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Abstract

A crucial component for the scene text based reasoning re-

quired for TextVQA and TextCaps datasets involve detecting

and recognizing text present in the images using an optical

character recognition (OCR) system. The current systems

are crippled by the unavailability of ground truth text an-

notations for these datasets as well as lack of scene text

detection and recognition datasets on real images disallow-

ing the progress in the field of OCR and evaluation of scene

text based reasoning in isolation from OCR systems. In this

work, we propose TextOCR, an arbitrary-shaped scene text

detection and recognition with 900k annotated words col-

lected on real images from TextVQA dataset. We show that

current state-of-the-art text-recognition (OCR) models fail

to perform well on TextOCR and that training on TextOCR

helps achieve state-of-the-art performance on multiple other

OCR datasets as well. We use a TextOCR trained OCR model

to create PixelM4C model which can do scene text based rea-

soning on an image in an end-to-end fashion, allowing us to

revisit several design choices to achieve new state-of-the-art

performance on TextVQA dataset.

1. Introduction

The computer vision community has recently seen a surge

in interest to understand and reason on the text present in the

images (scene text) beyond the OCR extraction. In particular,

multiple datasets have been introduced that focus on visual

question answering (VQA) [53, 4, 39] and image caption-

ing [51] but in the context of scene text. These tasks involve

understanding the objects and text in the image and then

reasoning over the spatial and semantic relations between

these along with a textual input (e.g. question). Though the
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OCR systems have matured, they still don’t work well on

pictures involving real-life scenarios given the lack of large

annotated real scene text OCR datasets. The text extracted

by the OCR systems doesn’t mean anything in itself until it

is used to solve a task which involves using the scene text.

Other than VQA and image captioning, the potential use

cases include several impactful and interesting tasks such

the hate speech and misinformation detection [25].

Although, the field has witnessed success and progress in

datasets on downstream OCR applications, the performance

of state-of-the-art models on these datasets are nowhere close

to human accuracy due to multiple factors which includes

the quality of the OCR extracted from existing OCR systems,

unavailability of ground-truth text annotations for the real-

world images, and no feedback to OCR system to improve

detection or extraction based on the errors in the downstream

application i.e. no end-to-end training.

In this paper, we introduce a new dataset, TextOCR which

aims to bridge these gaps by providing (i) high quality and

large quantity text annotations on TextVQA images (ii) al-

lowing end-to-end training of downstream application mod-

els with OCR systems and thus allowing fine-tuning of OCR

pipeline based on the task involved. Prior to TextOCR, many

OCR datasets exist [38, 59, 35, 24, 23, 45, 48, 8, 61, 34, 57,

41, 50, 40, 9, 54] that propelled the field’s development, but

many of these are either relatively small, or focus mostly

on outdoor or store-front scenes. As a result, OCR mod-

els trained on these datasets usually don’t perform well on

downstream tasks from other scene types. Moreover, exist-

ing datasets usually have a low number of words per image,

making them less dense, diverse and ideal to train OCR

models for tasks commonly having a high text density. As

a solution, we present the TextOCR dataset that contains

more than 28k images and 903k words in total, averaging

32 words per image. Jointly with existing TextVQA [53]

and TextCaps [51] datasets, it can also serve as an OCR
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Figure 1: PixelM4C - An end-to-end TextVQA model. In this work, we bridge the gap between arbitrary scene-text

detection/recognition and scene-text based reasoning in TextVQA [53] and TextCaps [51]. We introduce TextOCR, largest

real scene-text detection and recognition dataset with 900k annotated arbitrary-shaped words collected on TextVQA images.

Further, we build PixelM4C, an end-to-end TextVQA model which uses TextOCR trained Mask TextSpotter v3 [30] and

M4C [17] models to do text-based reasoning directly on the images unlike previous works which rely on pre-extracted OCR

text and features. The solid lines in the figure show backpropagable paths.

upper bound for researchers working on them to evaluate

their methods’ reasoning capabilities on a fair ground.

In addition to TextOCR, we present a novel architecture,

PixelM4C, that connects an OCR model, Mask TextSpotter

(MTS) v3 [30] with downstream TextVQA model, M4C [17],

in an end-to-end trainable fashion, as illustrated in Figure 1.

