
SRWarp: Generalized Image Super-Resolution under Arbitrary Transformation

Sanghyun Son Kyoung Mu Lee

ASRI, Department of ECE, Seoul National University, Seoul, Korea

{thstkdgus35, kyoungmu}@snu.ac.kr

Abstract

Deep CNNs have achieved significant successes in im-

age processing and its applications, including single image

super-resolution (SR). However, conventional methods still

resort to some predetermined integer scaling factors, e.g.,

×2 or ×4. Thus, they are difficult to be applied when arbi-

trary target resolutions are required. Recent approaches ex-

tend the scope to real-valued upsampling factors, even with

varying aspect ratios to handle the limitation. In this pa-

per, we propose the SRWarp framework to further general-

ize the SR tasks toward an arbitrary image transformation.

We interpret the traditional image warping task, specifically

when the input is enlarged, as a spatially-varying SR prob-

lem. We also propose several novel formulations, includ-

ing the adaptive warping layer and multiscale blending, to

reconstruct visually favorable results in the transformation

process. Compared with previous methods, we do not con-

strain the SR model on a regular grid but allow numerous

possible deformations for flexible and diverse image edit-

ing. Extensive experiments and ablation studies justify the

necessity and demonstrate the advantage of the proposed

SRWarp method under various transformations.

1. Introduction

As one of the fundamental vision problems, image super-

resolution (SR) aims to reconstruct a high-resolution (HR)

image from a given low-resolution (LR) input. The SR

methods are widely used in several applications such as per-

ceptual image enhancement [25, 39], editing [2, 30], and

digital zooming [42], due to its practical importance. Sim-

ilar to the other vision-related tasks, recent convolutional

neural networks (CNNs) have achieved promising SR per-

formance with large-scale datasets [1, 27], efficient struc-

tures [51, 52, 12], and novel optimization techniques [27,

39]. Recent state-of-the-art methods can reconstruct sharp

edges and crisp textures with fine details up to ×4 or ×8
scaling factors on various types of input data including real-

world images [50, 4, 41], videos [38, 43, 13, 36, 26], hyper-

spectral [9, 48, 45], and light field arrays [49, 35, 40].

(a) Input (b) OpenCV (c) SRWarp

Figure 1: Real-world lens distortion correction using the

proposed SRWarp. The image is captured by the GoPro

HERO6 handheld camera. Our SRWarp implements SR

with locally-varying scale factors, which can be used to

transform an input image to the desired geometry.

From the perspective of image editing applications, the

SR algorithm supports users to effectively increase the num-

ber of pixels in the image and reconstruct high-frequency

details when its HR counterpart is unavailable. Such ma-

nipulation may include simple resizing with some prede-

fined scaling factors or synthesizing images of arbitrary tar-

get resolutions. However, directly applying existing SR

methods in these situations is difficult because the mod-

els are usually designed to cope with some fixed integer

scales [25, 51, 39]. Recently, few methods have extended

the scope of the SR to upsample a given image by arbitrary

scaling factors [15] and aspect ratios [37]. These novel ap-

proaches provide more flexibility and versatility to existing

SR applications for their practical usage.

Nevertheless, existing SR models are not fully optimized

for general image editing tasks due to their intrinsic formu-

lations. Previous approaches are also designed to take and

reconstruct such rectangular frames because digital images

are defined on a rectangular grid. On the contrary, images

may undergo various deformations in practice to effectively

adjust their contents within the context. For instance, ho-

mographic transformation [47, 24] aligns images from dif-

ferent views, and cameras incorporate various correction al-

gorithms to remove distortions from the lens [34, 44]. One

of the shortcomings in the conventional warping methods is

that interpolation-based algorithms tend to generate blurry

results when a local region of the image is stretched. Hence,

an appropriate enhancement algorithm is required to pre-

7782



serve sharp edges and detailed textures, as the SR methods

for image upscaling. However, such applications may re-

quire images to be processed on irregular grids, which can-

not be handled by naı̈ve CNNs for regular-shaped data.

To prevent blurry warping results, state-of-the-art SR

models may be introduced prior to image transformation.

By doing so, supersampled pixels alleviate blurriness and

artifacts from simple interpolation. However, Hu et al. [15]

and Wang et al. [37] have demonstrated that the solution is

suboptimal in the arbitrary-scale SR task. Furthermore, a

generalized warping algorithm should deal with more com-

plex and even spatially-varying deformations, which are not

straightforward to be considered in the previous approaches.

