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Abstract

We present a method to estimate an HDR environment

map from a narrow field-of-view LDR camera image in

real-time. This enables perceptually appealing reflections

and shading on virtual objects of any material finish, from

mirror to diffuse, rendered into a real environment using

augmented reality. Our method is based on our efficient

convolutional neural network, EnvMapNet, trained end-to-

end with two novel losses, ProjectionLoss for the generated

image, and ClusterLoss for adversarial training. Through

qualitative and quantitative comparison to state-of-the-art

methods, we demonstrate that our algorithm reduces the

directional error of estimated light sources by more than

50%, and achieves 3.7 times lower Frechet Inception Dis-

tance (FID). We further showcase a mobile application that

is able to run our neural network model in under 9 ms on

an iPhone XS, and render in real-time, visually coherent vir-

tual objects in previously unseen real-world environments.

1. Introduction

In this work, we discuss video see-through augmented

reality (AR) applications, in which virtual objects are super-

imposed on camera frames of the real environment shown

on an opaque display, e.g. on a phone as shown in Fig. 1(e).

Creating immersive and believable AR experiences involves

many aspects of computer vision and graphics. One of the

requirements is visual coherence: the problem of matching

visual appearance of rendered objects to their real-world

background, such that virtual and real objects become in-

distinguishable in the composited video. Accomplishing

this involves matching various scene and camera properties,

such as lighting, geometry, and sensor noise.

This paper focusses on creating reflections and lighting

for virtual objects by estimating an omnidirectional HDR

environment map. To support rendering objects with a va-

riety of geometry, material properties, and dimensions, the

environment map must be high dynamic range, and have

sufficient image resolution to represent objects and features

in the scene. We use the equirectangular projection and

RGB color space for the environment maps. As shown

in Fig. 1(a), the challenge in mobile AR is limited cam-

era field of view (FoV) and motion by the user, hence an

application is usually able to accumulate less than 100 de-

grees effective FoV. A virtual object placed in front of the

user, however, is expected to reflect what is behind the cam-

era, and parts which are not present in the captured frames.

The problem is thus to estimate, given this incomplete en-

vironment map, a plausible estimation for rest of the scene

and its lighting. We show that our method is not only able

to estimate the light information, but also to synthesize a

high resolution completed scene. For instance in the scene

shown in Fig. 1(b), the estimated environment map is high

resolution, continuous, and a plausible extrapolation of the

input. The synthesized parts not only match low frequency

information (ambient light temperature and intensity), but

also finer details such as the type of light sources (in this

case, ceiling area lights). As detailed in Sec. 3, we achieve

this context-aware scene completion using the framework

of generative adversarial networks (GANs) [12] along with

novel loss functions, ProjectionLoss and ClusterLoss, de-

signed for accurate light estimation.

In mobile AR frameworks [1, 2], we can obtain camera

frames, poses and scene geometry, around the 3D location

where the virtual object is to be placed. This allows a real-

time renderer to create light probes [27] at the 3D location.

RGB texture information from the frames can be rendered

into an equirectangular image at these probe locations. In

this work, we focus on processing the partial environment

map at these probes. Our method takes as input a partial

environment map that is composed from one or more low

dynamic range (LDR) camera frames (8 bit per channel),

and outputs a completed environment map that is higher

dynamic range (HDR, 16 bit channel). Thus we perform

both lifting of input pixels from LDR to HDR, as well as

spatial HDR image extrapolation. The output environment

map retains the color and details from pixels that were in the

input, while filling the unknown pixels with plausible con-

tent that is coherent with the known. That is, we want the

completed environment map to represent the textures from

a plausible real scene. Through detailed quantitative and
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Figure 1. Given a partial LDR environment map from a camera image (a), we estimate a visually coherent and completed HDR map that can

be used by graphics engines to create light probes. These enable rendering virtual objects with any material finish into the real environment

in a perceptually pleasing and realistic way (b), more similar to ground truth (c) than state-of-the-art methods (d). Our mobile app renders

a virtual teapot using our estimated environment map in real-time (e). See supplementary material for videos.

qualitative comparisons, we demonstrate that our method

surpasses the current state-of-the art to estimate high qual-

ity, perceptually plausible, and accurate HDR environment

maps. We reduce the directional (angular) error for lights

by more than half, and achieve a significantly lower Frechet

Inception Distance (FID).

