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Abstract

Learning to recognize actions from only a handful of la-

beled videos is a challenging problem due to the scarcity

of tediously collected activity labels. We approach this

problem by learning a two-pathway temporal contrastive

model using unlabeled videos at two different speeds lever-

aging the fact that changing video speed does not change

an action. Specifically, we propose to maximize the simi-

larity between encoded representations of the same video

at two different speeds as well as minimize the similarity

between different videos played at different speeds. This

way we use the rich supervisory information in terms of

‘time’ that is present in otherwise unsupervised pool of

videos. With this simple yet effective strategy of manipulat-

ing video playback rates, we considerably outperform video

extensions of sophisticated state-of-the-art semi-supervised

image recognition methods across multiple diverse bench-

mark datasets and network architectures. Interestingly, our

proposed approach benefits from out-of-domain unlabeled

videos showing generalization and robustness. We also per-

form rigorous ablations and analysis to validate our ap-

proach. Project page: https://cvir.github.io/TCL/.

1. Introduction

Supervised deep learning approaches have shown re-

markable progress in video action recognition [7, 15, 16,

17, 36, 49]. However, being supervised, these models are

critically dependent on large datasets requiring tedious hu-

man annotation effort. This motivates us to look beyond the

supervised setting as supervised methods alone may not be

enough to deal with the volume of information contained in

videos. Semi-supervised learning approaches use structural

invariance between different views of the same data as a

source of supervision for learning useful representations. In

recent times, semi-supervised representation learning mod-

els [10, 29, 38, 50] have performed very well even surpass-

ing its supervised counterparts in case of images [22, 47].

∗The first two authors contributed equally.
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Figure 1: Comparison of top-1 accuracy for TCL (Ours) with

Pseudo-Label [35] and FixMatch [47] baselines trained with

different percentages of labeled training data. We evaluate the

efficacy of the approaches in terms of the least proportion of la-

beled data required to surpass the fully supervised [36] perfor-

mance (shown with the red dotted line). With only 33% and 15%

of labeled data, our proposed TCL framework surpasses the su-

pervised approaches in Mini-Something-V2 [23] and Jester [37]

datasets respectively. The two other compared methods fail to

reach the accuracy of the fully supervised approach with such

small amount of labeled data. (Best viewed in color.)

Notwithstanding their potential, semi-supervised video

action recognition has received very little attention. Triv-

ially extending the image domain approaches to videos

without considering the rich temporal information may not

quite bridge the performance gap between the semi and the

fully supervised learning. But, in videos, we have another

source of supervision: time. We all know that an action rec-

ognizer is good if it can recognize actions irrespective of

whether the actions are performed slowly or quickly. Re-

cently, supervised action recognition has benefited a lot by

using differently paced versions of the same video during

training [17, 54]. Motivated by the success of using slow

and fast versions of videos for supervised action recognition

as well as by the success of the contrastive learning frame-

works [26, 41], we propose Temporal Contrastive Learn-

ing (TCL) for semi-supervised action recognition in videos

where consistent features representing both slow and fast

versions of the same videos are learned.

Starting with a model trained with limited labeled data,

we present a two-pathway model that processes unlabeled

videos at two different speeds and finds their representa-

tions. Though played at two different speeds, the videos

share the same semantics. Thus, similarity between these
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representations are maximized. Likewise, the similarity be-

tween the representations of different videos are minimized.

We achieve this by minimizing a modified NT-Xent con-

trastive loss [10, 50] between these videos with different

playback rates. While minimizing a contrastive loss helps

to produce better visual representations by learning to be in-

variant to different views of the data, it ignores information

shared among samples of same action class as the loss treats

each video individually. To this end, we propose a new per-

spective of contrastive loss between neighborhoods. Neigh-

borhoods are compact groups of unlabeled videos with high

class consistency. In absence of ground-truth labels, groups

are formed by clustering videos with same pseudo-labels

and are represented by averaging the representations of the

constituent videos. Contrastive objective between groups

formed off the two paths explores the underlying class con-

cept that traditional NT-Xent loss among individual video

instances does not take into account. We term the con-

trastive loss considering only individual instances as the

instance-contrastive loss and the same between the groups

as the group-contrastive loss respectively.

We perform extensive experiments on four standard

datasets and demonstrate that TCL achieves superior per-

formance over extended baselines of state-of-the-art image

domain semi-supervised approaches. Figure 1 shows com-

parison of TCL with Pseudo-Label [35] and FixMatch [47]

trained using different percentages of labeled training data.