Therefore, an appropriate solution is required to effectively

combine the SR and warping methods in a single pipeline.

In this study, we interpret the general image transforma-

tion task as a spatially-varying SR problem. For such pur-

pose, we construct an end-to-end learnable framework, that

is, SRWarp. Different from the previous SR methods, our

method is designed to handle the warping problem in two

specific aspects. First, we introduce an adaptive warping

layer (AWL) to dynamically predict appropriate resampling

kernels for different local distortions. Second, our multi-

scale blending strategy combines features of various reso-

lutions based on their contents and local deformations to

utilize richer information from a given image. With power-

ful backbones [27, 39], the proposed SRWarp can success-

fully reconstruct image structures that can be missed from

conventional warping methods, as shown in Figure 1. Our

contributions can be organized in threefolds as follows:

• The novel SRWarp model generalizes the concept of SR

under arbitrary transformations and formulates a frame-

work to learn image transformation.

• Extensive analysis shows that our adaptive warping layer

and multiscale blending contribute to improving the pro-

posed SRWarp method.

• Compared with existing methods, our SRWarp model re-

construct high-quality details and edges in transformed

images, quantitatively and qualitatively.

2. Related Work

Conventional deep SR. After Dong et al. [8] has success-

fully applied CNNs to the SR task, numerous approaches

have been studied toward better reconstruction. VDSR [20]

is one of the most influential works which introduces a

novel residual learning strategy to enable faster training and

very deep SR network architecture. ESPCN [33] constructs

an efficient pixel-shuffling layer to implement a learnable

upsampling module. LapSRN [22] architecture efficiently

handles the multiscale SR task using a laplacian upscal-

ing pyramid. Ledig et al. [25] have adopted the residual

block from high-level image classification task [14] to im-

plement SRResNet and SRGAN models. With increasing

computational resources, state-of-the-art methods such as

EDSR [27] have focused on larger and more complex net-

work structures, producing high quality images. Recently,

several advances in neural network designs such as atten-

tion [51, 7, 32], back-projection [12], and dense connec-

tions [52, 53, 12, 39] have made it possible to reconstruct

high-quality images very efficiently.

SR for arbitrary resolution. Most conventional SR meth-

ods [8, 20] have relied on naı̈ve interpolation to enlarge a

given LR image before Shi et al. [33] have introduced the

pixel-shuffling layer for learnable upscaling. For example,

VDSR [20] upscales the LR image to their target resolution

and then applies the SR model to refine local details and

textures so that the method can serve as an arbitrary-scale

SR framework. However, a significant drawback is that ex-

tensive computations are required proportional to the output

size. Therefore, subsequent methods have been specialized

for some fixed integer scales, e.g., ×2 or ×4, which are

commonly used in various applications.

Recently, Hu et al. [15] have proposed the meta-upscale

module to replace scale-specific upsampling layers in pre-

vious approaches. Meta-SR [15] is designed to utilize

dynamic filters to deal with real-valued upscaling factors.

Subsequently, Wang et al. [37] introduce scale-aware fea-

tures and upsampling modules to reconstruct images of ar-

bitrary target resolutions. The previous methods mainly

consider the SR task along horizontal or vertical axes. How-

ever, our differentiable warping module in SRWarp allows

images to be transformed into any shape.

Irregular spatial sampling in CNNs. Pixels in a digital

image are uniformly placed on a 2D rectangle. However,

objects may appear in arbitrary shapes and orientations in

the image, making it challenging to handle them with a

simple convolution. To overcome the limitation, the spa-

tial transformer networks [16] estimate appropriate warping

parameters to compensate for possible deformations in the

input image. Rather than transform the image, deformable

convolutions [6] and active convolutions [17] predict input-

dependent kernel offsets and modulators [54] to perform ir-

regular spatial sampling. Furthermore, the deformable ker-

nel [10] approach resamples filter weights to adjust the ef-

fective receptive field adaptively. Recent state-of-the-art

image restoration models, especially with temporal data, in-

troduce the irregular sampling strategy for accurate align-

ment [36, 38, 43]. However, our approach is the first novel

attempt to interpret image warping as an SR problem.

3. Method

We introduce our generalized SR framework, namely

SRWarp, in detail. ILR ∈ R
H×W , IHR ∈ R

H′×W ′

, and

ISR ∈ R
H′×W ′

represent source LR, ground-truth HR, and

target super-resolved images, respectively. H × W and

H ′ × W ′ correspond to image resolutions, and we omit
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RGB color channels for simplicity. Different from the con-

ventional SR, the target resolution H ′ ×W ′ varies depend-

ing on the given transformation. We define its resolution

using a bounding box of the image because the warping

may produce irregular output shapes rather than rectangular.

