objective of the model

is to successfully identify the seen and unseen classes of all

the trained tasks.

We propose a novel approach called Rectification-based

Knowledge Retention (RKR) for the task incremental learn-

ing problem in the zero-shot and non zero-shot setting. Our

approach (RKR) learns weight rectifications to adapt the

network weights for a new task. After learning these weight

rectifications, we can quickly adapt the network to work for

images from that task by simply applying these weight rec-

tifications to the network weights. We utilize an efficient

technique for learning these weight rectifications to limit

the model size. We also learn affine transformations (scal-

ing factors) for all the intermediate outputs of the network

that allow better adaptation of the network to the respective

task.

15282



We perform various experiments for the task incremen-

tal learning problem in both the zero-shot and non zero-shot

settings in order to show the effectiveness of our approach.

Using various ablation experiments, we validate the com-

ponents of our approach. Our contributions can be summa-

rized as follows:

• We propose a novel approach for the task incremental

learning problem in the zero-shot and non zero-shot

settings that learns weight rectifications and scaling

factors in order to quickly adapt the network to the re-

spective tasks.

• RKR introduces very few parameters during training

for learning the weight rectifications and scaling fac-

tors. The model size growth in our method is signif-

icantly low as compared to other dynamic network-

based task incremental learning methods.

• We experimentally show that our method

Rectification-based Knowledge Retention (RKR)

significantly outperforms the existing state-of-the-art

methods for the task incremental learning problem in

both the zero-shot and non zero-shot settings.

2. Related Work

2.1. Incremental Learning

Incremental learning is a setting where we have to train

the model on tasks that arrive incrementally. The model has

to retain the knowledge gained from the older task while

learning the new tasks [21, 1, 37]. We can categorize incre-

mental learning methods into: replay-based, regularization-

based, and dynamic network-based methods.

Replay-based methods require saving data from old tasks

in order to fine-tune the network along with the new task

data to reduce forgetting. The authors in [21] propose to

use an exemplar-based prototype rehearsal technique along

with distillation. The methods proposed in [11, 10] use a

custom architecture to produce pseudo samples for the older

tasks to be used for rehearsal.

Regularization-based methods make use of regulariza-

tion techniques to prevent network outputs from changing

significantly while training on new tasks to preserve the

knowledge gained from the older tasks. The work in [16]

proposes to use knowledge distillation as the regularization

technique. In [21, 2], the authors propose to use modified

classification techniques suited to continual learning in ad-

dition to the distillation loss.

Dynamic network-based methods [33, 8, 3, 28, 15] use

network expansions/modifications for training new tasks.

The work in [23] proposes to create an extra network for

each new task with lateral connections to the networks of

the older tasks. The method proposed in [34] uses rein-

forcement learning to determine how many neurons to add

for each new task. DEN [36] performs efficient selective re-

training and dynamically expands the network for each task

with only the required amount of units. The method pro-

posed in [20] uses a random path selection methodology for

each task. The authors in [35] propose an order-robust ap-

proach APD, which uses task-shared and task-adaptive pa-

rameters. Recently the authors in [26] proposed CCLL that

calibrates the feature maps of convolutional layer outputs to

perform incremental learning.

Our method RKR follows the dynamic network ap-

proach, but it is the first work that learns rectifications for

the layer weights and outputs to adapt the model to any

task quickly. Even though our method is dynamic network-

based, it does not use the parameter isolation approach,

which incrementally reserves a set of model parameters for

new tasks. Therefore, our model will not run out of model

capacity to accommodate future tasks. Our method intro-

duces a significantly less number of parameters to learn the

weight rectifications and scaling factors, e.g., for CIFAR-

100 tasks using the ResNet-18 architecture, RKR introduces

only 0.5% additional parameters per task.

2.2. Zero­Shot Learning

Zero-Shot Learning (ZSL) [27, 39, 40, 4] is a prob-

lem setting where the model has to recognize classes not

seen during training. In the generalized zero-shot learn-

ing setting, the test data can be from both the seen and un-

seen classes. Zero-shot learning methods utilize side infor-

mation in the form of class embeddings/attributes that en-

code the semantic relationship between classes. The most

popular way to deal with ZSL is to learn an embedding

space where the image data and the class embedding are

close to each other [4]. Another popular approach is to

generate images/features of unseen classes by using their

class embeddings [7, 41]. The authors in [32] propose f-

CLSWGAN, which uses conditional Wasserstein GANs, to

generate features for unseen classes. Cycle-WGAN [7] im-

proves upon f-CLSWGAN by using reconstruction regular-

ization in order to preserve the discriminative features of

classes. CADA-VAE [24] uses a VAE to learn to gener-

ate class embedding features in a latent embedding space to

train a zero-shot classifier. However, these methods require

data replay to work in the continual learning setting [30].

Recently, the authors in [30] proposed an approach

LZSL for the task incremental generalized zero-shot learn-

ing problem. LZSL performs selective parameter retraining

and knowledge distillation to preserve old domain knowl-

edge and prevent catastrophic forgetting in the image fea-

ture encoder. We extend our proposed method RKR to the

task incremental generalized zero-shot learning setting [30].

In this setting, RKR “rectifies” the weights and outputs of

the image features encoder network in order to perform con-

tinual learning and prevent catastrophic forgetting.