Using the same backbone network (ResNet-18), TCL needs

only 33% and 15% of labeled data in Mini-Something-

V2 [9] and Jester [37] respectively to reach the performance

of the fully supervised approach [36] that uses 100% la-

beled data. On the other hand, the two compared methods

fail to reach the accuracy of the fully supervised approach

with such small amount of labeled data. Likewise, we ob-

serve as good as 8.14% and 4.63% absolute improvement in

recognition performance over the next best approach, Fix-

Match [47] using only 5% labeled data in Mini-Something-

V2 [9] and Kinetics-400 [32] datasets respectively. In a new

realistic setting, we argue that unlabeled videos may come

from a related but different domain than that of the labeled

data. For instance, given a small set of labeled videos from a

third person view, our approach is shown to benefit from us-

ing only first person unlabeled videos on Charades-Ego [44]

dataset, demonstrating the robustness to domain shift in the

unlabeled set. To summarize, our key contributions include:

• First of all, we treat the time axis in unlabeled videos

specially, by processing them at two different speeds

and propose a two-pathway temporal contrastive semi-

supervised action recognition framework.

• Next, we identify that directly employing con-

trastive objective instance-wise on video representa-

tions learned with different frame-rates may miss cru-

cial information shared across samples of same in-

herent class. A novel group-contrastive loss is pio-

neered to couple discriminative motion representation

with pace-invariance that significantly improves semi-

supervised action recognition performance.

• We demonstrate through experimental results on four

datasets, TCL’s superiority over extended baselines of

successful image-domain semi-supervised approaches.

The versatility and robustness of our approach in case

of training with unlabeled videos from a different do-

main is shown along with in-depth ablation analysis

pinpointing the role of the different components.

2. Related Work

Action Recognition. Action recognition is a challenging

problem with great application potential. Conventional ap-

proaches based on deep neural networks are mostly built

over a two-stream CNN based framework [46], one to pro-

cess a single RGB frame and the other for optical flow input

to analyze the spatial and temporal information respectively.

Many variants of 3D-CNNs such as C3D [49], I3D [7] and

ResNet3D [27], that use 3D convolutions to model space

and time jointly, have also been introduced for action recog-

nition. SlowFast network [17] employs two pathways for

recognizing actions by processing a video at both slow and

fast frame rates. Recent works also utilize 2D-CNNs for

efficient video classification by using different temporal ag-

gregation modules such as temporal averaging in TSN [52],

bag of features in TRN [61], channel shifting in TSM [36],

depthwise convolutions in TAM [15]. Despite promising

results on common benchmarks, these models are critically

dependent on large datasets that require careful and tedious

human annotation effort. In contrast, we propose a simple

yet effective temporal contrastive learning framework for

semi-supervised action recognition that alleviates the data

annotation limitation of supervised methods.

Semi-Supervised Learning. Semi-supervised learning

(SSL) has been studied from multiple aspects (see re-

views [8]). Various strategies have been explored e.g.,

generative models [40, 42], self-training using pseudo-

labels [1, 24, 35] and consistency regularization [2, 4, 5, 34,

39, 48, 55]. Leveraging self-supervised learning like rota-

tion prediction [20] and image transformations [13] is also

another recent trend for SSL [60]. While there has been

tremendous progress in semi-supervised image classifica-

tion, SSL for action recognition is still a novel and rarely

addressed problem. Iosifidis et al. [31], first utilize tradi-

tional Action Bank for action representation and then uses

a variant of extreme learning machine for semi-supervised

classification. The work most related to ours is [47] which

first generates confident one-hot labels for unlabelled im-

ages and then trains the model to be consistent across dif-

ferent forms of image augmentations. While this has re-
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Figure 2: Illustration of our Temporal Contrastive Learning (TCL) Framework. Our approach consists of base and auxiliary pathways

that share the same weights. Base pathway accepts video frames sampled at a higher rate while the auxiliary pathway takes in frames at

a lower framerate. At first, the base network is trained using limited labeled data. Subsequently, the auxiliary pathway comes into

picture for the unlabeled samples by encouraging video representations to match in both pathways in absence of labels. This is done by

maximizing agreement between the outputs of the two pathways for a video while minimizing the same for different videos. In addition,

originally unlabeled videos with high semantic similarity are grouped by pseudo-labels assigned to them. To exploit the high consistency

and compactness of group members, the average representations of groups with same pseudo-label in different pathways are made similar

while that between the varying groups are made maximally different. Two separate contrastive losses (ref Sections 3.2.2 and 3.2.3) are

used for this purpose. Given a video at test time, only the base network is used to recognize the action. (Best viewed in color.)

cently achieved great success, the data augmentations for

generating different transformations are limited to transfor-

mations in the image space and fail to leverage the tempo-

ral information present in videos. We differ from [47] as

we propose a temporal contrastive learning framework for

semi-supervised action recognition by modeling temporal

aspects using two pathways at different speeds instead of

augmenting images. We further propose a group-wise con-

trastive loss in addition to instance-wise contrastive loss for

learning discriminative features for action recognition.