Related works estimate a subset of the properties, such

as lighting direction, color, and intensity using low resolu-

tion images [11, 9, 17], parametric lights [15, 9], or LDR

environment maps [25]. Methods that estimate both light

and texture [10, 17, 23] lack resolution and detail in the

estimated environment map. In contrast, our solution pro-

vides sufficient details in the image for virtual objects of

any material finish including reflective mirrors. To create

plausible scene completions, we take inspiration from work

in the area GANs for image synthesis. However, most suc-

cess for GANs has come for datasets with single objects

(e.g. faces [16]), using conditional labels [21], or self-

supervision [5]. Its direct use for panoramic images of

indoor scenes, small datasets with high appearance varia-

tion, and ambiguity in semantic labeling, is challenging. We

present ClusterLoss, a novel training loss for the discrimi-

nator, that allows us to create realistic images with a dataset

of only ∼2,800 training images.

We also observe that each of the previous methods have

a different evaluation scheme, are based on respective rep-

resentations and/or involve subjective user studies. Though

subjective plausibility is important for user experience, it

makes benchmarking difficult. We present metrics that can

be used to quantitatively compare both the lighting and re-

flection quality of environment maps.

In summary, we make the following core contributions:

• We present a method to generate an HDR environment

map suitable for both reflections and lighting from a

small FoV LDR image or partial environment map. To

our knowledge, ours is the first to achieve this for real-

time AR applications (under 9ms on iPhone XS).

• We present two novel contributions to the training

pipeline in the form of ProjectionLoss for the environ-

ment map, and ClusterLoss in the adversarial training.

This allows us to reduce the directional error by more

than 50% compared to current methods, while achiev-

ing 3.7 times lower FID.

• We establish metrics that allow easy quantitative com-

parisons with related work, and thus provide a system-

atic benchmark for this emerging area in AR.

2. Related work

A classical technique to obtain an HDR environment

map is to merge images of a mirror sphere in the scene

captured under multiple exposure brackets [7]. This can

be applied for offline use cases but is unsuitable for real-

time mobile AR in arbitrary and novel environments. Some

previous works have used additional cues about an ob-

ject [20, 26], scene geometry [3, 19, 30], or special cases

such as sun position estimation [31, 15, 14]. For brevity, we

only discuss works that focus on light estimation from small

FoV images of general scenes. In this context, works can be

divided into two categories: those that focus on light esti-

mation with low dimensional parameters, and those which

estimate both lighting and environment maps.
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Garon et al. [11] use spherical harmonics representa-

tion for light and depth estimated using the SUNCG dataset

[24]1. Cheng et al. [6] also predict 48 spherical harmon-

ics coefficients from two images captured by the front and

rear cameras of a mobile device. Gardner et al. use para-

metric lights as representation [9]. The parameters are de-

rived using peak finding, region growing, and ellipse fitting

on intensity images. Even though use of parametric lights

reduces the decoder size, the authors use L2 loss by con-

verting the parameters to an equirectangular image. It is not

clear how to extend this method to generate higher qual-

ity texture in the environment map that would be consistent

with the regressed parameters. We thus choose to have an

end-to-end network that directly estimates the HDR envi-

ronment map. We use the same parametric lights to create

quantitative metrics for benchmarking.

Gardner et al. use equirectangular representation [10] by

dividing the task into light position estimation (trained with

LDR panoramas), and HDR intensity estimation (trained

with Laval HDR Images dataset). This is the work most

similar to our method in input-output, representation, and

formulation. In contrast to their method, we have a sin-

gle stage training from an LDR small FoV image to a com-

pleted HDR environment map, and using our proposed ad-

versarial training we are able to generate more realistic

RGB scene completion for use on reflective virtual objects.