Through extensive analysis and ablations possible with end-

to-end PixelM4C, we revisit and improve design choices

from prior work to achieve new state-of-the-art performance

on TextVQA dataset [53] under comparable settings and

show TextOCR’s impact on performance on new TextCaps

dataset [51]. In summary, our main contributions include:

• A large and diverse OCR dataset with ∼1M arbitrary-

shaped word annotations (3x larger than existing

datasets), with high density of ∼32 words per image.

• Extensive experiments to evaluate TextOCR showing

that it is effective both as (i) a training data to push OCR

state-of-the-art on multiple datasets and (ii) testing data

to offer a new challenge to the community.

• A new end-to-end novel architecture, PixelM4C for

TextVQA and TextCaps, which connects Mask TextSpot-

ter (MTS) v3 [30] to M4C [17] allowing extensive anal-

ysis and revisiting prior work’s design decisions.

• State-of-the-art on TextVQA [53] using OCR tokens gen-

erated from TextOCR trained OCR models and insights

from PixelM4C ablations under comparable settings.

2. Related work

2.1. OCR datasets

Recognition. The text recognition datasets which involve

recognizing text from cropped words can be categorized

as regular or irregular. The regular datasets like IIIT5K-

Words (IIIT) [38], Street View Text (SVT) [59], ICDAR2003

(IC03) [35], ICDAR2013 (IC13) [24] have horizontally

aligned words while irregular datasets like ICDAR2015

(IC15) [23], SVT Perspective (SVTP) [45], CUTE80 [48],

and Total Text (TT) [8] are more challenging as they involve

various transformations, such as arbitrary-oriented or curved.

Detection. Compared to older OCR datasets, which only

allowed recognition as they came with pre-cropped words,

the newer datasets can be used for either detection or end-

to-end task as they have full images with labeled instances.

The examples IC13[24], IC15[23], and TT[8] can use dif-

ferent word location formats, horizontal box, quadrilateral

box, and curved polygon respectively. Additionally, datasets

like MSRA-TD500 [61] and CTW1500 [34] with line-level

labels are commonly only used for detection task.

Multi-Lingual. In recent years, there has been a surge in

large-scale multi-lingual datasets containing (i) upto 7 or 8

different scripts (e.g. ICDAR17-MLT [41] and ICDAR19-

MLT [41]), (ii) Chinese and English due to large charac-

ter set (e.g. ICDAR17-RCTW [50], ICDAR19-ArT [9] and

ICDAR19-LSVT [54]). These usually use test set for a chal-
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Figure 2: TextOCR visualizations. The figure shows diversity and density in TextOCR images.1

lenge not releasing the labels and being multi-lingual, the

amount of data distributed in each language is smaller.

Synthetic. Synth90k [19] with 9M word-level crops,

and SynthText [14] with 800K images (6M words) are most

common in OCR research. As these are synthetic and contain

a lot of data, they are typically used for model pretraining or

joint training with real datasets.

2.2. Downstream OCR applications

In recent years, multiple datasets have been introduced

for scene-text applications to study and reason about the

text present in an image w.r.t. the objects in it. TextVQA

[53] contains 28K images from OpenImages [28] with 45K

questions, each with 10 human-annotated answers, which re-

quire reading and reasoning over scene-text to answer them.

Similarly, ST-VQA [4] contains 32k questions on images

from 6 different sources (IC13 [24], IC15 [23], ImageNet

[10], VizWiz [3], IIIT Scene Text Retrieval, Visual Genome

[27], and COCO-Text [57]). A series of datasets were intro-

duced following these which focusing on specific aspects of

text-based VQA including OCR-VQA [39], STE-VQA [60],

DocVQA [36], PlotQA [37], and LEAF-QA [7].

TextCaps dataset [51] requires reading comprehension

with images and contains 143K captions on TextVQA im-

ages [53]. TextCaps requires understanding how OCR words

interact with each other and objects to build a caption which

1All images are licensed under CC BY 2.0. See appendix for full

attributions.

is coherent while tackling challenges like parts-of-speech,

OCR and fixed vocabulary switching. VizWiz-Captions [15]

also contains similar captions on VizWiz images [3] but

doesn’t explicitly require scene-text reasoning.