Contrastive Learning. Contrastive learning [10, 11, 19,

28, 30, 33, 38, 50, 53] is becoming increasingly attractive

due to its great potential to leverage large amount of un-

labeled data. The essence of contrastive learning lie in

maximizing the similarity of representations among posi-

tive samples while encouraging discrimination for negative

samples. Some recent works have also utilized contrastive

learning [21, 25, 41, 43, 58] for self-supervised video rep-

resentation learning. Spatio-temporal contrastive learning

using different augmentations for learning video features is

presented in [41]. Speed of a video is also investigated for

self-supervised learning [3, 51, 59] unlike the problem we

consider in this paper. While our approach is inspired by

these, we focus on semi-supervised action recognition in

videos, where our goal is to learn consistent features repre-

senting two different frame rates of the unlabeled videos.

3. Methodology

In this section, we present our novel semi-supervised ap-

proach to efficiently learn video representations. First we

briefly discuss the problem description and then describe

our framework and its components in detail.

3.1. Problem Setup

Our aim is to address semi-supervised action recogni-

tion where only a small set of videos (Dl) has labels, but a

large number of unlabeled videos (Du) are assumed to be

present alongside. The set Dl , {V i, yi}Nl

i=1
comprises

of Nl videos where the ith video and the corresponding

activity label is denoted by V i and yi respectively. For a

dataset of videos with C different activities, yi is often as-

sumed to be an element of the label set Y = {1, 2, · · · , C}.

Similarly, the unlabeled set Du , {U i}Nu

i=1
comprises of

Nu(≫Nl) videos without any associated labels. We use

the unlabeled videos at two different frame rates and refer

to them as fast and slow videos. The fast version of the

video U i is represented as a collection of M frames i.e.,

U i
f = {F i

f,1, F
i
f,2, · · · , F

i
f,M}. Likewise, the slow version

of the same is represented as U i
s = {F i

s,1, F
i
s,2, · · · , F

i
s,N}

where N < M . The frames are sampled from the video fol-

lowing Wang et. al [52] where a random frame is sampled

uniformly from consecutive non-overlapping segments.
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3.2. Temporal Contrastive Learning

As shown in Figure 2, our ‘Temporal Contrastive Learn-

ing (TCL)’ framework processes the input videos in two

pathways, namely base and auxiliary pathways. The fast

version of the videos are processed by base while the slow

versions are processed by the auxiliary pathway. Both path-

ways share same neural backbone (denoted by g(.)). Differ-

ent stages of training in TCL framework are described next.

3.2.1 Supervised Training Stage

The neural network backbone is initially trained using only

the small labeled data Dl by passing it through the base

branch. Depending on whether the backbone involves

2D [36, 52] or 3D convolution [7, 27] operations, the repre-

sentation (g(V i)) of the video V i used in our framework is

average of the frame logits or the logits from the 3D back-

bone respectively. We minimize the standard supervised

cross-entropy loss (Lsup) on the labeled data as follows.

Lsup = −

C
∑

c=1

(yi)c log(g(V
i))c (1)

3.2.2 Instance-Contrastive Loss

Equipped with an initial backbone trained with limited su-
pervision, our goal is to learn a model that can use a large
pool of unlabeled videos for better activity understanding.
To this end, we use temporal co-occurrence of unlabeled
activities at multiple speeds as a proxy task and enforce
this with a pairwise contrastive loss. Specifically, we adjust
the frame sampling rate to get videos with different speeds.
Let us consider a minibatch with B unlabeled videos. The
model is then trained to match the representation g(U i

f ) of

the comparatively faster version of the video (U i) with that
(g(U i

s)) of the slower version. g(U i
f ) and g(U i

s) forms the

positive pair. For rest of B − 1 videos, g(U i
f ) and g(Uk

p )

form negative pairs where representation of kth video can
come from either of the pathways (i.e., p ∈ {f, s}). As
different videos forming the negative pairs, have different
content, the representation of different videos in either of
the pathways are pushed apart. This is achieved by employ-
ing a contrastive loss (Lic) as follows.

Lic(U
i
f , U

i
s)=−log

h
(

g(U i
f ),g(U

i
s)
)

h
(

g(U i
f ),g(U

i
s)
)

+
B
∑

k=1

p∈{s,f}

1{k 6=i}h
(

g(U i
f ),g(U

k
p )
)

(2)

where h(u,v) = exp
(

u
⊤
v

||u||2||v||2
/τ

)

is the exponential of

cosine similarity measure and τ is the temperature hyperpa-

rameter. The final instance-contrastive loss is computed for

all positive pairs, i.e., both (U i
f , U

i
s) and (U i

s, U
i
f ) across

minibatch. The loss function encourages to decrease the

similarity not only between different videos in two path-

ways but also between different videos across both of them.