15283



Figure 1: RKR for a convolutional layer. The weight rectifications Rt
l produced by the rectification generator (RGt

l) are

added to the layer weights (Θl) of the convolutional layer l for task t. The task-adapted convolution layer weights (Θt
l) are

applied to the input Il to produce the layer output Ol. The scaling factor generator (SFGt
l) produces scaling factors F t

l that

are applied to Ol to produce the scaled layer output (Ot
l ).

3. Problem Definition

3.1. Task Incremental Learning

In the task incremental learning setting, the network re-

ceives a sequence of tasks containing new sets of classes.

When a new task becomes available, the previous task data

are not accessible. The objective of task incremental learn-

ing is to obtain a model that performs well on the current

task as well as the previous tasks.

3.2. Task Incremental Generalized Zero­Shot
Learning

The task incremental generalized zero-shot learning set-

ting also involves training the model on a sequence of tasks,

but each task contains a set of seen and unseen classes, and

the final model should perform well on the seen and unseen

classes of the current task as well as the previous tasks. For

this problem, we follow the setting defined in [30], where

each task is a separate dataset. When a new task becomes

available for training, the older tasks are no longer accessi-

ble for further training/fine-tuning.

4. Proposed Method

4.1. Rectification­based Knowledge Retention

We propose a task incremental learning approach called

Rectification-based Knowledge Retention (RKR) that ap-

plies network weight rectifications and scaling transforma-

tions to adapt the network to different tasks.

Let us assume that we have a deep neural network with

N layers, i.e., {L1, L2..., LN}. Each layer can be a convo-

lutional layer or a fully connected layer. Let Θl represent

the parameter weights of layer Ll. If we train this network

on a task containing a set of classes, the network will learn

the parameter weights Θl for each layer l ∈ {1, 2, .., N}.

However, if we then train the network on a new task (with a

new set of classes), it will learn new parameter weights Θ∗

l

to work for this task and will lose information regarding the

previous tasks (catastrophic forgetting).

We propose to avoid this problem using the dynamic

network-based approach. For each task, we learn the rec-

tifications needed to adapt the layer weights of the network

to work for that task. Let Rt
l refer to the weight rectifica-

tion needed to adapt the lth layer of the network to work

for task t. We use a rectification generator (RG) for learn-

ing these rectifications. RG uses very few parameters to

learn the weight rectifications as described in Sec. 4.2. The

weight rectifications Rt
l are added to the layer weights Θl

for each task t (Figs. 1, 2).

Θt
l = Θl ⊕Rt

l (1)

where Θl refers to weights of layer l of the network, Rt
l

refers to the rectifications to be learned for the weights of

the layer l for task t, Θt
l refers to the rectified weights of

the layer l for task t, ⊕ refers to element-wise addition.

The layer weight Θl is trained only on the first task and is

adapted using the weight rectifications Rt
l (that are learned

for all tasks) to obtain Θt
l .

Apart from the weight rectifications, we also learn scal-

ing factors for performing affine transformations on the in-

termediate outputs generated by each layer of the network.

We use a scaling factor generator (SFG) for learning the

scaling factors. In the case of a fully connected layer l, the

scaling factors F t
l have the same size as the layer output

Ol, and we multiply them element-wise to each component

of Ol (Fig. 2). In the case of a convolutional layer l, the

scaling factors F t
l have the same number of elements as the

number of feature maps in Ol, and we multiply them to the

corresponding feature maps of Ol (Fig. 1). These learned

scaling factors represent the rectifications needed to adapt

the intermediate network outputs to the corresponding task.

Ot
l = Ol ⊗ F t

l (2)

15284



Figure 2: RKR for a fully connected layer. The weight rec-

tifications Rt
l produced by the rectification generator (RGt

l)

are added to the layer weights (Θl) of the fully connected

layer l for task t. The task-adapted fully connected layer

weights (Θt
l) are applied to the input Il to produce the layer

output Ol. The scaling factor generator (SFGt
l) produces

scaling factors F t
l that are applied to Ol to produce the

scaled layer output (Ot
l ).

where Ol refers to the output from the layer l of the network,

F t
l refers to the scaling factors learned for the output of the

layer l of the network for task t, ⊗ refers to the scaling

operation, and Ot
l denotes the scaled layer output for task t.

Our approach applies the weight rectifications and scaling

factors to quickly adapt the network for any task t.

4.2. Reducing Parameters for Weight Rectification

4.2.1 Convolutional Layers

The weight rectifications for a convolutional layer requires

to be of the same size as the convolutional layer weights.

Let Wf ,Hf ,Cin be the width, height and number of chan-

nels of each filter of the convolutional layer Ll and Cout be

the number of filters used in Ll. Therefore, the total size of

the convolutional layer weights is Wf ×Hf ×Cin ×Cout.