Some recent works, like ours, employ an adversarial loss to

generate a completed environment map [23, 25] or sphere

images [17]. LeGendre et al. captured a special dataset

with three spheres of mirror, matte, and diffuse gray fin-

ish [17]. They train a network to regress from a camera

image to three small (32 × 32 pixel) images representing

the sphere segments. This precludes use of the results for

high quality reflections. Also, due to the low resolution,

the estimate covers mostly the portion of the scene behind

the camera. It is useful to render a given frame, but as the

camera commonly moves with respect to the virtual object

in a AR application, a new estimate has to be inferred fre-

quently. Thus even with the assumption of a static scene,

their method would suffer from temporal flickering due to

multiple independent estimates.

Song et al. use a multi-stage ensemble that estimates ge-

ometry, LDR completion and HDR illumination [23]. Our

method uses a single model, and we do not require depth

map per HDR image for training. This makes our method

efficient to train and use in real-time mobile AR. The au-

thors do not specify the resolution of the panoramic images,

but visual observation shows lack of resolution and artifacts

due to the projection from noisy 3D reconstructions. Srini-

vasan et al. use an input stereo pair to generate the output

environment map [25]. They use the LDR images from the

synthetically generated InteriorNet dataset [18] to train the

1SUNCG is currently withdrawn from distribution

light estimation, by application of inverse gamma on the

tone mapped images. This limits the ability to learn realistic

high dynamic range and accurate lighting, as also indicated

by their results on mostly specular objects. In contrast, our

method does not require stereo input, and estimates an HDR

environment map that can be applied for lighting objects

with wide range of materials from diffuse to mirror.

Furthermore, we employ only 2,100 HDR images of the

publicly available Laval HDR Images dataset of real en-

vironments, a much smaller dataset than the 4.06 million

non-public specialized sphere images used in [17], the with-

drawn SUNCG used in [24], or the 200,000+ Matterport

images in [23]. The lack of shared code, model weights and

use of private datasets make it difficult to make comparisons

to these recent methods, that also compare to [10] as we do

in our quantitative evaluations. However, we present quali-

tative comparisons to these works in Sec. 5.

With the exception of [17], that outputs a 32 × 32 low

resolution sphere image, no other method has been demon-

strated on mobile devices. To the best of our knowledge, we

are the first to demonstrate real-time on-device generation

of environment maps of high resolution and image quality.

3. Proposed method

Creating a light probe in a mobile AR application in-

volves two broad stages: first to select a 3D point as center

of this probe and project known scene information to an

equirectangular environment map with the selected point as

camera center; and second to process the partial equirect-

angular to output a completed HDR environment map. The

first requires color and scene geometry knowledge or as-

sumption for projection. In our work, we assume without

loss of generality that platform and application-dependent

processing can be used for this projection, and obtain the

incomplete environment map from the probe center. Using

the mobile device pose also helps to ensure that the environ-

ment maps are upright or gravity aligned. That is, the floor

always appears at the bottom and the ceiling on top. Our fo-

cus in this paper is on completion, and LDR to HDR lifting

of this incomplete environment map as shown in Fig. 2.

We use the equirectangular representation (128×256

pixels) and create a four channel input (RGB-mask).

Known pixel intensities are normalized to [−., .], while

the unknown pixels are populated with random noise from

a uniform distribution U(−., .). The fourth channel is

a binary mask with known pixels set to . This is input into

our network, EnvMapNet, that outputs an HDR RGB image

in log scale. The log image is converted to linear values, op-

tionally decomposed into analytical lights, and provided to

the renderer. We train our network end-to-end with image-

based and adversarial losses, which allows us to handle both

the generative aspect for reflection completion as well as

light estimation from partial environment map.
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Figure 2. Overview of our method: We propose EnvMapNet that estimates completed HDR environment maps from partial input. We

train the network end-to-end in an adversarial setup. An offline one-time clustering of the training images is used to provide a supervised

classification task for our novel ClusterLoss in the discriminator. The additional adversarial loss, along with our proposed ProjectionLoss,

allows our method to generate high quality environment maps for reflection and accurate shading of virtual objects.