For more detailed descriptions and analysis of this section,

please refer to our supplementary material.

3.1. Super­Resolution Under Homography

Given a 3 × 3 projective homography matrix M and a

point p = (x, y, 1)
T

on the source image, we calculate

the target homogeneous coordinate p′ = w′ (x′, y′, 1)
T

as

Mp = p′ or fM (x, y) = (x′, y′), where fM is a corre-

sponding functional representation. In the backward warp-

ing, p = M−1p′ is calculated instead for each output pixel

p′ to remove cavities. If we simply scale the image along x

and y axes, then the matrix M is defined as follows:

Msxsy =





sx 0 0.5 (sx − 1)
0 sy 0.5 (sy − 1)
0 0 1



 , (1)

where sx and sy correspond to scale factors along the axes,

and the translation components, i.e., 0.5 (s∗ − 1), compen-

sate subpixel shift to ensure an accurate alignment [37].

Most early SR methods are designed to deal with the case

where sx = sy represents predefined integers [33, 25, 12,

39]. Recent approaches have relaxed such constraint by al-

lowing arbitrary real numbers [15, 37]. However, numerous

possible forms of M remain unexplored.

Figure 2 presents a concept of the conventional SR meth-

ods and our SRWarp method from the perspective of the im-

age scale pyramid. For convenience, we assume that an LR

image ILR is placed on the plane z = 1. Then, obtaining

the ×s SR result ISR is equivalent to slicing the pyramid by

the plane z = s, where all points on the SR image have

the same z-coordinate. Previous methods aim to learn the

image representations that are parallel to the given LR in-

put. However, slicing the image pyramid with an arbitrary

plane, or even general surfaces in the space, is also possible.

Therefore, We propose to redefine the warping problem as a

generalized SR task with spatially-varying scales and even

aspect ratios because the pixels in the resulting image can

have different z values depending on their positions.

3.2. Adaptive Warping Layer

Image warping consists of two primitive operations,

namely, mapping and resampling. The mapping initially

determines the spatial relationship between input and output

images. For a target position p′ = (x′, y′), the correspond-

ing source pixel is located as p = (x, y) = f−1

M (x′, y′). We

omit the homogeneous representation for simplicity. While

pixels in digital images are placed on integer coordinates

only, x and y may have arbitrary real values depending on

𝐈LR on 𝑧 = 1

Conventional 𝐈𝐒𝐑(× 𝟒) on 𝑧 = 4

𝐈SR on the

arbitrary surface

zoom

𝑥𝑦𝑧

Figure 2: Concept of the generalized SR. Dotted lines rep-

resent the upscale image pyramid in xyz-coordinate. While

×s super-resolved images from conventional methods (red)

exist on the plane z = s only, our results (blue) exists on

any arbitrary cutting surfaces of the pyramid. We note that

the aspect ratio of the pyramid can be varied as well.

the function f−1

M . Therefore, an appropriate resampling is

required to obtain a plausible pixel value as follows:

W (x′, y′) =
b

∑

i,j=a

k (x′, y′, i, j)F (⌊x⌉+ i, ⌊y⌉+ j),

(2)

where ⌊·⌉ is a rounding operator, F ∈ R
H×W is an input,

W ∈ R
H′×W ′

is an output, and k is a point-wise interpo-

lation kernel, respectively. a and b are boundary indices of

the k × k window, where k = b − a + 1. For example, we

set a = −1 and b = 1 for standard 3× 3 kernels.

Conventional resampling algorithms introduce a fixed

sampling coordinate and kernel function to calculate the

weight k, regardless of the transformation M . For exam-

ple, a widely-used bicubic warping initially calculates a rel-

ative offset (ox, oy) of each point in the k× k window with

respect to (x, y) as shown in Figure 3a and constructs k

using a cubic spline. However, due to the diversity of pos-

sible transformations, such formulation may not be optimal

in several aspects. First, it is difficult to consider the trans-

formed geometry where the target image is not defined on

a rectangular grid. Second, the fixed kernel function lim-

its generalizability, while recent SR models prefer learn-

able upsampling [33, 15, 37] rather than the predetermined

one [20]. To handle these issues, we propose an adaptive

warping layer (AWL) so that the resampling kernel k can

be trained to consider local deformations.