Figure 3: Advantage of group-contrastive loss over instance-

contrastive loss. A contrastive objective between instances may

try to push different instances of same action apart (right), while

forming groups of videos with same activity class avoids such in-

advertent competition (left). In absence of true labels, such group-

ing is done by the predicted pseudo-labels. (Best viewed in color.)

3.2.3 Group-Contrastive Loss

Directly applying contrastive loss between different video
instances in absence of class-labels does not take the high
level action semantics into account. As illustrated in Fig-
ure 3, such a strategy can inadvertently learn different rep-
resentations for videos containing same actions. We employ
contrastive loss among groups of videos with similar actions
where relations within the neighborhood of different videos
are explored. Specifically, each unlabeled video U i in each
of the two pathways are assigned pseudo-labels that corre-
spond to the class having the maximum activation. Let ŷif
and ŷis denote the pseudo-labels of the video U i in the fast
and the slow pathways respectively. Videos having the same
pseudo-label in a minibatch form a group in each pathway
and the average of the representations of constituent videos
provides the representation of the group as shown below.

R
l
p =

B
∑

i=1

1{ŷi
p=l}g(U

i
p)

T
(3)

where 1 is an indicator function that evaluates to 1 for the

videos with pseudo-label equal to l ∈ Y in each pathway

p∈{f, s}. T is the number of such videos in the minibatch.

Considering the high class consistency among two

groups with same label in two pathways, we require these

groups to give similar representations in the feature space.

Thus, in the group-contrastive objective, all pairs (Rl
f , R

l
s)

act as positive pairs while the negative pairs are the pairs

(Rl
f , R

m
p ) with p∈ {f, s} and m∈ Y \ l such that the con-

stituent groups are different in either of the pathways. The

group-contrastive loss involving these pairs is,

Lgc(R
l
f ,R

l
s)=−log

h(Rl
f ,R

l
s)

h(Rl
f ,R

l
s) +

C
∑

m=1

p∈{s,f}

1{m 6=l}h(R
l
f ,R

m
p )

(4)

Similar to instance-contrastive loss, group-contrastive

loss is also computed for all positive pairs - both (Rl
f , R

l
s)
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and (Rl
s, R

l
f ) across the minibatch. Overall, the loss func-

tion for training our model involving the limited labeled

data and the unlabeled data is,

L = Lsup + γ ∗ Lic + β ∗ Lgc (5)

where, γ and β are weights of the instance-contrastive and

group-contrastive losses respectively.

3.3. TCL with Pretraining and Finetuning

Self-supervised pretraining has recently emerged as a

promising alternative, which not only avoids huge anno-

tation effort but also is better and robust compared to its

supervised counterpart in many visual tasks [14, 56, 62].

Motivated by this, we adopt self-supervised pretraining to

initialize our model with very minimal change in the frame-

work. Specifically, we employ self-supervised pretraining

at the beginning by considering the whole of the labeled and

the unlabeled data Dl ∪ Du as unlabeled data only and us-

ing instance-contrastive loss Lic to encourage consistency

between representations learned in the two pathways (ref.

Eq. 2). These weights are then used to initialize the base

and the auxiliary pathways before our approach commences

for semi-supervised learning of video representations. For

effective utilization of unlabeled data, we also finetune

the base pathway with pseudo-labels [35] generated at the

end of our contrastive learning, which greatly enhances

the discriminabilty of the features, leading to improve-

ment in recognition performance. We empirically show

that starting with the same amount of labeling, both self-

supervised pretraining and finetuning with pseudo-labels

(Pretraining→TCL →Finetuning) benefits more compared

to the same after limited supervised training only.

4. Experiments

In this section, we conduct extensive experiments to

show that our TCL framework outperforms many strong

baselines on several benchmarks including one with domain

shift. We also perform comprehensive ablation experiments

to verify the effectiveness of different components in detail.

4.1. Experimental Setup

Datasets. We evaluate our approach using four datasets,

namely Mini-Something-V2 [9], Jester [37], Kinetics-

400 [32] and Charades-Ego [44]. Mini-Something-V2 is a

subset of Something-Something V2 dataset [23] containing

81K training videos and 12K testing videos across 87 action

classes. Jester [37] contains 119K videos for training and

15K videos for validation across 27 annotated classes for

hand gestures. Kinetics-400 [32] is one of the most popular

large-scale benchmark for video action recognition. It con-

sists of 240K videos for training and 20K videos for valida-

tion across 400 action categories, with each video lasting 6-

10 seconds. Charades-Ego [44] contains 7,860 untrimmed

egocentric videos of daily indoors activities recorded from

both third and first person views. The dataset contains

68,536 temporal annotations for 157 action classes. We use

a subset of the third person videos from Charades-Ego as

the labeled data while the first person videos are considered

as unlabeled data to show the effectiveness of our approach

under domain shift in the unlabeled data. More details about

the datasets are included in supplementary material.