3.1. Dataset and processing

In this work we use two datasets: Laval Indoor HDR

dataset [10] and PanoContext LDR panoramas [32]. We

use the author’s test split [10]2 for HDR images, resulting

in a total of 2,810 training images. The different sources

and scenes have large intensity variations and hence are un-

suitable for training as-is. We thus employ a log scale on

exposure-normalized HDR linear images for the network.

The LDR PanoContext images are only used to train the

discriminator. For a given linear HDR ground truth image

Glin, we compute the training ground truth G as:

G = min(max(0, log
10
(Glin · α+ 1)), 2)− 1, (1)

We empirically choose α = 0.2 ·Glin to match the mid-

dle gray values. The clipping of intensities corresponds to

our use of tanh activation for our network, and results in

dynamic range of [0, 100] for output linear RGB, given the

input LDR images in [0, 1] range.

3.2. Model architecture

Our model, EnvMapNet, consists of an encoder and de-

coder with skip connections as shown in Fig. 2. Each is

composed of building blocks detailed in Appendix 3. The

encoder is composed of five sets of EnvMapNet-conv-block

and EnvMapNet-downsample-blocks. The resulting latent

vector is convolved with a 1×1 kernel to output 64 fil-

ters. The decoder mirrors the encoder by using EnvMapNet-

conv-block and EnvMapNet-upsample-blocks. The final

output is produced by a 3×3 convolution to produce 3 chan-

nels for RGB, followed by a tanh activation.

3.3. Image­based losses and ProjectionLoss

We use a weighted combination of image-based and ad-

versarial losses to train our model end-to-end. We want to

2http : / / vision . gel . ulaval . ca / ˜jflalonde /

projects/deepIndoorLight/test.txt

retain the color for pixels from the known (input) region

while hallucinating the rest with a plausible scene comple-

tion (typically extrapolation). Guided by the binary mask in

the input, we compute an L1 loss between the known pix-

els in the input and corresponding predicted colors. For the

completed output, we apply a multi-scale L2 loss. This al-

lows the model to coarsely regress the light direction and

color, however it does not allow for generation of sharp fea-

tures for the estimated light sources (as seen in Fig. 1(b) and

Fig. 2). To obtain a high contrast HDR result that generates

correct shadows L2 loss is not sufficient. An ideal solution

would be to use a ray tracer to render shadows and penalize

the difference between the rendered images using ground

truth and predicted maps. This is non-trivial and expensive

for end-to-end training.

Considering only shadow casting, the intensity of a pixel

in the shadow is dependent on the integral of the environ-

ment map except directions blocked by the object. Thus,

any pixel on the shadow plane can be approximated by the

integral over the masked environment map. We take inspi-

ration from our intuition above, and Wasserstein distance,

and introduce our novel ProjectionLoss. We select a set of

randomized binary masks P having the same size as our

environment map, and create a one-dimensional vector of

length |P | (the number of images in the set) by integrating

the pixel intensities in corresponding masked images. On

a 0-valued background, the masks contain polygons gener-

ated with randomization whose height and width range from

10% to 40% of the corresponding image dimensions and

filled with value of 1. For further illustration of Projection-

Loss, and examples of the masks used, see Appendix 4 in

supplementary materials. The final loss, termed Projection-

Loss, is the L1 distance between the vectors correspond-

ing to predicted and ground truth environment maps. We

show this error using |P | = 50 projection masks in Fig. 3(a)

for each environment map shown in row (c), with the first
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(a) ProjectionLoss 0.37 0.25 0.35 3.13 0.63 0.43

(b) AngularError 21.4 22.9 24.2 103.9 107.2 109.86

(c)

(d)

Reference Example 1 Example 2 Example 3 Example 4 Example 5 Example 6
Figure 3. Representative results for metrics and losses correlated to directional error of estimated lights. Row (a): Proposed projection loss

on the environment maps w.r.t Reference (see Sec. 3.3). Row (b): Angular errors in degrees, using parametric lights for each environment

map w.r.t Reference (see Sec. 4). Row (c): Environment maps with extracted parametric lights shown as red ellipses. Row (d): Rendering

of a rough metallic sphere using the corresponding environment map and viewed from top.

image being the reference. In Fig. 3(d) we show rendered

spheres using the corresponding environment maps. We can

see that lower values of ProjectionLoss correlate with both

lower angular error and better visual match of lighting di-

rection to the reference. This is also supported in our abla-

tion study results in Sec. 5.2.