2.3. Downstream application models

The state-of-the-art on TextVQA and TextCaps use the

pre-extracted text tokens from a standard OCR system as

additional input [21]. As the OCR text can be any string,

for word embeddings, we use a system that allows out-of-

vocabulary words via character-level modeling or piece-

based modeling [21]. The other textual input (e.g. ques-

tion) is encoded using a pretrained word-embedding (BERT,

GloVe [11, 44]) and fused with image’s object features and

OCR embeddings. The joint embedding passes through a

classifier or decoder to generate the output. The state-of-

the-art TextVQA model, M4C [17], uses transformers [55]

to model the fusion via self and inter-modality attention

to achieve 40% on TextVQA compared to 86% human ac-

curacy. On TextCaps, M4C can be adapted to generate a

sentence by taking previously generated words as text inputs

at each time step. Multiple models have been introduced

recently which ablate various components of M4C for better

accuracy [22, 13, 16, 20]. Contrary to M4C and derivative

works which treat OCR as a black box, in PixelM4C, we

train an end-to-end model and use this capability to apply

new design choices in an more informed way. To test our

hypothesis, we build and compare PixelM4C with M4C as

our base because of its simplicity and modular design.
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3. TextOCR dataset

3.1. Annotation Details

For collecting arbitrary shaped scene text, all words

within an image are annotated with polygon annotation for

detection. For recognition, only Latin words are annotated.

All non-Latin and illegible words are then annotated with a

“.”. Similar to COCOText, a word is defined as an uninter-

rupted sequence of letters.

The annotations are performed by a set of annotators fa-

miliar with polygon word annotation. We provided the team

with annotation guidelines, and a quality control training

and performed rigorous checks on their work. The annota-

tors first annotate the bounding box around a word. If the

word is near-horizontal, annotators are encouraged to draw a

rectangle whenever possible. If the word is curved, then the

annotators draw polygon as annotations with multiple points

while preserving reading direction from first annotated point

to second annotated point. The annotators are also encour-

aged to annotate the bounding box with as little background

space as possible. To ensure accuracy of predictions, our an-

notation pipelines includes an audit procedure, where expert

annotators (authors) provide feedback to individual annota-

tors for re-annotation. Please see appendix for more details

on our annotation user interface.

3.2. Statistics and Visualizations

Figure 3 shows that TextOCR is diverse both in terms of

words per image (left) as well as the word locations (right).

Figure 3 (a) compare and shows high density of word an-

notations in TextOCR compared with COCOText [57] and

ICDAR15 [23]. Figure 3 (b) and (c) compare the density of

word bounding boxes in TextOCR and COCOText depict-

ing more uniform, regular and heavy density in TextOCR

suggesting that TextOCR is more precisely, uniformly and

carefully annotated.

Table 1 shows the statistics of TextOCR compared to

other public datasets. TextOCR has more images than most

existing public datasets except for ICDAR19-LSVT [54],

a bilingual dataset focusing more on street view images in

Chinese. TextOCR has much larger number of annotated

words than any existing public datasets, with at least 3x

more words than ICDAR19-LSVT and 10x more than the

rest. ICDAR19-LSVT contains only 44K words in English,

while TextOCR predominantly English, thus contains 20x

English words. As a result, TextOCR contains on average

32.1 words per images, 3x more than any existing datasets

making it a great source for both word-level text recognition

task and image-level text spotting task in text heavy scenes.

Table 2 offers more detailed statistics into TextOCR.

There are total of 1.32M labeled instances in TextOCR if

including empty word annotations where the word box or

polygon is labeled but the text is not transcribed (due to

# Dataset

# Images # Words
Words

per ImageTrain Test Train Test

1 Synth90k [19]† – – 8.9M – –

2 SynthText [14]† 800k – 5.5M – 6.9

3 IIIT5K [38] – – 2000 3000 –

4 SVT [59] – – 257 647 –

5 ICDAR2003 [35] – – 1156 1110 –

6 ICDAR2013 [24] 229 233 848 1095 4.2

7 ICDAR2015 [23] 1000 500 4468 2077 4.4

8 SVTP [45] – – – 645 –

9 CUTE80 [48] – – – 288 –

10 Total-Text [8] 1255 300 9276 2215 7.4

11 MSRA-TD500 [61] 300 200 – – –

12 CTW-1500 [34] 1000 500 – – –

13 COCO-Text [57] 18895 4416 61793 13910 3.2

14 ICDAR17-MLT [41]∗‡ 9000 9000 85094 n/a 9.5

15 ICDAR17-RCTW [50]∗ 8034 4229 47107 n/a 5.9

16 ICDAR19-MLT [41]∗ 10000 10000 89407 n/a 8.9

17 ICDAR19-ArT [9]∗ 5603 4563 50042 n/a 8.9

18 ICDAR19-LSVT [54]∗ 30000 20000 243385 n/a 9.1

19 TextOCR (ours)‡ 24902 3232 822572 80497 32.1

Table 1: TextOCR vs other datasets. We only count non-

empty words and images with at least one instance). For non

end-to-end and test-only datasets, unavailable fields are left

blank. ∗
⇒ multi-lingual datasets with no test labels and

small English annotations, †
⇒ synthetic datasets. ‡

⇒ val

set counted in the train set.