The weight rectification Rt
l for layer Ll has to be of the

same size. In order to reduce the number of parame-

ters needed to generate these weight rectifications, we use

a rectification generator (RG). The rectification generator

(RG) learns two matrices of smaller size i.e., LM t
l of size

(Wf ∗Cin)×K and RM t
l of size K × (Hf ∗Cout), where

∗ represents scalar multiplication. Here, K ≪ (Wf ∗ Cin)
and K ≪ (Hf ∗ Cout). This matrix factorization ensures

that we introduce very few parameters to generate these

weight rectifications. The product of these two matrices

produces the weight rectifications which are reshaped to the

size Wf ×Hf ×Cin×Cout and added to the convolutional

layer weights element-wise. Therefore, RG computes the

weight rectifications Rt
l for task t as:

Rt
l = MATMUL(LM t

l , RM t
l ) (3)

where MATMUL refers to matrix multiplication.

We apply the adapted convolution layer weights (Θt
l) to

the input (Il) of size, say, W ×H×Cin, to obtain an output

of size W ′ ×H ′ ×Cout (See Fig. 1). Here, W , W ′ refer to

the width of the feature maps before and after applying the

convolution. H , H ′ refer to the height of the feature maps

before and after applying the convolution. We then apply

scaling transformation to the output Ol. The scaling factor

generator (SFG) learns a scaling parameter for each feature

map. Therefore, SFG introduces a very insignificant num-

ber of parameters, i.e., Cout, which is equal to the number

of feature maps in Ol.

EPconv =
K ∗ (Wf ∗ Cin +Hf ∗ Cout) + Cout

Wf ∗Hf ∗ Cin ∗ Cout

∗ 100

(4)

where EPconv refers to the percentage of extra parameters

introduced by our approach for each convolutional layer.

4.2.2 Fully Connected Layers

The weight rectifications Rt
l for the fully connected layers

require to be of the same size as the layer weights Θl. Let

Θl be of size Hin × Hout. Here Hin and Hout refer to

the size of input and output of the fully connected layer,

respectively. In order to reduce the number of parameters

needed to generate the weight rectifications, the rectifica-

tion generator (RG) learns two matrices of smaller size, i.e.,

LM t
l of size Hin ×K and RM t

l of size K ×Hout. Here,

K < Hin and K < Hout. Therefore, the total parameters

added will not be significant. The product of these two ma-

trices will give the weight rectifications of size Hin ×Hout

which we add to the layer weights Θl element-wise to pro-

duce the adapted layer weight Θt
l . Therefore, RG computes

the weight rectifications Rt
l for task t as follows:

Rt
l = MATMUL(LM t

l , RM t
l ) (5)

where MATMUL refers to matrix multiplication.

We apply the adapted fully connected layer weights (Θt
l)

to the input (Il) of size Hin, to obtain an output (Ol) of size

Hout (See Fig. 2). We then apply scaling transformation to

the output Ol. The scaling factor generator (SFG) learns a

parameter for each component of Ol. Therefore, SFG intro-

duces a very insignificant number of parameters, i.e., Hout.

EPfc =
K ∗ (Hin +Hout) +Hout

Hin ∗Hout

∗ 100 (6)

where, EPfc refers to the percentage of extra parameters

introduced by our approach for each fully connected layer.

Therefore, our approach introduces very few parameters

per task to learn weight rectifications, and scaling factors

in the incremental learning setting, e.g., for the ResNet-18

architecture RKR introduces only 0.5% additional parame-

ters per ImageNet-1K task. Intuitively, this simulates sepa-

rate networks for each task using very few parameters, e.g.,

our model for ImageNet-1K with 10 tasks has (100 + 10 ∗
0.5)% capacity. However, directly using separate networks

will lead to an impractical model with (100 ∗ 10)% capacity.

15285



5. Task Incremental Learning Experiments

(Non Zero-shot Setting)

5.1. Datasets

We perform the task incremental learning experiments

on the CIFAR [13] and ImageNet [22] datasets for the non

zero-shot setting. We perform experiments on CIFAR-100

with 10 tasks where each task contains 10 classes. For

split CIFAR-10/100 experiments, we use all the classes of

CIFAR-10 for the first task and randomly choose 5 tasks

of 10 classes each from CIFAR-100. So we have 6 tasks for

this setting. In the case of ImageNet-1K, we group the 1000

classes into 10 tasks of 100 classes each.

5.2. Implementation Details

In our approach, we learn weight rectifications and scal-

ing factors for each convolutional layer and fully connected

layer of the network (except the classification layer). We

train the full network on the first task (base network). For

every new task, we only learn weight rectifications and scal-

ing factors for all network layers to adapt them to the new

task. During testing, depending on the task, we apply the

corresponding weight rectifications and scaling factors to

the base network to work for that task.

For CIFAR-100 experiments, we use the ResNet-18 ar-

chitecture [9]. For split CIFAR-10/100 experiments, we use

ResNet-32 architecture [9]. In the above experiments, we

train the network for 150 epochs for each task with the ini-

tial learning rate as 0.01, and we multiply the learning rate

by 0.1 at the 50, 100, and 125 epochs. We also perform ex-

periments with the LeNet architecture [14] on CIFAR-100.

We train the network on each task for 100 epochs with the

initial learning rate as 0.01 and multiply the learning rate

with 0.5 at the 20, 40, 60, and 80 epochs. For ImageNet-1K

experiments, we use the ResNet-18 architecture and train

the network for 70 epochs for each task with the initial

learning rate as 0.01, and we multiply the learning rate by

0.2 at the 20, 40, and 60 epochs. We use the SGD optimizer

in all our experiments. In all the cases, we run experiments

for 5 random task orders and report the average accuracy.