For a ground truth HDR image G, a mask indicating un-

known pixels M , a predicted image I , and a set of projec-

tion masks P , the final image-based loss is defined as:

Lossprojection = |∀Pi∈P (
∑

(I ∗ Pi)−
∑

(G ∗ Pi))|1

Lossimage = w1|I ∗M −G ∗M |1 + w2||I −G||2

+ Lossprojection

(2)

ProjectionLoss is related to diffuse convolution or cosine

loss used in previous works [10, 23]. While filtered, or

down sampled integral can represent diffuse or low fre-

quency lighting information, we find that our formulation is

able to capture high frequency lighting better. To further un-

derstand the value of ProjectionLoss for lighting estimation,

and to compare with other measures, such as SSIM [33] and

Mean Squared Error (MSE), we performed a detailed exper-

iment with user study as described in Appendix 4. We first

confirmed that SSIM on rendered images is a good base-

line for retrieval of images with similar lighting on objects.

We then correlated retrieval of similar environment maps

using ProjectionLoss, SSIM and MSE. Quantitatively, we

found the intersection of top-5 retrievals by SSIM (on the

rendered images) and those using ProjectionLoss (on the

environment map) to be 1.6±0.7, while it was 0.6±0.5 us-

ing MSE (on the environment map). Based on the above we

believe that our proposed ProjectionLoss effectively trains

the model for light estimation, such that the end result for

rendering is accurate with respect to ground truth. We also

show that MSE on the environment map is insufficient for

training accurate light estimation. Its use as a metric of

comparison, as done in previous works, would not correlate

well with the final application.

3.4. Adversarial loss and ClusterLoss

To generate perceptually pleasing completions to the

scene, we train the model using a GAN loss. Adversarial

training was proposed in [12], where a discriminator was

trained to classify samples from the training set as “real”

and those produced by a generator as “fake”. The gener-

ator has a loss component for classification of generated

samples as “real”. The networks are trained using alternate

weight update schedule. Since their advent, there have been

many improvements on GANs for training stability and re-

sult quality. As discussed previously, many of these have

focused on single objects such as faces [16] or increased

stability using large datasets or architectures [4]. However,

we found that training a mobile-friendly GAN architecture

with fewer than 3, 000 images with high appearance varia-

tion resulted in mode collapse or non convergence.

It has been shown that providing an additional task to the

discriminator using conditional labels or self-supervision

can increase stability [21]. Assigning semantic labels (e.g,

room types) is non-trivial for panoramic images since the

viewpoint could be from between two rooms. Recent work

using self-supervision with rotation prediction [5] has been

promising. However, for equirectangular images the possi-

ble rotations would be flips along the image axis, of which

that along the vertical image axis is valid for a scene.

We thus propose a novel scheme combining the learnings

from above methods. We begin with the recognition that our

application needs to generate “plausibly similar looking im-

ages” as the training set, hence the idea to use appearance

features to form a secondary task. We use traditional image

patch features (mean color and ORB [22]) and assign a K-

means-derived cluster ID to each image (we used K = 5).