Count Type Train Val Test Total

Images 21749 3153 3232 28134

Labeled instances 1052001 150338 117725 1320064

Empty words 337815 41952 37228 416995

Non-empty words 714186 108386 80497 903069

Non-alphanumeric 102744 15595 11596 129935

Less than 3 chars 197100 28726 24643 250469

Alphanumeric & 3+ chars 414342 64065 44258 522665

Rotated (degree > 20) 118547 18548 13102 150197

Curved (points > 4) 14368 3099 1843 19310

Table 2: TextOCR statistics. Details on instance types

illegibility or language). If we remove words that are non-

alphanuemric (e.g. symbols) or have less than 3 characters

(a standard in some datasets), TextOCR still contains 523k

words. Among these, 150k are rotated words (> 20◦ angle)

and 19.3k are curved words (more than 4 points used to draw

the polygon), almost twice the total words in Total-Text [8],

a dataset focusing on curved text.

4. OCR Experiments

In this section, we evaluate the TextOCR dataset and

the challenge it presents, then exhibit its usefulness and

empirically show how it can be used for both training su-
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(a) Distribution of words per image

(b) TextOCR

(c) COCOText

Figure 3: TextOCR distributions. (left) Comparison of

words per image showing TextOCR’s higher text density,

with > 10% images containing 100+ instances. (right)

Word locations’ heatmaps across images with blue indi-

cating higher density. TextOCR is more uniformly anno-

tated/distributed than COCOText [57] which is more uniform

than IC13 and IC15.

perior models and surpassing existing baselines on other

text-recognition benchmark. We demonstrate this through

three types of experiments: (i) cross-dataset empirical analy-

sis, (ii) achieving state-of-the-art on public benchmarks, and

(iii) evaluating state-of-the-art methods on TextOCR. Please

refer to supplementary material for implementation details.

4.1. Cross­dataset empirical analysis

COCOText [57], one of the largest fully-annotated En-

glish OCR dataset, has images from COCO which were

originally collected for object detection purpose, resulting

in sparse text occurrences. As this setting is different from

usual OCR applications and benchmarks, COCOText is not

ideal to train or test upon. On the other hand, TextVQA

dataset (image source of TextOCR) is designed for visual

question answering based on text in the image leading to

more prominent text, making it also a great OCR data source.

In our text recognition experiments, shown in Table 3, we

use the TPS-ResNet-BiLSTM-Attn model [1], and train it on

COCOText (row #1) and TextOCR (row #2) separately from

scratch for 100k iterations keeping all other settings same.

We evaluate and compare the results TextOCR, COCOText

and other common text recognition benchmarks. The model

trained on TextOCR is 22.45% better than COCOText on

the TextOCR test set, and 10.56% better even on the COCO-

Text’s test set. On the other benchmarks, TextOCR-trained

model is consistently better with 10% or more gap. The su-

perior performance can be attributed to the sheer amount of

difference in number of words in these datasets compared to

TextOCR. Note that training on COCOText alone (w/o syn-

thetic data) only achieves 64.05% word accuracy on ICDAR

2015 [23], signaling it is not a good representative of ori-

ented scene text. Comparatively, training on TextOCR alone

can achieve near state-of-the-art performance of 80.07%.

Besides its large scale, we also show TextOCR has good

quality compared to previous datasets, by experiments on

the same number of instances as ICDAR15 and COCO-Text.

Results show TextOCR is 2.5% better than ICDAR15 on

average in recognition benchmarks, and 0.3% better than

COCO-Text, thanks to its good quality and diversity. Please

refer to supplementary experiment details.

Table 4 shows results on end-to-end recognition evaluat-

ing TextOCR’s usefulness on the image-level task. We use

the latest Mask TextSpotter (MTS) V3 [30] 2 and train it

from scratch (with ResNet50 trunk pretrained on ImageNet)

on COCOText (row #1) and TextOCR (row #2) separately.