Baselines. We compare our approach with the follow-

ing baselines and existing semi-supervised approaches from

2D image domain extended to video data. First, we con-

sider a supervised baseline where we train an action clas-

sifier having the same architecture as the base pathway of

our approach. This is trained using a small portion of

the labeled examples assuming only a small subset of la-

beled examples is available as annotated data. Second, we

compare with state-of-the-art semi-supervised learning ap-

proaches, including Pseudo-Label [35] (ICMLW’13), Mean

Teacher [48] (NeurIPS’17), S4L [60] (ICCV’19), Mix-

Match [5] (NeurIPS’19), and FixMatch [47] (NeurIPS’20).

We use same backbone and experimental settings for all the

baselines (including our approach) for a fair comparison.

Implementation Details. We use Temporal Shift Module

(TSM) [36] with ResNet-18 backbone as the base action

classifier in all our experiments. We further investigate per-

formance of different methods by using ResNet-50 on Mini-

Something-V2 dataset. TSM has recently shown to be very

effective due to its hardware efficiency and lesser computa-

tional complexity. We use uniformly sampled 8 and 4 frame

segments from unlabeled videos as input to the base and the

auxiliary pathways respectively to process unlabeled videos

in our TCL framework. On the other hand, we use only

8 frame segments for labeled videos and compute the final

performance using 8 frame segments in the base pathway

for all the methods. Note that our approach is agnostic to the

backbone architecture and particular values of frame rates.

Following the standard practice [47] in SSL, we randomly

choose a certain percentage of labeled samples as a small

labeled set and discard the labels for the remaining data to

form a large unlabeled set. Our approach is trained with

different percentages of labeled samples for each dataset

(1%, 5% and 10%). We train our models for 400 epochs

where we first train our model with supervised loss Lsup

using only labeled data for 50 epochs. We then train our

model using the combined loss (ref. Eq. 5) for the next 300

epochs. Finally, for finetuning with pseudo-labels, we train

our model with both labeled and unlabeled videos having

pseudo-label confidence more than 0.8 for 50 epochs.

During pretraining, we follow the standard practice in

self-supervised learning [10, 58] and train our model using

all the training videos without any labels for 200 epochs.

We use SGD [6] with a learning rate of 0.02 and momentum

value of 0.9 with cosine learning rate decay in all our experi-
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ResNet-18 ResNet-50

Approach 1% 5% 10% 1% 5% 10%

Supervised (8f) 5.98±0.68 17.26±1.17 24.67±0.68 5.69±0.51 16.68±0.25 25.92±0.53
Pseudo-Label [35] (ICMLW’13) 6.46±0.32 18.76±0.77 25.67±0.45 6.66±0.89 18.77±1.18 28.85±0.91
Mean Teacher [48] (NeurIPS’17) 7.33±1.13 20.23±1.59 30.15±0.42 6.82±0.18 21.80±1.54 32.12±2.37
S4L [60] (ICCV’19) 7.18±0.97 18.58±1.05 26.04±1.89 6.87±1.29 17.73±0.26 27.84±0.75
MixMatch [5] (NeurIPS’19) 7.45±1.01 18.63±0.99 25.78±1.01 6.48±0.83 17.77±0.12 27.03±1.66
FixMatch [47] (NeurIPS’20) 6.04±0.44 21.67±0.18 33.38±1.58 6.54±0.71 25.34±2.03 37.44±1.31
TCL (Ours) 7.79±0.57 29.81±0.77 38.61±0.91 7.54±0.32 27.22±1.86 40.70±0.42
TCL w/ Finetuning 8.65±0.76 30.55±1.36 40.06±1.14 8.56±0.31 28.84±1.22 41.68±0.56
TCL w/ Pretraining & Finetuning 9.91±1.84 30.97±0.07 41.55±0.47 9.19±0.43 29.85±1.76 41.33±1.07

Table 1: Performance Comparison in Mini-Something-V2. Numbers show average Top-1 accuracy values with standard deviations

over 3 random trials for different percentages of labeled data. TCL significantly outperforms all the compared methods in both cases.