Along with the typical real vs. fake classification, the dis-

criminator is supervised to classify the K-means assigned

cluster ID for each real image with the proposed Cluster-

Loss. This allows us to train without additional heuristics

or tricks, and avoid mode collapse, as the encoded latents
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are forced to spread out over the appearance clusters. Intu-

itively it also helps the discriminator focus on a low ambi-

guity appearance-based task that pays attention to spatial

locations and details, thus avoiding cases where a single

patch artifact can easily clue the discriminator that the im-

age is fake (“easy wins”). The discriminator is composed

of residual blocks as detailed in Appendix 3. We use soft-

max cross entropy loss for the adversarial training of our

model and discriminator D. With y, p indicating the ground

truth and predicted one-hot encoded vectors for the cluster

classification respectively, our adversarial losses are:

Losscluster =
5∑

k=1

yo,k log(po,k)

Lossfakereal = log(D(G)) + log(1−D(I))

Lossadversarial = − log(D(I))

(3)

3.5. Implementation and adversarial training

During training we mask the ground truth images using

randomly generated polygonal regions, and provide them as

corresponding incomplete input environment map. The re-

gions are of irregular shape and can be non-contiguous to

generalize our model to complete any partial input. For in-

put, we tonemap the ground truth HDR environment map by

dividing the pixels by the average intensity (exposure com-

pensation), applying a gamma with value of 2.2, and final

normalization and clipping of the intensity to [−1.0, 1.0].
The color channels in the unknown pixels are filled with

numbers from uniform random distribution in [−1.0, 1.0]
range. We use the logarithmic transform from Sec. 3.1

for the ground truth used in evaluation of losses. The

components of Lossimage are weighted using w1 = 0.5,

w2 = 0.01. For all image-based losses, we also weight the

pixels to compensate for the subtended angle on the sphere.

LossEnvMapNet = Lossimage+

Lossadversarial + Losscluster

Lossdiscriminator = Lossfakereal + Losscluster

(4)

We train the networks by minimizing LossEnvMapNet

and Lossdiscriminator respectively. We use the Adam op-

timizer, a batch size of 16, and the learning rate starting at

0.0002, and decayed by half every 50 epochs after the first

100 epochs. We alternate between training the discrimina-

tor and EnvMapNet after each mini-batch.

4. Metrics for benchmarking

Visual coherence in AR aims to give a user the illusion

that an inserted virtual object belongs in the real scene.

However algorithm development, especially in the domain

of deep learning, involves many heuristics and parameter

tuning. We therefore believe that establishing quantitative

metrics, separate from loss functions, that correlate with the

target application setting, is important to easily compare dif-

ferent methods. Several previous methods have used MSE

on environment maps in RGB, intensity or log formulation

as a metric. However, as discussed in Sec. 3.3, it is not

well suited to measure accuracy such that the final render-

ing matches ground truth.

At the core of it we want to solve for two aspects of the

environment map: lighting accuracy and perceptual plau-

sibility. Real-time mobile renderers use analytical (point)

lights to cast shadows. Hence lighting accuracy is corre-

lated to direction of top-n dominant light sources. Since we

cannot (and should not) generate the exact unseen test room

for reflection, measures such as MSE or SSIM [33, 29] for

one-to-one image comparisons are unsuitable. Instead we

need to use plausibility of the hallucinated scene as a met-

ric. We start with a discussion on lighting accuracy metrics

followed by quantitative measures for perceptual quality.

Our goal is to define metrics that can be used by any future

work to objectively compare techniques. Thus we estab-

lish a repeatable benchmark that uses the publicly available

Laval HDR dataset [10], and reference implementations of

the metrics that we will provide.

Methods that can extract light sources from environment

maps include median cut [8], variance minimization [28],

and parametric fitting from peak finding [9]. In the case

of mobile AR, real-time renderers need fast decomposition

techniques, hence we use the latter method to find centers

and extent of light sources. The angular coordinates of the

ellipse center are used to measure the directional accuracy

with respect to ground truth. For a given HDR environment

map, we iteratively find a seed pixel with maximum inten-

sity, and grow the region connected to the seed till we reach

30% of the peak value. This is repeated until the peak value

found is less than 90% of the largest. For each such region,

we fit an ellipse covering its convex hull. Example images

with parametric light fitting are shown in Fig. 3(c).

To measure the AngularError between the ground truth

and estimated environment maps, we extract (at most) five

parametric lights from each. For each ground truth light

we find the minimal angular error to the predicted light set,

and vice-versa. We take the mean over the errors from both

ground truth lights and predicted lights, as the final Angu-

larError between the two environment maps. Fig. 3 demon-

strates the correlation of the AngularError metric, with ex-

amples of low and high errors with respect to a selected

reference. We can see that environment maps with lower

errors produce similar lighting directions on the reference

sphere, compared to those with higher errors, thus making

it a suitable metric for comparison.