To determine an appropriate sampling coordinate for

each target position (x′, y′), we linearize the backward

mapping M−1 at the point with the Jacobian J (x′, y′) =
(

u
T

v
T
)

. Specifically, we calculate u and v as follows:

u =
f−1

M (x′ + ǫ, y′)− f−1

M (x′ − ǫ, y′)

2ǫ
,

v =
f−1

M (x′, y′ + ǫ)− f−1

M (x′, y′ − ǫ)

2ǫ
,

(3)

where f−1

M = fM−1 and ǫ = 0.5. We project a unit cir-
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𝐞𝑥
𝑜𝑥𝐞𝑥𝐞𝑦 𝑜𝑦𝐞𝑦

𝑓𝑀−1 𝑥′, 𝑦′ 𝐤 𝑥′, 𝑦′

(a) Regular resampling

𝐞𝑦′
𝑓𝑀−1 𝑥′, 𝑦′ 𝐤 𝑥′, 𝑦′𝐞𝑥′ 𝑜𝑦′ 𝐞𝑦′𝑜𝑥′ 𝐞𝑥′

(b) Adaptive resampling

Figure 3: Example of the adaptive grid. Each point repre-

sents a pixel on the source domain F. (a) On a regular grid,

the resampling bases ex and ey in blue are orthonormal and

aligned with the source image. (b) We adopt irregular bases

e
′
x and e

′
y with varying lengths and orientations for each

target position (x′, y′). The relative offset vector (ox, oy)
of an example point in red is mapped to

(

o′x, o
′
y

)

following

the change of basis. The green ellipse illustrates how a unit

circle on the target image is projected to the source domain.

cle centered around (x′, y′) on the target domain to an el-

lipse [11] on the source image, using the local approxima-

tion. Then, we calculate two principal axes e
′
x and e

′
y of

the ellipse. As shown in Figure 3b, the relative offset vector

o = (ox, oy) is represented as o′ =
(

o′x, o
′
y

)

under the new

locally adaptive coordinate system. In the resampling pro-

cess, the actual contribution of each point is calculated with

respect to the distance from the origin. Therefore, we uti-

lize the adaptive coordinate to adjust the point considering

local distortions. The original offset vectors are rescaled as
‖o′‖
‖o‖ o and used to calculate the kernel k.

Subsequently, we introduce a kernel estimator K to es-

timate adaptive resampling weights k. Similar to the con-

ventional interpolation functions, it takes k2 offset vectors

to determine the contributions of each point F (x, y) in the

window k (x′, y′). However, we adopt a series of fully-

connected layers [15, 37] to learn the function rather than

using a predetermined one. The learnable network allows

considering local deformations and generates appropriate

dynamic filters [18, 19] for a given transformation. We con-

struct the proposed AWL W by combining the adaptive re-

sampling grid and kernel prediction layer K, as follows:

W = W (F, fM ) . (4)

3.3. Multiscale Blending

Figure 2 illustrates that images under the generalized SR

task suffer distortions with spatially-varying scaling factors.

Therefore, multiscale representations can play an essential

role in reconstructing high-quality images. To effectively

utilize the property, we further introduce a blending method

for the proposed SRWarp framework.

Multiscale feature extractor. We define a scale-specific

feature extractor F×s with a fixed integer scaling factor of s,

which adopts the state-of-the-art SR architectures [27, 39].

Given an LR image ILR, the module extracts the scale-

specific feature F×s ∈ R
C×sH×sW , where C denotes the

number of output channels. While it is possible to separate

the network for each scaling factor, we adopt a shared fea-

ture extractor with multiple upsampling layers [27] in prac-

tice for several reasons. For instance, previous approaches

have demonstrated that multiscale representations can be

jointly learned [20, 22, 23, 37] within a single model. Also,

using the shared backbone network is computationally ef-

ficient compared to applying multiple different models to

extract spatial features. From the state-of-the-art SR archi-

tecture, we replace the last upsampling module with ×1,

×2, and ×4 feature extractor to implement our multiscale

backbone as shown in Figure 4.

Multiscale warping and blending. For each scale-specific

feature F×s, we construct the corresponding transformation

as MMs−1s−1 by using (1). As a result, features of different

resolutions can be mapped to a fixed spatial dimension, i.e.,

H ′ ×W ′. We use a term W×s ∈ R
C×H′×W ′

to represent

the warped features as follows:

W×s = W (F×s (ILR) ,MMs−1s−1) . (5)

Then, the output SR image ISR can be recon-

structed from a set of the multiscale warped features

{W×s|s = s0, s1, · · · }. However, a simple combination,

e.g., averaging or concatenation, of those features may not

reflect the spatially-varying property of the generalized SR

problem. Therefore, we introduce a multiscale blending

module to combine information from different resolutions

effectively. To determine appropriate scales for each local

region, image contents play a critical role. For example,

low-frequency components are preferred in the warping

process to prevent aliasing and undesirable artifacts for

plain regions. On the contrary, high-frequency details

are considered to represent edges and textures accurately.