We perform experiments with K = 2 since this is a good

choice considering the accuracy/extra-parameters trade-off

as shown in Table 2. Our method utilizes task labels during

testing similar to [26, 35, 36].

5.3. CIFAR­100 Results

For the experiments on the CIFAR-100 incremental

learning tasks using 10 classes at a time, we perform exper-

iments with various methods such as CCLL [26], SI [38],

EWC [12], iCARL [21] and RPS [20]. CCLL uses task la-

bels at test time, and we modify SI and EWC to use task

labels during testing for a fair comparison. We addition-

ally report the result for iCaRL, RPS-Net which are replay-

Figure 3: Experimental results on CIFAR-100 using

ResNet-18. ‘∗’ denotes replay-based approach.

based methods. These methods store data from the previ-

ous tasks as additional data to use this data along with the

new task data to train the network to reduce catastrophic

forgetting. RKR does not store previous task data and is

more scalable in this regard. We provide these additional re-

sults for completeness (replay-based and non replay-based).

However, replay-based should not be directly compared

with RKR. Figure 3 indicates that our approach RKR out-

performs all existing methods. RKR outperforms CCLL

[26] by an absolute margin of 5.1% in the overall accu-

racy. Our approach performs consistently better than all

other methods as more tasks arrive.

RKR applies the weight corrections to adapt the network

to the new task, which is very natural and intuitive because

training on a new task changes the network layer weights

and, consequently, the corresponding features. In contrast,

CCLL adapts the network to the new task by only calibrat-

ing the convolutional layer output feature maps that are bi-

ased to the initial task. This is the reason why we see a

significant performance gap between RKR and CCLL. This

problem becomes even more apparent if the new task is very

different from the initial task. In such a case, the features

extracted by the model trained on the initial task will not

be relevant to the new task, and it will be very difficult to

calibrate the feature maps to correctly estimate the feature

maps of the new task. For example, on taking MNIST im-

ages in the initial task and taking 10 tasks of CIFAR-100

as the subsequent tasks, the performance gap between RKR

and CCLL increases from 5.1% to 16% absolute margin.

We also perform experiments on the CIFAR-100 tasks

using the LeNet architecture (20-50-800-500) as used in

[35]. All the methods compared in Table 1 use task labels

during testing. The results in Table 1 indicate that RKR out-

performs existing state-of-the-art methods. Specifically, our

15286



Methods Capacity Accuracy

L2T [35] 100% 48.73%

EWC [12] 100% 53.72%

P&C [25] ICML’18 100% 53.54%

PGN [23] 171% 54.90%

RCL [34] NIPS’18 181% 55.26%

DEN [36] ICLR’18 181% 57.38%

APD [35] ICLR’20 135% 60.74%

CCLL [26] NIPS’20 100.7% 63.71%

RKR-Lite (Ours) 100.7% 66.32%

RKR (Ours) 104.3% 69.58%

Table 1: Experimental results on CIFAR-100 using LeNet.

Figure 4: Experimental results on split CIFAR-10/100 using

ResNet-32 to check for catastrophic forgetting. We report

the achieved accuracy for each task when the network is

trained on that task (marked as during) and after the network

has been trained on all the tasks (marked as after).

approach RKR outperforms CCLL by an absolute margin of

5.87%. We also report the results for RKR-Lite, which uses

only weight rectifications for the convolutional layers and

only scaling factors for the fully connected layers. RKR-

Lite introduces the same number of parameters as CCLL

but outperforms it by an absolute margin of 2.61%.

Split CIFAR-10/100: For the split CIFAR-10/100 tasks

we use the ResNet-32 architecture and compare our method

RKR with CCLL and HNET [28], which are the state-of-

the-art methods for this setup and use task labels during test-

ing. We observe in Fig. 4 that RKR prevents catastrophic

forgetting just like CCLL and HNET. Therefore, RKR helps

in avoiding catastrophic forgetting without significantly af-

fecting the network’s ability to learn each task properly.

Different First Task: As mentioned in Sec. 4.1, Θl is

trained only on the first task. Therefore, we perform exper-

iments with different first tasks. From Fig. 5, we observe

that the performance of RKR is stable for different first tasks

with different task orders.

Value of K: We perform experiments on the CIFAR-100

with ResNet-18 using different values of K. The results in

Table 2 indicates that for K = 2 is a good choice while con-

sidering extra-parameters/accuracy trade-off. Therefore, we

use K = 2 for all our experiments. We also observe that the

FLOPS increase due to RKR is insignificant.

Figure 5: Experimental results for 5 runs of task incre-

mental learning experiments using RKR on the CIFAR-100

dataset with ResNet-18.

K % Params. ↑ % FLOPS ↑ Accuracy

1 0.3355% 8.6× 1e-4% 85.55%

2 0.5426% 8.6× 1e-4% 87.60%

4 0.9569% 8.6× 1e-4% 87.90%

8 1.7854% 8.6× 1e-4% 88.49%

Table 2: Experimental results on CIFAR-100 with ResNet-

18 using RKR for different values of K. We report the aver-

age accuracy of the 10 tasks.

Arch. Wt. Rect. Scaling % Params. ↑ % FLOPS ↑ Acc.