To measure perceptual plausibility, user studies are com-

monly used for their insight into final experience quality.

However, user studies are hard to repeat or compare across

publications. We take inspiration from work in GANs, that
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(a)

(b) (c) (d) (e)
Figure 4. Snapshots from our real-time mobile app. (a) A real and virtual rendering of same object, we can see that the lighting direction

and color matches closely. (b) Lighting on the virtual mirror finish sphere is coherent with other real objects in the scene and the reflection

formed is also a plausible completion to the scene. (c) A virtual lamp on the table, with its top specular highlight matching the direction

on the glass object on the lower right. (d)-(e) Virtual metallic spheres with different roughness. See videos in supplementary material.

measure quality of synthesized images using Frechet Incep-

tion Distance (FID) [13]. The measure is defined to eval-

uate similarity of distributions between two image sets, in

contrast to perceptual metrics such as SSIM that require a

reference image for each given test image. That is, the FID

is low between two sets of images that have similar image

features, and overall diversity among the different generated

samples is the same as in the reference samples. This met-

ric is thus good to demonstrate that not only do the details

in any generated environment map match realistic patches

from training images, but the set of predicted images also

have variety in content without over-fitting.

5. Results

To show the effectiveness of our method for rendering

virtual objects in AR, we start with qualitative results from

real-world applications of our model, followed by compar-

isons to previous work and quantitative benchmark results.

5.1. Qualitative results

In Fig. 4 we show results from our prototype iOS app

used in real-world scenes. We use device pose and plane

geometry provided by ARKit [2] to warp the input camera

image into a partial environment map. The completed envi-

ronment map from running our model on the device is then

used with SceneKit3 to render the virtual object4. The infer-

ence time is under 9 ms on an iPhone XS, allowing updates

at high frame rates depending on desired user experience.

3https : / / developer . apple . com / documentation /

scenekit/
43D models from https : / / developer . apple . com /

augmented-reality/quick-look/

Please see the supplementary material for videos5 from

our application, where we use an update rate of 10fps for

our results. Fig. 4(a) shows a real cooker in the right, and a

rendered version on the left. Note that the material proper-

ties of the brushed steel body do not match exactly. We can

clearly see that the lighting direction closely matches the

reference real-world object, providing the correct specular

highlights. The accurate lighting, combined with percep-

tually plausible reflection clearly makes the rendering an

immersive AR experience. In Fig. 4(b) we render a mirror

sphere into a scene to show the impact of generating plau-

sible reflections. Though the input observes a very small

part of the environment, we are able to create a believable

AR experience by completing the environment map with

a detailed scene. Even though it cannot match the actual

room in every detail, the perceptual impact and coherence

of the virtual object with other objects, such as the mirror

on the wall, and metallic tower on the right, is evident. In

Fig. 4(c)-(e) we provide more examples of inserted virtual

objects that have lighting that is coherent with the real ob-

jects in the field of view.

From the images in Fig. 1 and 4 we highlight a few

aspects of our method. For each of the scenes, that vary

in time of day and FoV, not only is the light direction co-

herent with the scene but so is the type/shape/size of light

source generated by our method. Fig. 1(e) shows a virtual

teapot on a table illuminated with an unseen artificial light.

The roughness of the teapot was 0.2, and metalness was 1.0
in SceneKit. The light direction and highlights from our

estimate closely match those on the real teapot (blue) and

sphere (pool ball) in the scene. In Fig. 4(b) and (d) the light

5https://docs- assets.developer.apple.com/ml-

research/papers/hdr-environment-map.mp4

11304



Method FID AngularError

EnvMapNet (Ours) 52.7 34.3±18.5

Ours without ProjectionLoss 77.7 39.2±29.9

Ours without ClusterLoss 203 75.1±25

Gardner et al. [10] 197.4 65.3±24.5

Artist IBL (Fixed) - 46.5±15.4
Table 1. Quantitative comparisons and ablation studies (Sec. 5.2).

sources have appearances closer to that of a window/door

that are common and plausible in those environments.