Therefore, we use learnable scale-specific and global

content feature extractors C×s and C as follows:

C = C (C×s0 (W×s0) , C×s1 (W×s1) , · · ·) , (6)

where the global content feature C ∈ R
C×H′×W ′

is repre-

sented by scale-specific representations C×si (W×si).
Since our SRWarp method handles spatially-varying dis-

tortions, appropriate feature scales may also depend on the

local deformation. The proposed model may benefit from

the degree of transformation around the pixel to determine

the contributions of each multiscale representation. There-

fore, we acquire the scale feature S ∈ R
H′×W ′

as follows:

S (x′, y′) = − log |det (J (x′, y′))|. (7)

Physically, the determinant of the Jacobian describes a local

magnification factor of the transformation. When adopting

backward mapping, we consider the reciprocal of the Jaco-

bian determinant and normalize it by taking the natural log.
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Figure 4: Overall organization of the proposed SRWarp model. More detailed architectures are described in our supple-

mentary material. Black regions outside the warped image ISR represent void pixels that are ignored.

Our multiscale blending module then applies 1× 1 con-

volutions to the concatenated content and scale features C

and S. By doing so, appropriate blending weights w×s are

determined for each output position (x′, y′). The blended

features Wblend can be represented as follows:

Wblend =
∑

s

w×s ⊙W×s, (8)

where ⊙ is an element-wise multiplication.

Partial convolution. Image warping can produce void pix-

els on the target coordinate when the point is mapped to out-

side the source image. Such regions may negatively affect

the model performance because conventional CNNs con-

sider all pixels equally. To efficiently deal with the problem,

we define a 2D binary mask m as follows:

m (x′, y′) =

{

0, if (x, y) is outside of F×1,

1, otherwise,
(9)

where fM (x, y) = (x′, y′). We calculate the mask m from

the ×1 feature F×1 and share it across scales to maintain

consistency between different resolutions. Then, we adopt

the partial convolution [28, 29] for our content feature ex-

tractors C and C×s, using the mask to ignore void pixels.

3.4. SRWarp

Finally, we introduce a reconstruction module R with

five residual blocks [25, 27]. We combine the SR back-

bone, AWL, blending, and reconstruction modules to con-

struct the SRWarp model S as shown in Figure 4. For sta-

ble training, the residual connection [20] is incorporated as

ISR = R (Wblend)+Ibic, where Ibic is a warped image using

bicubic interpolation and ISR is the final output. Given a set

of training input and target pairs (InLR, I
n
HR), we minimize

an average L1 loss [22, 27] L between the reconstructed

and ground-truth (GT) images as follows:

L =
1

N

N
∑

n=1

1

‖m‖
0

‖m⊙ (S (InLR, fM )− I
n
HR)‖1 , (10)

where N = 4 is the number of samples in a mini-batch,

n is a sample index, 0-norm ‖·‖
0

represents the number of

nonzero values, and S (InLR, fM ) + I
n
bic = I

n
SR, respectively.

The transform function fM is shared in a single mini-batch

for efficient calculation. The binary mask m in (9) pre-

vents backward gradients from being propagated from void

pixels. The proposed SRWarp model can be trained in an

end-to-end manner with the ADAM [21] optimizer.

4. Experiments

We adopt two different SR networks as a backbone of

the multiscale feature extractor for the proposed SRWarp

model. The modified MDSR [27] architecture serves as a

smaller baseline, whereas RRDB [39] with customized mul-

tiscale branches (MRDB) provides a larger backbone for

improved performance. We describe more detailed train-

ing arguments in our supplementary material. PyTorch

codes with an efficient CUDA implementation and dataset

will be publicly available from the following repository:

https://github.com/sanghyun-son/srwarp.