Jester Kinetics-400

Approach 1% 5% 10% 1% 5%

Supervised (8f) 52.55±4.36 85.22±0.61 90.45±0.33 6.17±0.32 20.50±0.23
Pseudo-Label [35] (ICMLW’13) 57.99±3.70 87.47±0.64 90.96±0.48 6.32±0.19 20.81±0.86
Mean Teacher [48] (NeurIPS’17) 56.68±1.46 88.80±0.44 92.07±0.03 6.80±0.42 22.98±0.43
S4L [60] (ICCV’19) 64.98±2.70 87.23±0.15 90.81±0.32 6.32±0.38 23.33±0.89
MixMatch [5] (NeurIPS’19) 58.46±3.26 89.09±0.21 92.06±0.46 6.97±0.48 21.89±0.22
FixMatch [47] (NeurIPS’20) 61.50±0.77 90.20±0.35 92.62±0.60 6.38±0.38 25.65±0.28
TCL (Ours) 75.21±4.48 93.29±0.24 94.64±0.21 7.69±0.21 30.28±0.13
TCL w/ Finetuning 77.25±4.02 93.53±0.15 94.74±0.25 8.45±0.25 31.50±0.23
TCL w/ Pretraining & Finetuning 82.55±1.94 93.73±0.25 94.93±0.02 11.56±0.22 31.91±0.46

Table 2: Performance Comparison on Jester and Kinetics-400. Numbers show the top-1 accuracy values using ResNet-18

on both datasets. Our approach TCL achieves the best performance across different percentages of labeled data.

ments. Given a mini-batch of labeled samples Bl, we utilize

µ×Bl unlabeled samples for training. We set µ to 3 and τ
to 0.5 in all our experiments. γ and β values are taken to be

9 and 1 respectively, unless otherwise mentioned. Random

scaling and cropping are used as data augmentation during

training (and we further adopt random flipping for Kinetics-

400), as in [36]. Following [36], we use just 1 clip per video

and the center 224×224 crop for evaluation. More imple-

mentation details are included in supplementary material.

4.2. Large­scale Experiments and Comparisons

Tables 1- 3 show performance of different methods on

all four datasets, in terms of average top-1 clip accuracy

and standard deviation over 3 random trials.

Mini-Something-V2. Table 1 shows the performance com-

parison with both ResNet-18 (left half) and ResNet-50

(right half) backbones on Mini-Something-V2. TCL out-

performs the video extensions of all the semi-supervised

image-domain baselines for all three percentages of labeled

training data. The improvement is especially prominent for

low capacity model (ResNet-18) and low data (only 1% and

5% data with labels) regime. Notably, our approach outper-

forms the most recent approach, FixMatch by 1.75% while

training with only 1% labeled data. The improvement is

8.14% for the case when 5% data is labeled. These im-

provements clearly show that our approach is able to lever-

age the temporal information more effectively compared to

FixMatch that focuses on only spatial image augmentations.

Figure 4 shows the classwise improvement over FixMatch

along with the number of labeled training data per class in

the case of 5% labeling. The plot shows that a overwhelm-

ing majority of the activities experienced improvement with

decrease in performance for only 1 class out of 18 having

less than 20 labeled videos per class (right of the figure). For

low labeled-data regime (1% and 5%), a heavier ResNet-

50 model shows signs of overfitting as is shown by slight

drop in performance. On the other hand, using ResNet-50

backbone instead of ResNet-18 is shown to benefit TCL if

the model is fed with more labeled data. Moreover, TCL

with finetuning and pretraining shows further improvement,

leading to best performance in both cases.

Jester. Our approach TCL also surpasses the performance

of existing semi-supervised approaches in Jester as shown

in Table 2 (left). In particular, TCL achieves 10.23% abso-

lute improvement compared to S4L (the next best) in very

low labeled-data regime (1% only). Adding finetuning and

self-supervised pretraining further increases this difference
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Figure 4: Change in classwise top-1 accuracy of TCL over Fix-

Match on Mini-Something-V2. Blue bars show the change in

accuracy on 5% labeled scenario, while the red line shows the

number of labeled videos per class (sorted). Compared to Fix-

Match, TCL improves the performance of most classes including

those with less labeled data. (Best viewed in color.)

to 17.57%. Furthermore, TCL with pretraining and finetun-

ing achieves a top-1 accuracy of 94.93% using 10% labeled

data which is only 0.32% lower than the fully supervised

baseline trained using all the labels (95.25%).

Kinetics-400. Table 2 (right) summarizes the results on

Kinetics-400, which is one of the widely used action

recognition datasets consisting of 240K videos across 400

classes. TCL outperforms FixMatch by a margin of 1.31%

and 4.63% on 1% and 5% scenarios respectively, showing

the superiority of our approach on large scale datasets. The

top-1 accuracy achieved using TCLwith finetuning and pre-

training is almost twice better than the supervised approach

when only 1% of the labeled data is used. The results also

show that off-the-shelf extensions of sophisticated state-of-

the-art semi-supervised image classification methods offer

little benefit to action classification on videos.