LeNet ✗ ✓ 0.0497% 6.4× 1e-4% 62.3%

✓ ✗ 0.3795% 0.0% 69.1%

✓ ✓ 0.4292% 6.4× 1e-4% 69.6%

Res-18 ✗ ✓ 0.1283% 8.6× 1e-4% 79.2%

✓ ✗ 0.4143% 0.0% 87.5%

✓ ✓ 0.5426% 8.6× 1e-4% 87.6%

Table 3: Experimental results on CIFAR-100 with LeNet

and ResNet-18 using RKR (K = 2) with different compo-

nents. ✓ and ✗ refer to presence and absence respectively.

Significance of Components: In Table 3, we observe

that without weight corrections, the model performs lower

by absolute margins of 7.3% and 8.4% for CIFAR-100 us-

ing LeNet and ResNet-18, respectively. Without scaling,

the model performance suffers slightly. However, we ob-

serve in task incremental generalized zero-shot learning that

scaling helps to improve the RKR performance (Sec. 6.3).

Forward Knowledge Transfer: In RKR, when we train

the model on a new task, we initialize the parameters of RG

and SFG from the previous task. If we train these parame-

ters from scratch for every new task, the model performance

falls by an absolute margin of 1.45% for CIFAR-100 using

the ResNet-18. Therefore, forward transfer of knowledge

occurs in RKR.

5.4. ImageNet­1K Results

From Table 4, we observe that RKR significantly outper-

forms the state-of-the-art CCLL method. Specifically, our

method outperforms CCLL by an absolute margin of 3.1%

(top-5 accuracy) even though both RKR and CCLL intro-

duce around 0.5% extra parameters per task. It should also

be noted that CCLL introduces 0.98% extra FLOPS in the

model, whereas RKR introduces only 2.8 × 1e-4% extra

FLOPS, which is very insignificant.

15287



Method 1 2 3 4 5 6 7 8 9 Final Acc.

iCaRL∗ [21] CVPR’17 90.1 82.8 76.1 69.8 63.3 57.2 53.5 49.8 46.7 44.1

RPS-Net∗ [20] NIPS’19 90.2 88.4 82.4 75.9 66.9 62.5 57.2 54.2 51.9 48.8

EEIL∗ [2] ECCV’18 95.0 95.5 86.0 77.5 71.0 68.0 62.0 59.8 55.0 52.0

CCLL [26] NIPS’20 91.4 88.3 86.5 86.6 84.6 83.5 82.7 81.7 81.2 81.3

RKR(Ours) 90.2 88.7 88.1 88.2 86.6 85.7 85.0 84.2 83.8 84.4+3.1

Table 4: Task incremental learning experiments on the ImageNet-1K dataset with 10 tasks. The reported accuracy for each

task is the average of all accuracies up to that task. ‘∗’ denotes replay-based approach.

Method Total aPY AWA1 CUB SUN

Mem. U S H U S H U S H U S H

Base 100% 6.69 0.59 1.09 5.14 0.92 1.56 0.87 0.67 0.76 43.40 33.95 38.10

SFT 100% 24.24 23.21 23.71 47.27 55.18 50.92 35.46 34.74 35.10 38.47 36.10 37.20

L1 200% 26.42 29.79 28.01 49.64 58.23 53.59 35.11 32.31 33.65 40.14 34.11 36.88

L2 200% 24.08 23.61 23.84 46.71 59.07 52.17 35.53 33.24 34.35 42.08 32.33 36.56

LZSL 200% 29.11 43.29 34.81 51.17 63.66 56.73 38.82 45.81 42.03 42.43 31.78 36.34

RKR(Ours) 113% 33.39 51.34 40.46 58.79 69.36 63.64 47.52 49.22 48.36 42.22 36.01 38.87

Original 400% 30.36 59.36 40.18 57.30 72.80 64.10 53.50 51.60 52.40 35.70 47.20 42.60

Table 5: Classification accuracy (%) of incremental generalized zero-shot learning on the sequence of datasets aPY, AWA1,

CUB, and SUN for our method RKR and other methods. LZSL [30] is the state-of-the-art method in this setting.

6. Task Incremental Learning Experiments

(Generalized Zero-Shot Setting)

6.1. Datasets

We experiment with four datasets for the task incre-

mental generalized zero-shot learning (GZSL) problem i.e.

Attribute Pascal and Yahoo (aPY) [6], Animals with At-

tributes 1 (AWA1) [31], Caltech-UCSD-Birds 200-2011

(CUB) [29], and SUN Attribute dataset (SUN) [19]. We

extract the image features of 2048 dimensions from the fi-

nal pooling layer of an ImageNet pre-trained ResNet-101.

We follow the training split proposed in [31] so that the test

classes do not overlap with the training classes.

6.2. Implementation Details

For the task incremental generalized zero-shot learning

problem, we use the setting described in [30]. The authors

in [30] propose a task incremental generalized zero-shot

learning problem where each task is a separate dataset and

show how a popular zero-shot learning approach, CADA-

VAE [24] suffers from catastrophic forgetting in the im-

age/visual feature encoder in this setting. We apply our

approach to this setting and show that RKR achieves state-

of-the-art results in this setting. In our approach, we apply

the weight corrections and scaling transformations to the vi-

sual features encoder. We use K = 16 to generate weight

rectifications in this setting and report the average results of

5 runs for our method. Please refer to the supplementary

materials for further details.