4.1. Dataset and Metric

Dataset. In conventional image SR methods, acquiring

real-world LR and HR image pairs is very challenging due

to several practical issues, such as outdoor scene dynamics

and subpixel misalignments [4, 5, 50]. Similarly, collect-

ing high-quality image pairs with corresponding transfor-

mation matrices in the wild for our generalized SR task is

also difficult. Therefore, we propose the DIV2K-Warping

(DIV2KW) dataset by synthesizing LR samples from the

existing DIV2K [1] dataset to train our SRWarp model in a

supervised manner. We first assign 500, 100, and 100 ran-

dom warping parameters {Mi} for training, validation, and

test, respectively. Each matrix is designed to include ran-

dom upscaling, sheering, rotation, and projection because

we mainly aim to enlarge the given image. We describe

more details in our supplementary material.
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During the learning phase, we randomly sample square

HR patches from 800 images in the DIV2K training dataset

and one warping matrix M−1

i to construct a ground-truth

batch IHR. Then, we warp the batch with M−1

i to obtain

corresponding LR inputs ILR. For efficiency, the largest

valid square from the transformed region is cropped for

the input ILR-crop. With the transformation matrix Mi and

LR patches ILR-crop, we optimize our warping model to re-

construct the original image IHR as described in 3.4. Fig-

ure 4 illustrates the actual training pipeline regarding our

SRWarp model. We use 100 images from the DIV2K valid

dataset with different transformation parameters following

the same pipeline to evaluate our method.

Metric. We adopt a traditional PSNR metric on RGB color

space to evaluate the quality of warped images. However,

we only consider valid pixels in a H ′ ×W ′ grid similar to

our training objective in (10) because they have irregular

shapes rather than standard rectangles. The modified PSNR

with a binary mask m (mPSNR) is described as follows:

mPSNR(dB) = 10 log
10

‖m‖
0

‖m⊙ (ISR − IHR)‖
2

2

, (11)

where images I∗ are normalized between 0 and 1.

4.2. Ablation Study

We extensively validate possible combinations of the

proposed modules in Table 1 because they are orthogonal

to each other. The modified baseline MDSR [27] struc-

ture is used as a backbone by default for lightweight eval-

uations. We refer to the model with a single-scale SR

backbone [27, 39] and standard warping layer at the end

as a baseline. Sequences of A, M, and R represent corre-

sponding configurations, e.g., A-R for the one which shows

32.19dB mPSNR in Table 1. Our SRWarp model is repre-

sented as A-M-R and achieves 32.29dB in Table 1. More

details are described in our supplementary material.

Adaptive warping layer. Table 1 demonstrates that

AWL introduces consistent performance gains by providing

spatially-adaptive resampling kernels. Table 2a extensively

compares possible implementations of the AWL in the pro-

posed SRWarp method. We replace the regular resampling

grid from M-R in Table 1 to the spatially-varying represen-

tations (Adaptive in Table 2a) as shown in Figure 3b. How-

ever, because the resampling weights k are not learnable,

the formulation does not bring an advantage even when the

spatially-varying property is considered. Introducing a ker-

nel estimator to the regular grid (Layer in Table 2b) yields

+0.06dB of mPSNR gain over the M-R method. The perfor-

mance is further improved to 32.29dB (A-M-R in Table 1)

by combining the spatially-varying coordinates and train-

able module. We note that the adaptive resampling grid at

each output position does not require any additional param-

eters and can be calculated efficiently.

A M R B mPSNR↑(dB) on DIV2KWValid.

− − −

EDSR

31.36 (+0.00)

✓ − − 32.06 (+0.70)

− − ✓ 32.08 (+0.72)

✓ − ✓ 32.19 (+0.83)

− ✓ −

MDSR

32.19 (+0.83)

✓ ✓ − 32.21 (+0.85)

− ✓ ✓ 32.19 (+0.83)

✓ ✓ ✓ 32.29 (+0.93)

− − − RRDB 31.64 (+0.28)

✓ ✓ ✓ MRDB 32.56 (+1.20)

Table 1: Contributions of each module in our SRWarp

method. A, M, R, and B denote the adaptive warping layer

(AWL), multiscale blending, reconstruction module, and

backbone architecture, respectively. Numbers in parenthe-

ses indicate performance gains over the baseline on top.

Method mPSNR↑(dB)

Adaptive 32.19

Layer 32.25

AWL-SS 32.23

AWL-MS 32.24

(a) Warping

Method mPSNR↑(dB)

Average 32.26

Concat. 32.19

w/o C 32.24

w/o S 32.23

(b) Blending

Table 2: Effects of warping and blending strategies in

our SRWarp model. We evaluate each method on the

DIV2KWValid. dataset. The proposed SRWarp achieves the

mPSNR of 32.29dB under the same environment.

We also analyze two possible variants of our AWL.