Charades-Ego. We use third person videos from Charades-

Ego [44] as the target while first person videos form the ad-

ditional unlabeled set. During training, labeled data is taken

only from the target domain while unlabeled data is ob-

tained from both the target and the domain-shifted videos.

To modulate domain shift in unlabeled data, we introduce a

new hyperparameter ρ, whose value denotes the proportion

of target videos in the unlabeled set. For a fixed number of

unlabeled videos |Du|, we randomly select ρ×|Du| videos

from the target while the remaining (1 − ρ)×|Du| are se-

lected from the other domain. Following the standard prac-

tice [12] in this dataset, we first pretrain the model using

Charades [45] and experimented using three different val-

ues of ρ: 1, 0.5, 0 for 10% target data with labels. Table 3

shows the mean Average Precision (mAP) of our method

including the supervised approach, PseudoLabel and Fix-

Match. TCL outperforms both methods by around 1% mAP

for all three ρ values. In the case when all the unlabeled data

is from the shifted domain (ρ=0), the performance of our

approach is even better than the performance of the next

best approach (FixMatch) with ρ = 1 i.e., when all unla-

Approach 10%

Supervised (8f) 17.53 ±0.49
ρ = 1 ρ =0.5 ρ =0

Pseudo-Label [35] (ICMLW’13) 18.00±0.16 17.87±0.14 17.79±0.33
FixMatch [47] (NeurIPS’20) 18.02±0.31 18.00±0.29 17.96±0.25
TCL (Ours) 19.13±0.37 18.95±0.17 18.50±0.95
TCL w/ Finetuning 19.68±0.37 19.58±0.31 19.56±0.82

Table 3: Semi-supervised action recognition under domain

shift (Charades-Ego). Numbers show mean average precision

(mAP) with ResNet-18 backbone across three different propor-

tions of unlabeled data (ρ) between third and first person videos.

TCL achieves the best mAP, even on this challenging dataset.

Supervised: Pulling Hand In
S4L: Pulling Two Fingers In 
TCL:  Thumb Down

Supervised: Turning Hand Clockwise 
S4L: Pulling Two Fingers In  
TCL:  Pulling Two Fingers In

Supervised : marching 
FixMatch : marching 
TCL :  Zumba

Supervised: Sliding Two Fingers Up 
S4L: Sliding Two Fingers Up 
TCL:  Sliding Two Fingers Down

Supervised: balloon blowing 
FixMatch: spray painting  
TCL:  assembling computer

Supervised : applauding 
FixMatch : cheerleading  
TCL :  applauding

Supervised : bouncing on trampoline 
FixMatch : riding or walking with horse  
TCL :  climbing tree

Supervised: Doing other things 
S4L: Zooming Out With Two Fingers  
TCL:  Sliding Two Fingers Left

Figure 5: Qualitative examples comparing TCL with super-

vised baseline, S4L [60] and FixMatch [47]. Top Row: Top-1

predictions using ResNet-18 trained with 1% labeled data from

Jester, Bottom Row: Top-1 predictions using ResNet-18 trained

with 5% labeled data from Kinetics-400. TCL is able to correctly

recognize different hand gestures in Jester and diverse human ac-

tions in Kinetics-400 dataset. (Best viewed in color.)

beled data is from the target domain itself. This depicts the

robustness of TCL and its ability to harness diverse domain

data more efficiently in semi-supervised setting.

Qualitative Results. Figure 5 shows qualitative compari-

son between our approach TCL and other competing meth-

ods (S4L [60] and FixMatch [47]) including the simple su-

pervised baseline on Jester and Kinetics-400 respectively.

As can be seen, our temporal contrastive learning approach

is able to correctly recognize different hand gestures from

Jester dataset even with 1% of labeling, while the super-

vised baseline and the next best approach (S4L) fail to rec-

ognize such actions. Similarly, our approach by effectively

utilizing temporal information, predicts the correct label

in most cases including challenging actions like ‘climbing

tree’ and ‘zumba’ on Kinetics-400 dataset. More qualitative

examples are included in the supplementary material.