We can see model fine-tuned on TextOCR again has a 0.2%

lead over COCOText on its own test set, and 10%+ lead on

the TextOCR and Total-Text test sets. This demonstrates the

advantage of using TextOCR as a training data as it is more

generalizable on other datasets. Since the number of images

in TextOCR is comparable to COCO-Text (21749 vs 18895),

this result is another evidence of TextOCR’s good quality.

4.2. State­of­the­art on public benchmarks

In this section, using text recognition and end-to-end

experiments again, we demonstrate that TextOCR is comple-

mentary to existing datasets, and training with it can improve

model accuracy significantly on existing public benchmarks,

and even outperform state-of-the-art.

For text recognition, we evaluate the state-of-the-art mod-

els based upon Baek et al. [1] 3, as well as fine-tune them

on TextOCR’s train set in Table 3 (rows #3-10). For each

method, fine-tuning on TextOCR brings a significant in-

crease on almost all datasets. The irregular datasets (e.g.

ICDAR2015 [23], SVT Perspective [45] and CUTE80 [48]),

gain most thanks to the rich diversity in TextOCR.

For end-to-end recognition, we fine-tuned the official

weights by Mask TextSpotter V3 on TextOCR and Total

Text. Table 4 (rows #3-8) again shows that adding TextOCR

can further improve the F-measure on Total Text test set by

3.3% and 3.2% with none and weak lexicon respectively.

Figure 4(a) shows qualitative examples of the results.

4.3. The challenges of TextOCR

Similar to others [12], we show the challenges of Tex-

tOCR, by evaluating pre-trained and TextOCR fine-tuned

state-of-the-art methods on TextOCR test set. The end-to-

end recognition results on TextOCR are evaluated in the

same protocol as described in [29] following ICDAR2015

with support for polygon representation. All experiments

were performed with a input short side of 1000 for fair com-

parison. Note that TextOCR can benefit from higher short

sides due to its high resolution.

2https://github.com/MhLiao/MaskTextSpotterV3
3https://github.com/clovaai/deep-text-recognition-benchmark
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# Method PW Train Dataset

Test Dataset (Word accuracy)

IIIT SVT IC03 IC13 IC15 SVTP CUTE COCOText TextOCR

Cross Dataset Experiments

1 TPS-ResNet-BiLSTM-Attn [1] COCOText 70.73 73.57 85.58 82.73 64.05 60.31 50.87 53.47 43.20

2 TPS-ResNet-BiLSTM-Attn [1] TextOCR 80.50 82.84 92.16 91.25 80.07 76.74 70.38 64.03 65.65

Benchmarking state-of-the-art models and fine-tuning on TextOCR

3 CRNN [49] ✓ S90k+ST 82.63 82.07 92.96 90.55 68.85 71.01 62.37 49.00 43.07

4 CRNN [49] (ours) S90k+ST+TextOCR 85.97 87.94 92.96 93.70 79.85 78.30 73.87 60.09 58.61

5 Rosetta [5] ✓ S90k+ST 84.00 84.08 92.39 91.13 70.29 74.73 67.60 49.66 43.16

6 Rosetta [5] (ours) S90k+ST+TextOCR 87.50 89.80 93.77 94.52 81.28 81.40 77.35 62.61 60.85

7 STAR-Net [32] ✓ S90k+ST 86.26 86.09 94.39 91.48 75.81 76.43 72.47 53.56 48.23

8 STAR-Net [32] (ours) S90k+ST+TextOCR 90.30 92.12 94.69 95.33 86.09 83.88 83.62 67.92 66.84

9 TPS-ResNet-BiLSTM-Attn [1] ✓ S90k+ST 87.37 87.33 95.12 93.00 78.24 80.16 74.22 56.34 50.37

10 TPS-ResNet-BiLSTM-Attn [1] (ours) S90k+ST+TextOCR 86.70 91.50 94.23 94.63 85.15 84.19 79.44 69.15 69.49

Table 3: Text recognition experiments on the TextOCR dataset. PW means the model uses public available weights. S90k

and ST refer to the Synth90k [19] and SynthText [14] datasets respectively. Row #1-2 show the cross-dataset comparison

between COCOText [57] and TextOCR. Row #3-10 show the experiments on state-of-the-art methods that including TextOCR

in training can improve their word accuracy on most public benchmarks, as well as their word accuracy on TextOCR test set.