AWL-SS in Table 2a shares the kernel estimator K across

scales and channel dimensions, even with the multiscale SR

backbone. AWL-MS in Table 2a achives a minor perfor-

mance gain of +0.01dB by utilizing scale-specific modules

K×s as described in Section 3.3. In the proposed SRWarp

model, we further estimate the kernels in a depthwise man-

ner, i.e., C×k×k weights for each (x′, y′), and achieve an

additional +0.05dB improvement in the mPSNR metric.

Multiscale blending. Table 1 shows that our multiscale ap-

proach (M) consistently improves the spatially-varying SR

performance by a larger margin than the single-scale coun-

terpart with the baseline EDSR [27] backbone (A-R in Ta-

ble 1). We justify the design of our blending module in

Table 2b by only changing the formulation to calculate the

combination coefficients w×s in (8). Interestingly, simply

averaging (Average in Table 2b) the warped features W×s

produces a better result than concatenating and blending

them with a trainable 1 × 1 convolutional layer (Concat.

in Table 2b). Such performance decrease demonstrates that

an appropriate design is required for the efficient blending

module because concatenation is a more general formula-

tion. We also analyze how content and scale features sup-
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SRWarp𝐈LR 𝐈SR
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𝑀

(a) ILR, ISR, and M (b) cv2 (c) RRDB + cv2 (d) SRWarp (e) GT

Figure 5: Qualitative warping results on the DIV2KWTest dataset. We provide input LR and output HR images with

corresponding warping matrices Mi. Translation components are omitted for simplicity. Patches are cropped from the

DIV2KWTest ‘0807.png’ and ‘0850.png.’ More visual comparisons are included in our supplementary material.

Method mPSNR↑(dB) on DIV2KWTest

cv2 (Bicubic) [3] 27.85 (-2.41)

×2
RDN [52]

+cv2

30.22 (+0.00)

EDSR [27] 30.42 (+0.20)

RCAN [51] 30.45 (+0.23)

×4

RDN [52]

+cv2

30.50 (+0.28)

EDSR [27] 30.66 (+0.44)

RCAN [51] 30.71 (+0.49)

RRDB [39] 30.76 (+0.54)

SRWarp (MRDB) 31.04 (+0.82)

Table 3: Comparison between our SRWarp and avail-

able warping methods. + cv2 denotes that we first apply

a scale-specific SR model for supersampling and then trans-

form the upscaled image with the traditional warping al-

gorithm. Numbers in parenthesis denote performance gain

over the ×2 RDN + cv2 method. The best and second-best

performances are bolded and underlined, respectively.

port the blending module to combine multiscale representa-

tions effectively. If the content information is ignored (w/o

C in Table 2b), our SRWarp model suffers an mPSNR drop

of 0.05dB. Removing the scale features (w/o S in Table 2b)

also brings a similar degree of performance degradation,

justifying the design of the proposed multiscale blending.

Reconstruction module and partial convolution. Since

the reconstruction unit R can further refine output images,

the module evidently brings additional performance gains

for all combinations (∗-R in Table 1). We also examine the

usefulness of the partial convolution [28, 29] in the content

feature extractor and reconstruction module. Compared to

the previous SR methods, our SRWarp framework is more

sensitive to boundary effects due to several reasons. First,

image boundaries, i.e., regions between valid and void ar-

eas, are not aligned with convolutional kernels and have ir-

regular shapes. Second, because we place irregular-shaped

data on a regular 2D grid, numerous void pixels in the

warped image negatively affect the following learnable lay-

ers. SRWarp converges much slower without the partial

convolution, and its final performance decreases by 0.06dB

due to the severe boundary effects.

Backbone architecture. The last two rows of Table 1 show

the effects of different backbone architectures on the perfor-

mance of the SRWarp method. Using the larger MRDB net-

work with 17.1M parameters results in a significant PSNR

gain of +0.27dB compared with the MDSR backbone with

1.7M parameters, indicating better fitting on the training

data results in higher validation performance.

4.3. Comparison with the Other Methods

We compare the proposed SRWarp with existing meth-

ods. We note that providing an exact comparison with other

methods is difficult given that our approach is the first at-

tempt toward generalized image SR. First, we adopt a con-

ventional interpolation-based warping algorithm from the

OpenCV [3]. We use cv2.WarpPerspective function

with a bicubic kernel to synthesize warped images. For al-

ternatives, we combine state-of-the-art SR models and the

traditional warping operation. Since the given LR images

are supersampled before interpolation, the warping function

can synthesize high-quality results directly. We note that the

transformation matrix M is compensated to MMs−1s−1 for

×s SR model because the outputs from SR models are ×s

larger than the original input.