We show qualitative comparisons to recent work from

Srinivasan et al. [25], and their re-implementations of Neu-

ral Illumination [23] and Deep Light [17] in Appendix 5.

5.2. Quantitative evaluation and benchmarking

For quantitative benchmarking we use the metrics de-

tailed in Sec. 4 on the publicly available Laval dataset [10],

and show the results in Table 1. We show some exam-

ple results in Fig. 5 with rendered objects using results and

ground truth (GT) environment maps. All images are best

seen on a color monitor with magnification. We highly en-

courage the reader to see Appendix 6 for details and more

results with renderings.

As discussed in Sec. 2, though several methods have fo-

cused on light estimation from single images, only a few

generate HDR RGB environment maps. Recent techniques

that estimate lighting such as [23] and [17], have not shared

code, model weights nor use public datasets. There is also

a lack of a standard set of metrics for comparison. The

method by Gardner et al. [10] is the current state-of-the-

art method that is most comparable to our method, uses the

same public dataset, and is compared in the above recent

works as well. They have provided a web interface to obtain

results from their method6. Since we use the same splits for

train/test, we provide detailed quantitative and qualitative

comparisons with their results.

We summarize the quantitative metrics in Table 1, cal-

culated over the 250 test images. The results from using

our method are reported as EnvMapNet. We introduced

two novel loss functions in our method, for which we also

conducted ablation studies. For Ours without Projection-

Loss we observe higher angular error than our full model

EnvMapNet, as expected from our discussions in Sec. 3.3.

When we trained Ours without ClusterLoss, for the dis-

criminator, the model often suffered from instability as dis-

cussed in Sec. 3.4, and could not generate textures with fine

details, hence the higher FID and angular error.

The errors for Gardner et al. [10] are higher than our

complete pipeline. As shown with example images (Fig. 5

and Appendix 6), the environment map generated by their

method lacks fine details for the scenes hence the higher

6http://rachmaninoff.gel.ulaval.ca:8001/

Input

Crop

EnvMapNet

(Ours)
Gardner et al.

[10]

Rendered objects

Ours - GT - [10]

Figure 5. Sample benchmarking results (Sec. 5.2 and Appendix 6).

FID score. The angular error is also higher on average,

which could be explained from our experiments in Sec. 3.3

that show MSE loss is insufficient to train for accurate light-

ing. Both these aspects can be clearly observed to affect the

use of the environment maps in rendering objects with both

mirror and diffuse finish, along with the cast shadows.

As a baseline measurement, we consider that AR appli-

cations, like games, may use a fixed artist-created environ-

ment map for lighting. We obtained such an environment

map designed for indoor scenes as detailed in Appendix 2.

We calculate the angular error metric with respect to this

environment map, and report it in Table 1 as Artist IBL.

As demonstrated through the various qualitative exam-

ples and quantitative benchmarking, our method, with low-

est FID and AngularError, can produce high quality envi-

ronment maps both for visually pleasing reflections, and ac-

curate lighting of the virtual objects.

6. Conclusions

We presented the first method that, given a small field-

of-view LDR camera image, can estimate a high resolution

HDR environment map in real-time on a mobile device.

The result can be used to light objects of any material fin-

ish (mirror to diffuse) for augmented reality. We made two

novel contributions in the training of our neural network,

with ProjectionLoss for the environment map, and Clus-

terLoss for the adversarial loss. This enabled our method

to synthesize environment maps with accurate lighting and

perceptually plausible reflections. We proposed two metrics

to measure both these aspects of the estimated environment

map. Through qualitative and quantitative comparisons we

demonstrated that our method reduces the angular error in

parametric light direction by more than 50%, along with a

3.7 times reduction in FID. We showcased a real-world mo-

bile application that is able to run our model in real-time

(under 9ms) and render visually coherent virtual objects in

novel environments.
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