# Method Official

Train Dataset Test Dataset (F-measure)

SynthText Public COCOText TextOCR TT (None) TT (Full) COCOText TextOCR

Cross Dataset Experiments

1 Mask TextSpotter v3 [30] ✓ 54.2 65.6 52.2 32.5

2 Mask TextSpotter v3 [30] ✓ 64.8 74.1 52.4 45.8

Benchmarking state-of-the-art models and fine-tuning on TextOCR

3 Qin et al. Inc-Res [46] ✓ ✓ ✓ ✓ 63.9 – – –

4 Mask TextSpotter v2 [29] ✓ ✓ ✓ 65.3 77.4 47.6 –

5 Boundary TextSpotter [58] ✓ ✓ ✓ 65.0 76.1 41.3 –

6 ABCNet [33] ✓ ✓ ✓ ✓ 64.2 75.7 – 30.5

7 Mask TextSpotter v3 [30] ✓ ✓ ✓ 71.2 78.4 46.1 34.9

8 Mask TextSpotter v3 [30] (ours) ✓ ✓ ✓ 74.5 81.6 57.9 50.8

Table 4: End-to-end recognition experiments on the TextOCR dataset. Official means either using official weights (for

testing on TextOCR) or offical reported results (other test data). Public refers to the model is trained with public real

datasets [24, 23, 8, 41] other than COCOText [57] or TextOCR. TT is short for Total Text [8]. Row #1-2 show the cross-dataset

comparison between COCOText and TextOCR. Row #3-7 show results of state-of-the-art methods, where TextOCR tests are

obtained with official weights. Row #8 show improvements after fine-tuning with TextOCR train data.

Table 3 rows #3-10 and Table 4 rows #3-8 “TextOCR”

column shows performance of state-of-the-art methods on

text and end-to-end recognition tasks, respectively. The

results demonstrate TextOCR’s challenge; even after fine-

tuning with its own large train set of 21k images, the numbers

are still much lower than other popular OCR datasets [23, 8],

indicating a difficult task with a large room for improvement.

5. TextVQA and TextCaps Experiments

To evaluate the effectiveness and quality of TextOCR

for downstream tasks, we calculate various heuristics and

conduct experiments on TextVQA and TextCaps dataset

using PixelM4C with TextOCR trained OCR module.

5.1. Upper Bounds and Heuristics

First, we set new precedents for the TextVQA dataset in

Table 5 by recalculating the OCR-based upper bounds (UB)

and heuristics for its val set presented in [53] using Rosetta

[6] OCR-en namespace, OCR tokens from TextOCR trained

MTS v3 [30, 18], and the annotated text present in TextOCR.

The human accuracy (row #1) [53] stays the same at

85.01%. For UB, unlike [53], inspired by M4C’s iterative

answer prediction, we calculate the accuracy using multi-

word match checking whether the answer can be built using

single or multiple token(s) from the source in consideration

to cover all possibilities allowing better estimates M4C-like

models’ UB. OCR UB (row #2) shows the UB achievable by
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(a)

(b) （c）

Pred: neregrino

GT: peregrino

Pred: lorona

GT: oron

Pred: viddrino

GT: vidrino

Pred: tapely

GT: papely

Figure 4: (a) Examples of Mask TextSpotter V3 [30] improvement on Total Text after fine-tuning on TextOCR compared to

official weights; (b) Failure cases by MTS V3 on TextOCR test set; (c) Failure cases by Baek et al. [1] on TextOCR test set

# Method

TextVQA val accuracy(%)

Rosetta MTS v3 TextOCR

1 Human 85.01 85.01 85.01

2 OCR UB 44.98 53.34 66.90

3 Vocab UB 59.02 59.02 59.02

4 OCR + Vocab UB 79.72 80.64 87.22

5 OCR Biggest 12.06 13.60 16.78

6 OCR Max 9.26 7.50 10.94

Table 5: TextVQA heuristics. Val accuracy for various

heuristics compared with numbers from [53]. The compari-

son shows that TextOCR leads to much higher numbers than

the original OCR tokens used in the TextVQA.

only using OCR tokens and no vocabulary which is 11% and

22% higher for TextOCR compared to MTS v3 and Rosetta

justifying the requirement of a better OCR mechanism while

suggesting that training OCR systems on TextOCR would

be crucial for TextVQA [53] and TextCaps [51]. Vocab UB

(row #3) shows the UB achievable by only using a fixed word

vocabulary (M4C 5k vocab). OCR+Vocab UB (row #4) is

UB achievable using both OCR and vocab inter-changably

wherever suitable for prediction. For TextOCR, this sur-

passes the human accuracy indicating TextOCR’s high qual-

ity and the downstream benefits of improved OCR models.