Table 3 provides quantitative comparison of various

methods. For fairness, we adopt the DIV2KWTest dataset

rather than the validation split used in Section 4.2. Com-
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PSNR↑(dB) on B100 [31] with arbitrary scale factors

Method # Params Runtime ×2.0 ×2.2 ×2.5 ×2.8 ×3.0 ×3.2 ×3.5 ×3.8 ×4.0

SRCNN [8] 0.06M 2340ms 27.11 27.85 28.62 28.71 28.37 27.89 27.17 26.59 26.27

VDSR [20] 0.67M 26ms 31.82 30.36 29.54 28.84 28.77 28.15 27.82 27.46 27.27

Meta-EDSR [15] 40.1M 218ms 32.26 31.31 30.40 29.61 29.22 28.82 28.27 27.86 27.67

Meta-RDN [15] 22.4M 253ms 32.33 31.45 30.46 29.69 29.26 28.88 28.41 28.01 27.71

SRWarp (MRDB) 18.3M 155ms 32.31 31.46 30.46 29.71 29.27 28.89 28.42 28.01 27.77

Table 4: Quantitative comparison of the arbitrary-scale SR task. We use official implementations of each method and

compare them in a unified environment. The average runtime is measured on the ×3.0 SR task using 100 test images

excluding initialization, I/O, and the other overheads. For the SRCNN [8] model, the ×3 network (9-5-5) is evaluated across

all scaling factors [20] on CPU. Our SRWarp consistently outperforms the other approaches even with fewer parameters.

pared with the traditional cv2 algorithm, using the SR

methods provides significant improvements with the mP-

SNR gain of at least +2.41dB. Higher-scale ×4 models tend

to perform better than their ×2 counterparts, justifying the

importance of the fine-grained supersampling. Our SRWarp

model further outperforms the other SR-based formulations

by a large margin. Figure 5 shows that our approach recon-

structs much sharper images with less aliasing, demonstrat-

ing the effectiveness of AWL and multiscale blending.

4.4. Arbitrary­scale SR

Our SRWarp provides a generalization of the conven-

tional SR models defined on scaling matrices in (1) only.

To justify that the proposed framework is compatible with

existing formulations, we evaluate our method on the regu-

lar SR tasks of arbitrary scaling factors. We train our SR-

Warp model with RRDB [39] backbone on fractional-scale

DIV2K dataset [15] and evaluate it following Hu et al. [15].

The input transformation of the SRWarp is constrained to

(1), and the other configurations are fixed. Table 4 shows

an average PSNR of the luminance (Y) channel between

SR results and ground-truth images on B100 [31] dataset.

We note that SRCNN [8] and VDSR [20] first resize the

input image to an arbitrary target resolution before take it

into the network. Compared with the meta-upscale module

(Meta-EDSR and Meta-RDN), our adaptive warping layer

and multiscale blending provide an efficient and general-

ized model for the arbitrary-scale SR task.

4.5. Over the Homographic Transformation

Our SRWarp model is trained on homographic transfor-

mation only. However, we can extend the method to an

arbitrary backward mapping equation in a functional form

f−1

M (x′, y′) = (x, y) without any modification. Although

we adopt homographic transformations only for the train-

ing, the adaptive warping layer and multiscale blending help

the method be generalized well on unseen deformations.

Figure 6 compares our results on various functional trans-

forms against the combination of RRDB [39] and traditional

bicubic interpolation. Our SRWarp model can provide more

Sine

Barrel

(a) ISR (b) RRDB [39] (c) SRWarp

Figure 6: General image warping with our SRWarp.

We apply various functional transforms to samples from

B100 [31] ‘108005.png’ and Set14 [46] ’ppt3.png.’ (b)

RRDB corresponds to RRDB + cv2 in Table 3.

flexibility and diversity in general image editing tasks by re-

constructing visually pleasing edge structures.

5. Conclusion

We propose a generalization of the conventional SR tasks

under image transformation for the first time. Our SRWarp

framework deals with the spatially-varying upsampling task

when arbitrary resolutions and shapes are required to the

output image. We also provide extensive ablation stud-

ies on the proposed method to validate the contributions of

several novel components, e.g., adaptive warping layer and

multiscale blending, in our design. The visual comparison

demonstrates why the SRWarp model is required for image

warping, justifying the advantage of the proposed method.
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