Role of Pseudo-Labeling. We test the reliability of pseudo-

labeling on Jester (using ResNet-18 and 1% labeling) with

50 epoch intervals and observe that the pseudo-labeling ac-

curacy gradually increases from 0% at the beginning to

65.95% at 100 epoch and then 93.23% at 350 epoch. This

shows that while our model may create some wrong groups

at the start, it gradually improves the groups as the train-

ing goes by, leading to a better representation by exploiting

both instance and group contrastive losses.
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Approach Top-1 Accuracy

TCL w/o Group-Contrastive Loss 27.24±0.42
TCL w/ Pseudo-Label Consistency Loss 23.60±1.04
TCL (Ours) 29.81±0.77

Table 4: Ablation Studies on Mini-Something-V2. Numbers

show top-1 accuracy with ResNet-18 and 5% labeled Data.

4.3. Ablation Studies

We perform extensive ablation studies on Mini-

Something-V2 with 5% labeled data and ResNet-18 back-

bone to better understand the effect of different losses and

hyperparameters in our framework.

Effect of Group Contrastive Loss. We perform an exper-

iment by removing group contrastive loss from our frame-

work (ref. Section 3.2.3) and observe that top-1 accuracy

drops to 27.24% from 29.81% (Table 4), showing the im-

portance of it in capturing high-level semantics.

Ablation on Contrastive Loss. We investigate the effec-

tiveness of our contrastive loss by replacing it with pseudo-

label consistency loss used in FixMatch [47]. We observe

that training with our contrastive loss, surpasses the perfor-

mance of the training with the pseudo-label consistency loss

by a high margin (around 6.21% gain in the top-1 accuracy)

on Mini-Something-V2 (Table 4). We further compare our

approach in the absence of group-consistency (TCL w/o

Group-Contrastive Loss) with a variant of FixMatch [47]

that uses temporal augmentation and observe that our ap-

proach still outperforms it by a margin of 2.66% (24.58%

vs 27.24%) on Mini-Something-V2 (with ResNet-18 and

5% labeling). This shows that temporal augmentation alone

fails to obtain superior performance and this improvement

is in fact due to the efficacy of our contrastive loss formula-

tion over the pseudo-label loss used in FixMatch [47].

Effect of Different Frame Rate. We analyze the effect

of doubling frame-rates in both pathways and observe that

TCL (w/ 16 frame segments in base and 8 frame segments in

the auxiliary pathway) improves top-1 accuracy by 1.5% on

Mini-Something-V2 with ResNet-18 and 5% labeled data

(29.81% vs 31.31%). However, due to heavy increase in

compute and memory requirement with little relative gain

in performance, we limit our study to 8 and 4 frame setting.

Effect of Hyperparameters. We analyze the effect of the

ratio of unlabeled data to labeled data (µ) and observe that

by setting µ to {3, 5, 7} with a fixed γ = 1, produces similar

results on Mini-Something-V2 (Figure 6 (Left)). However,

as scaling µ often requires high computational resources,

we set it to 3 in all our experiments to balance the effi-

ciency and accuracy in semi-supervised action recognition.

We also find that weight of the instance-contrastive loss (γ)

greatly affects the performance in semi-supervised learning

as accuracy drops by more than 6% when setting γ to 3 in-
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Figure 6: Effect of Hyperparameters on Mini-Something-V2.

(Left) Varying the ratio of unlabeled data to the labeled data (µ),

(Right) Varying the instance-contrastive loss weight (γ).

stead of the optimal value of 9 on Mini-Something-V2 with

ResNet-18 backbone and 5% of labeling (Figure 6 (Right)).

Comparison With Self-Supervised Approaches. We

compare our method with three video self-supervised meth-

ods, namely Odd-One-Out Networks (O3N) [18], Video

Clip Order Prediction (COP) [57] and Memory-augmented

Dense Predictive Coding (MemDPC) [26] through pretrain-

ing using self-supervised method and then finetuning us-

ing available labels on Mini-Something-V2 (with ResNet18

and 5% labeled data). Our approach significantly outper-

forms all the compared methods by a margin of 6%-10%

(O3N: 19.56%, COP: 23.93%, MemDPC: 18.67%, TCL:

29.81%), showing its effectiveness over self-supervised

methods. Moreover, we also replace our temporal con-

trastive learning with O3N and observe that accuracy drops

to 24.58% from 29.81%, showing the efficacy of our con-

trastive learning formulation over the alternate video-based

self-supervised method on Mini-Something-V2.

5. Conclusion

We present a novel temporal contrastive learning frame-

work for semi-supervised action recognition by maximizing

the similarity between encoded representations of the same

unlabeled video at two different speeds as well as minimiz-

ing the similarity between different unlabeled videos run

at different speeds. We employ contrastive loss between

different video instances including groups of videos with

similar actions to explore high-level action semantics within

the neighborhood of different videos depicting different in-

stances of the same action. We demonstrate the effective-

ness of our approach on four standard benchmark datasets,

significantly outperforming several competing methods.
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