OCR Biggest and OCR Max (row #5 and #6) show the

UB obtained by choosing biggest OCR box and the most

occurring word in the scene text as an answer respectively

advocating TextVQA’s difficulity, TextOCR’s quality and

improvement room in current OCR systems.

5.2. Improving the state­of­the art

Given the positive results in Section 5.1, we naturally

expect that TextOCR will help with downstream tasks as

well, as we know from literature [13, 22] that OCR is indeed

an important aspect. Using TextOCR annotations directly

will allow us to evaluate the reasoning capabilities or short-

comings of the TextVQA/TextCaps models in isolation from

OCR inconsistencies. Furthermore, this also makes it possi-

ble to train an end-to-end model that can take images directly

as an input, extract OCR tokens from them and then jointly

reason over the object features, OCR and input text with a

possibility of backpropagating via the recognition model.

We propose an end-to-end model, PixelM4C shown in

Figure 1, that works directly on the images allowing us

to test our hypotheses. Specifically, we connect the Mask

TextSpotter (MTS) v3 trained on TextOCR with M4C. We

extract the OCR tokens and features on-the-fly from MTS

v3 and pass them to M4C model allowing more fine-grained

control on which features to extract and which specific parts

to use based on the downstream task and model. We achieve

new state-of-the-art on TextVQA using PixelM4C which

allows easy testing of our various hypotheses.

Training. We train PixelM4C and PixelM4C-Captioner

(similar to M4C-Captioner) in an end-to-end fashion by ex-

tracting OCR tokens from MTS v3 in real time. We use same

hyper-parameters and 5k vocabulary as used by M4C [17]

but we set batch size to 16 given that model is slow and hard

to train on larger batch sizes. We train with Adam [26] opti-

mizer with 1e-4 learning rate, a step schedule and a linear

warmup of 1k iterations. We train PixelM4C and PixelM4C-

Captioner for 24k and 12k iterations. We decrease the learn-

ing rate to 1/10th at 14k and 19k for PixelM4C and 10k

and 11k for PixelM4C-Captioner. We freeze MTS v3 during

training as our empirical results suggested that fine-tuning

predictor heads hurt TextVQA accuracy. We hypothesize

that this happens because MTS v3 is trained using character-

level losses while M4C is trained using word-level losses.
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# Method OCR Source OCR Feature

TextVQA TextCaps val metrics

val acc (%) B-4 M R S C

1 Human – – 85.01 24.40 26.10 47.00 18.80 125.50

2 M4C / M4C-Captioner Rosetta (OCR-en) Object detector fc7 39.40 23.30 22.00 46.20 15.60 89.60

3 M4C w/ STVQA Rosetta (OCR-en) Object detector fc7 40.55 – – – – –

4 PixelM4C / PixelM4C-Captioner MTS v3 (COCO-Text+TT) MTS v3 fc7 37.61 23.09 21.08 45.55 14.51 81.44

5 PixelM4C / PixelM4C-Captioner MTS v3 (COCO-Text+TT) MTS v3 LH 38.24 23.05 20.88 45.45 14.23 81.55

6 PixelM4C / PixelM4C-Captioner MTS v3 (TextOCR-en) MTS v3 fc7 39.69 23.11 21.37 45.57 14.68 84.54

7 PixelM4C / PixelM4C-Captioner MTS v3 (TextOCR-en) MTS v3 LH 40.67 23.41 21.45 45.69 14.75 86.87

8 PixelM4C / PixelM4C-Captioner MTS v3 (TextOCR) MTS v3 fc7 39.64 23.01 21.27 45.65 14.58 84.99

9 PixelM4C / PixelM4C-Captioner MTS v3 (TextOCR) MTS v3 LH 41.23 23.33 21.30 45.71 14.62 85.32

10 PixelM4C w/ STVQA MTS v3 (TextOCR) MTS v3 LH 42.12 – – – – –

11 PixelM4C / PixelM4C-Captioner TextOCR MTS v3 fc7 (from 8) 46.28 23.76 21.86 46.38 15.14 91.44

12 PixelM4C / PixelM4C-Captioner TextOCR MTS v3 LH (from 9) 46.36 24.10 21.98 46.65 15.08 91.99

13 PixelM4C w/ STVQA TextOCR MTS v3 LH (from 9) 48.04 – – – –

B–4 = Bleu4 [42], M = METEOR [2], R = ROUGE L [31], M = METEOR [2], C = CIDEr [56]