We apply RKR to the CADA-VAE framework, which

contains only fully connected layers. SCM in CCLL

only calibrates convolutional layer outputs (feature maps).

Therefore, CCLL cannot be applied to CADA-VAE. We

compare our method RKR with LZSL [30] and with the

baseline methods proposed in [30] i.e., a) Sequential Fine-

tuning (SFT): model is fine-tuned on new tasks sequentially,

aPY AWA1 CUB SUN

U S H U S H U S H U S H

33.39 51.34 40.46 58.79 69.36 63.64 47.52 49.22 48.36 42.22 36.01 38.87

AWA1 aPY CUB SUN

U S H U S H U S H U S H

61.93 66.49 64.13 30.96 55.25 39.68 48.06 50.36 49.18 47.08 31.78 37.95

CUB AWA1 aPY SUN

U S H U S H U S H U S H

51.11 53.88 52.46 56.02 70.01 62.24 30.82 53.39 39.08 46.25 32.05 37.87

SUN AWA1 CUB aPY

U S H U S H U S H U S H

45.28 36.67 40.52 57.81 67.91 62.46 47.51 49.48 48.47 31.21 57.87 40.55

Table 6: Experimental results for RKR with different first

dataset in the task incremental GZSL problem.

and the model parameters are initialized from the model

trained on the previous task, b) L1 regularization (L1):

model weights are initialized with the weights of the model

trained on the previous task, and the model is trained with

an L1-regularization loss between the previous and current

network weights, c) L2 regularization (L2): same as (b) but

with L2-regularization loss, d) “Base": model trained se-

quentially on all tasks without using any incremental learn-

ing methods or fine-tuning, e) “Original": trains separate

networks for each task.

6.3. Results

Table 5 compares the performance of our method with

the baselines, and LZSL [30] using the three evaluation met-

rics: unseen average class accuracy (U), seen average class

accuracy (S), and harmonic mean of the two (H). The se-

quence of tasks/datasets is aPY, AWA1, CUB, and SUN, for

a fair comparison with the other methods.

Table 5 also reports the total memory required by each

method for the four tasks. LZSL requires 200% memory

for the image feature encoder as it stores the image fea-

tures encoder trained on the previous task to calculate the

knowledge distillation loss. The L1 and L2 baselines also

require 200% memory as they store the image features en-

15288



Wt. Scaling aPY AWA1 CUB SUN

Rec. U S H U S H U S H U S H

✓ ✗ 32.34 52.78 40.10 52.50 69.80 59.93 45.12 42.54 43.79 40.97 30.97 35.28

✗ ✓ 29.97 52.08 38.05 52.82 61.53 56.84 39.17 39.00 39.08 36.81 29.30 32.63

✓ ✓ 33.39 51.34 40.46 58.79 69.36 63.64 47.52 49.22 48.36 42.22 36.01 38.87

Table 7: Classification accuracy (%) of task incremental generalized zero-shot learning on the aPY, AWA1, CUB and SUN

datasets using RKR with different combinations of its components. Wt. Rec. refers to weight rectifications.

K Train aPY AWA1 CUB SUN

Mem. U S H U S H U S H U S H

1 101% 30.33 58.78 40.01 55.66 69.49 61.81 40.11 40.68 40.39 40.56 30.50 34.82

4 104% 31.10 56.55 40.13 55.44 69.16 61.55 39.37 47.95 43.24 42.71 30.78 35.77

16 113% 33.39 51.34 40.46 58.79 69.36 63.64 47.52 49.22 48.36 42.22 36.01 38.87

32 126% 33.60 51.67 40.72 59.50 69.61 64.16 49.04 51.08 50.04 45.00 34.92 39.33

Table 8: Classification accuracy (%) of task incremental generalized zero-shot learning using RKR with different K values.

Initialization aPY AWA1 CUB SUN

U S H U S H U S H U S H

Random 33.39 51.34 40.46 54.11 67.13 59.92 37.84 44.25 40.79 36.11 28.29 31.73

Previous 33.39 51.34 40.46 58.79 69.36 63.64 47.52 49.22 48.36 42.22 36.01 38.87

Table 9: Classification accuracy (%) of task incremental generalized zero-shot learning using our proposed RKR with differ-

ent types of initialization: 1) random 2) from previous task.

coder trained on the previous task to calculate the L1/L2

loss between the weights of the two encoders. The “Origi-

nal" model trains four separate networks for the four tasks

and requires 400% total memory. Our method RKR re-

quires around 3.28% additional parameters for each task.

Therefore, on four tasks, RKR requires a total of about

113% memory for the image features encoder.

The “Base" model performs extremely badly on the first

three tasks and manifests a clear case of catastrophic for-

getting. SFT performs better than the “Base" model since

it fine-tunes the model on the new task. However, its per-

formance starts dropping for the older tasks as it learns new

tasks. The forgetting is lower in SFT but is still substan-

tial. We observe similar forgetting for the L1 and L2 base-

lines. Our method RKR significantly outperforms LZSL

[30] as well as all the baseline methods. Specifically, RKR

outperforms the state-of-the-art method LZSL by absolute

margins of 5.65%, 6.91%, 6.33%, and 2.53% for the aPY,

AWA1, CUB, and SUN datasets, respectively. We also com-

pare the average H values across the four datasets. The av-

erage H values are 10.2%, 36.73%, 38.03%, 36.73% and

42.48% for base, SFT, L1, L2 and LZSL [30] respectively.

The average H value for RKR is 47.83%, and that of the

“Original" model is 49.82%. Therefore, RKR is signifi-

cantly closer to the “Original" model as compared to LZSL.

Different First Task: Table 6 contains the results for

different sequences of tasks/datasets having different first

dataset. The H values for the AWA1 dataset with the first

dataset as aPY, CUB, and SUN are 63.64%, 62.24%, and

62.46%. Considering the fact that aPY, CUB, and SUN have

a large variation in the number of classes (aPY = 32, CUB

= 200, SUN = 717), this variation in the result is minor.

We observe the same pattern for the other three tasks with

different first tasks.

Significance of Components: From Table 7 we observe

that without weight rectifications, RKR performs lower by

absolute margins of 6.8%, 9.28%, and 6.24% for the AWA1,

CUB, and SUN datasets, respectively. Similarly, with-

out scaling, RKR performs lower by absolute margins of

3.71%, 4.57%, and 3.59% for the AWA1, CUB, and SUN

datasets, respectively. Therefore, both weight rectifications

and scaling factors are vital in this setting.

Value of K: Table 8 reports performances of RKR with

different values of K. K = 16 performs close to K = 32
for most of the datasets but requires significantly less total

memory, i.e., 113% vs. 126%. Therefore, we choose K =
16 for all our experiments in this setting, which significantly

outperforms the state-of-the-art method.

Forward Knowledge Transfer In RKR, when a new

task becomes available for training, we initialize the RG

and SFG parameters from the previous task. We also exper-

iment with training these parameters from scratch for each

task. Table 9 reports the performance of our method RKR

with the two types of initialization for the RG and SFG pa-

rameters. When we initialize these parameters from scratch,

the model performs lower by absolute margins of 3.72%,

7.57%, and 7.14% from the other case, for AWA1, CUB,

and SUN datasets, respectively. Therefore, forward transfer

of knowledge takes place in RKR.

7. Conclusion

We propose a novel approach called Rectification-based
Knowledge Retention (RKR) for the task incremental learn-
ing problem. RKR learns rectifications to adapt the net-
work weights and intermediate outputs for every new task.
We empirically show that our approach significantly out-
performs the state-of-the-art methods for task incremental
learning problem in both the zero-shot and non zero-shot
settings.

15289



References

[1] Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuyte-

laars. Task-free continual learning. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 11254–11263, 2019.

[2] Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil,

Cordelia Schmid, and Karteek Alahari. End-to-end incre-

mental learning. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 233–248, 2018.

[3] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,

and Mohamed Elhoseiny. Efficient lifelong learning with a-

GEM. In International Conference on Learning Representa-

tions (ICLR), 2019.

[4] Long Chen, Hanwang Zhang, Jun Xiao, Wei Liu, and Shih-

Fu Chang. Zero-shot visual recognition using semantics-

preserving adversarial embedding networks. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1043–1052, 2018.

[5] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah

Parisot, Xu Jia, Ales Leonardis, Gregory Slabaugh, and

Tinne Tuytelaars. Continual learning: A comparative study

on how to defy forgetting in classification tasks. arXiv

preprint arXiv:1909.08383, 2019.

[6] Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth.

Describing objects by their attributes. In 2009 IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1778–1785. IEEE, 2009.

[7] Rafael Felix, Vijay BG Kumar, Ian Reid, and Gustavo

Carneiro. Multi-modal cycle-consistent generalized zero-

shot learning. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 21–37, 2018.

[8] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori

Zwols, David Ha, Andrei A Rusu, Alexander Pritzel, and

Daan Wierstra. Pathnet: Evolution channels gradient descent

in super neural networks. arXiv preprint arXiv:1701.08734,

2017.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 770–778, 2016.

[10] Nitin Kamra, Umang Gupta, and Yan Liu. Deep generative

dual memory network for continual learning. arXiv preprint

arXiv:1710.10368, 2017.

[11] Ronald Kemker and Christopher Kanan. Fearnet: Brain-

inspired model for incremental learning. In International

Conference on Learning Representations (ICLR), 2018.

[12] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel

Veness, Guillaume Desjardins, Andrei A Rusu, Kieran

Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-

Barwinska, et al. Overcoming catastrophic forgetting in neu-

ral networks. Proceedings of the National Academy of Sci-

ences, 114(13):3521–3526, 2017.

[13] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009.

[14] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[15] Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and

Caiming Xiong. Learn to grow: A continual structure

learning framework for overcoming catastrophic forgetting.

In Kamalika Chaudhuri and Ruslan Salakhutdinov, edi-

tors, Proceedings of the 36th International Conference on

Machine Learning, volume 97 of Proceedings of Machine

Learning Research, pages 3925–3934, Long Beach, Califor-

nia, USA, 09–15 Jun 2019. PMLR.

[16] Zhizhong Li and Derek Hoiem. Learning without forgetting.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 40(12):2935–2947, 2017.