Table 6: PixelM4C experiments on TextVQA/TextCaps. Val accuracy for ablations compared with M4C [17]. We show

that OCR tokens and features from TextOCR trained models and directly help TextVQA and TextCaps models significantly.

Unlike M4C, we conduct ablations on using > 50 tokens

given high word density in TextOCR. We train PixelM4C in

a distributed fashion on 16 Nvidia Volta V100-SXM2-32GB

GPUs using PyTorch based MMF framework [43, 52]..

Experiments and Results. We compare PixelM4C with

M4C for TextVQA and PixelM4C-Captioner with M4C-

Captioner for TextCaps. Table 6 shows results for various

experiments and ablations. First, by an extensive sweep (de-

tails in appendix), we confirm that batch size of 16 performs

better than batch size of 128 used in [17]. We test PixelM4C

and PixelM4C-Captioner with four different OCR sources:

MTS v3 trained (i) on COCO-Text and Total-Text (row #4

and #5) (ii) on TextOCR but using alphanumeric English

only vocabulary (row #6 and #7) (iii) on TextOCR using 240

characters Latin vocabulary (row #8, #9, and #10), (iv) using

TextOCR annotations directly as the OCR source (row #11,

#12, and #13), extracting features using annotation boxes

as the proposals from (iii). Enabled by our end-to-end Pix-

elM4C model, we revisit the choice of OCR feature in [17]

and try other features from MTS v3. We found that using

last hidden state from prediction decoder (“MTS v3 LH” in

Table 6) for < EOS > token as the OCR representation

improves performance. Finally, we add ST-VQA [4] as extra

annotation data following M4C [17] (row #10 and #13).

Based on our ablations (see appendix), we use 200 tokens

instead of 50 in all experiments. MTS v3’s fc7 features

as OCR representation boost accuracy when compared to

Visual Genome pretrained FRCNN [47, 27] ones (row #2 vs

#8). Further, we achieve state-of-the-art performance using

prediction decoder’s last hidden state (row #9 vs #3) when

compared to fc7 (row #4 vs #5, #6 vs #7, #8 vs #9, and #11

vs #12) suggesting that MTS v3 representations including

decoder’s hidden state contain more relevant information

for TextVQA task. Comparing row #5 with #7 and #9, we

observe that TextOCR trained models provide better OCR

tokens for TextVQA compared to COCO-Text+TT trained

ones. Finally, adding STVQA as additional data boosts

the performance to 42.12% setting new state-of-the-art over

M4C. In TextCaps, unfortunately, we don’t see significant

improvement in metrics except B4 using TextOCR trained

model’s OCR tokens testifying TextCaps’s complexity.

Using TextOCR directly as the OCR source gives a sig-

nificant boost in TextVQA accuracy (6%) and TextCaps

metrics (3%) signaling that apart from the gap in reasoning

capabilities, there is still a room for improvement in OCR

capabilities of the OCR module (MTS v3)4.

6. Conclusion

In this work, we introduced the large arbitrary scene text

recognition dataset, TextOCR, collected on TextVQA im-

ages along with an end-to-end model, PixelM4C, that can

perform scene-text reasoning directly on images by incor-

porating text recognition model as a module. Training on

TextOCR, provides better text-recognition models which

outperforms state-of-the-art on most text-recognition bench-

mark. Further, using TextOCR trained text-recognition mod-

ule in PixelM4C allows us to use different features from it

with a possibility of even providing feedback which results

PixelM4C surpassing existing state-of-the-art methods on

TextVQA. Through TextOCR dataset and PixelM4C model,

we take a step towards bridging the communities of OCR

and downstream applications based on OCR and hope that

research from community will advance both fields at the

same time as their is big room for improvement as evident

from TextVQA results from training directly on TextOCR.

4We don’t claim this as state-of-the-art because it would be non-ideal for

community to train directly on TextOCR except for understanding reasoning

capabilities in isolation from OCR systems.
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