[17] Michael McCloskey and Neal J Cohen. Catastrophic inter-

ference in connectionist networks: The sequential learning

problem. In Psychology of Learning and Motivation, vol-

ume 24, pages 109–165. Elsevier, 1989.

[18] German Ignacio Parisi, Ronald Kemker, Jose L. Part,

Christopher Kanan, and Stefan Wermter. Continual Life-

long Learning with Neural Networks: A Review. Neural

Networks, 2019.

[19] Genevieve Patterson and James Hays. Sun attribute database:

Discovering, annotating, and recognizing scene attributes.

In 2012 IEEE Conference on Computer Vision and Pattern

Recognition, pages 2751–2758. IEEE, 2012.

[20] Jathushan Rajasegaran, Munawar Hayat, Salman H Khan,

Fahad Shahbaz Khan, and Ling Shao. Random path selec-

tion for continual learning. In H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, edi-

tors, Advances in Neural Information Processing Systems 32,

pages 12669–12679. Curran Associates, Inc., 2019.

[21] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg

Sperl, and Christoph H Lampert. icarl: Incremental classi-

fier and representation learning. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2001–2010, 2017.

[22] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015.

[23] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,

Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-

van Pascanu, and Raia Hadsell. Progressive neural networks.

arXiv preprint arXiv:1606.04671, 2016.

[24] Edgar Schonfeld, Sayna Ebrahimi, Samarth Sinha, Trevor

Darrell, and Zeynep Akata. Generalized zero-and few-shot

learning via aligned variational autoencoders. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 8247–8255, 2019.

[25] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina,

Agnieszka Grabska-Barwinska, Yee Whye Teh, Razvan Pas-

canu, and Raia Hadsell. Progress & compress: A scalable

framework for continual learning. In ICML, pages 4535–

4544, 2018.

[26] Pravendra Singh, Vinay Kumar Verma, Pratik Mazumder,

Lawrence Carin, and Piyush Rai. Calibrating cnns for life-

long learning. In H. Larochelle, M. Ranzato, R. Hadsell,

M. F. Balcan, and H. Lin, editors, Advances in Neural Infor-

15290



mation Processing Systems, volume 33, pages 15579–15590.

Curran Associates, Inc., 2020.

[27] Richard Socher, Milind Ganjoo, Christopher D Manning,

and Andrew Ng. Zero-shot learning through cross-modal

transfer. In Advances in Neural Information Processing Sys-

tems, pages 935–943, 2013.

[28] Johannes von Oswald, Christian Henning, João Sacramento,

and Benjamin F. Grewe. Continual learning with hypernet-

works. In International Conference on Learning Represen-

tations (ICLR), 2020.

[29] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-

ona, and Serge Belongie. The caltech-ucsd birds-200-2011

dataset, 2011.

[30] Kun Wei, Cheng Deng, and Xu Yang. Lifelong zero-shot

learning. In Christian Bessiere, editor, Proceedings of the

Twenty-Ninth International Joint Conference on Artificial

Intelligence, IJCAI-20, pages 551–557. International Joint

Conferences on Artificial Intelligence Organization, 7 2020.

Main track.

[31] Yongqin Xian, Christoph H Lampert, Bernt Schiele, and

Zeynep Akata. Zero-shot learning—a comprehensive eval-

uation of the good, the bad and the ugly. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 41(9):2251–

2265, 2018.

[32] Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep

Akata. Feature generating networks for zero-shot learning.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5542–5551, 2018.

[33] Tianjun Xiao, Jiaxing Zhang, Kuiyuan Yang, Yuxin Peng,

and Zheng Zhang. Error-driven incremental learning in deep

convolutional neural network for large-scale image classifi-

cation. In Proceedings of the 22nd ACM International Con-

ference on Multimedia, pages 177–186, 2014.

[34] Ju Xu and Zhanxing Zhu. Reinforced continual learning. In

Advances in Neural Information Processing Systems, pages

899–908, 2018.

[35] Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju

Hwang. Scalable and order-robust continual learning with

additive parameter decomposition. In International Confer-

ence on Learning Representations (ICLR), 2020.

[36] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju

Hwang. Lifelong learning with dynamically expandable net-

works. In International Conference on Learning Represen-

tations (ICLR), 2018.

[37] Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz,

Kai Wang, Yongmei Cheng, Shangling Jui, and Joost van de

Weijer. Semantic drift compensation for class-incremental

learning. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 6982–

6991, 2020.

[38] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-

ual learning through synaptic intelligence. In Proceedings

of the 34th International Conference on Machine Learning-

Volume 70, pages 3987–3995. JMLR. org, 2017.

[39] Li Zhang, Tao Xiang, and Shaogang Gong. Learning a deep

embedding model for zero-shot learning. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2021–2030, 2017.

[40] Bo Zhao, Xinwei Sun, Yanwei Fu, Yuan Yao, and Yizhou

Wang. Msplit lbi: Realizing feature selection and dense es-

timation simultaneously in few-shot and zero-shot learning.

arXiv preprint arXiv:1806.04360, 2018.

[41] Yizhe Zhu, Mohamed Elhoseiny, Bingchen Liu, Xi Peng,

and Ahmed Elgammal. A generative adversarial approach

for zero-shot learning from noisy texts. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1004–1013, 2018.

15291


