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Abstract

In this paper, we address the problem of referring expres-

sion comprehension in videos, which is challenging due to

complex expression and scene dynamics. Unlike previous

methods which solve the problem in multiple stages (i.e.,

tracking, proposal-based matching), we tackle the problem

from a novel perspective, co-grounding, with an elegant

one-stage framework. We enhance the single-frame ground-

ing accuracy by semantic attention learning and improve

the cross-frame grounding consistency with co-grounding

feature learning. Semantic attention learning explicitly

parses referring cues in different attributes to reduce the

ambiguity in the complex expression. Co-grounding feature

learning boosts visual feature representations by integrat-

ing temporal correlation to reduce the ambiguity caused by

scene dynamics. Experiment results demonstrate the superi-

ority of our framework on the video grounding datasets VID

and LiOTB in generating accurate and stable results across

frames. Our model is also applicable to referring expres-

sion comprehension in images, illustrated by the improved

performance on the RefCOCO dataset. Our project is

available at https://sijiesong.github.io/co-

grounding.

1. Introduction

Referring expression comprehension has attracted much

attention recently. It aims to localize a region of the im-

age/video described by the natural language. This top-

ic is of great importance in computer vision to support a

variety of research problems such as image/video caption-

ing [2, 27], visual question answering [3] and image/video

retrieval [31, 9]. It also plays a key role in machine in-

telligence for a wide range of applications from human-

computer interaction, robotics to early education.

In the past years, most of the previous work for referring

expression comprehension focus on the grounding for static
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Figure 1. Referring expression comprehension in videos. Due to

dynamic scenes and ambiguity in the expression, per-frame infer-

ence (in blue) with state-of-the-art grounding method [36] would

lead to unstable results across frames, while our co-grounding

networks achieve accurate and consistent predictions (in red).

Ground-truth annotations are denoted in green.

images [32, 34, 38, 18, 36, 23, 24, 12, 1] and have achieved

promising results. However, referring expression compre-

hension for videos is less explored, which is challenging

yet important. Different from several threads of referring

expression comprehension in videos, such as referring al-

l mentioned entities [42], we localize the spatio-temporal

tube that semantically corresponds to the whole sentence.

That is, we output bounding box for each frame as shown

in Figure 1.

The work in [17] treats referring expression comprehen-

sion for videos as a tracking problem. We argue that it

would suffer from template selection error, because it is

hard to tell from the grounding results from multiple frames

which is the right one to track. The other work [6] first

proposes spatio-temporal tube candidates and then matches

them with textual features from expression. However, the

performance is limited by the proposal quality. Inspired by

the advance in one-stage image grounding methods [36] that

get rid of proposal detectors, another solution is to conduct

per-frame inference with [36], but there are still two prob-

lems. Firstly, the entities in the expression (such as ‘boat’,

‘men’, ‘whale’, ‘sea’ in Figure 1) would cause ambiguity
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when encoded into textual features, making the model con-

fused about which entity is the correct one to ground. Sec-

ondly, the dynamic scenes across frames would also inter-

rupt the grounding process (see the drifting blue bounding

boxes in Figure 1). Therefore, the key challenge is to gen-

erate robust textual and visual features to reduce ambigu-

ity, then further achieve accurate and stable results across

frames.

To tackle the aforementioned issues, we propose to

solve referring expression comprehension in videos with a

new perspective, i.e., co-grounding, with semantic atten-

tion learning in an elegant one-stage framework. The ba-

sic structure of our model is based on YOLO [28], which

predicts the bounding box and confidence simultaneously.

The confidence reflects the matching score between the tex-

tual and visual features. We design a semantic attention

mechanism to obtain attribute-specific features both for vi-

sion and language. Specifically, a proposal-free subject at-

tention scheme is proposed to parse the words for subjec-

t from the expression. An object-aware location attention

scheme is developed to parse the words for location from

the expression. The interaction between attribute-specific

textual and visual features determines the subject score and

location score for each visual region (see the visualization

examples in Figure 6). Besides, to improve cross-frame

prediction consistency, we develop the co-grounding fea-

ture learning. Taking multiple frames as input, it utilizes

the correlation across frames to enhance visual features and

stabilize the grounding process in training and testing. A

post-processing strategy is further employed to improve the

temporal consistency during inference.

Our contributions are summarized as follows:

• We propose to solve referring expression comprehen-

sion in videos by co-grounding in an one-stage framework.

•We propose semantic attention learning to parse refer-

ring cues, including a proposal-free subject attention and

object-aware location attention.

• Our networks are applicable to both video/image

grounding, and achieve state-of-the-art performance on re-

ferring expression comprehension benchmarks.

2. Related Work

2.1. Referring expression comprehension

Benefiting from the advances in object detection [29, 28,

10], most methods [32, 34, 38] perform referring expres-

sion comprehension in two stages. Region candidates are

proposed in the first stage with an object detector and then

matched with the expression in the second stage. The best

matching region is selected as the grounding result. How-

ever, these two-stage methods are limited by the propos-

al quality of the offline object detector. The missing of

ground-truth regions in the first stage would lead to the fail-

ure of the second stage. To address the issue, more recent

works are proposed to get rid of the offline object detec-

tor [18, 36]. Built upon the current one-stage object de-

tection method, i.e., YOLO-v3 [28], Yang et al. [36] first

proposed an one-stage visual grounding framework, which

extracts visual-text features and predict bounding boxes

densely at all spatial locations. Liao et al. [18] reformu-

late referring expression comprehension as correlation fil-

tering, where the filter template is generated from language

features. Besides referring expression comprehension for

images, there are a few works [6, 17] exploring the task in

the video domain. However, both of the methods solve re-

ferring expression comprehension for videos with multiple

stages (i.e., tracking, proposal-based matching). The failure

in the first stage would directly impact the final results. In

our work, we propose an elegant one-stage framework for

this task.

2.2. Attention mechanisms

Inspired by human perception, attention mechanism-

s have been widely studied in vision-and-language tasks,

e.g., visual question answering [41, 20, 14, 25], visual di-

alogue [33] and visual grounding [38]. In these works,

attention is applied to learn the underlying correlation be-

tween different modalities [41, 20], which jointly perform-

s language-guided visual attention and vision-guided lan-

guage attention. Nguyen et al. [25] propose a dense sym-

metric co-attention to deal with every interaction between

any pair of visual region and each word. To further ful-

ly understand the semantic of vision and language, a more

recent work [14] presents a hypergraph model to define a

common semantic space among different modalities. At-

tention mechanisms are also popular in the task of visual

grounding to decompose the language into several compo-

nents [38]. Each component focuses different attributes of

the language and then trigger corresponding visual compre-

hension. However, the modular network designed in [38] is

based on offline object proposals and requires external an-

notations. Our work, however, achieves semantic attention

learning without the reliance of object proposals and exter-

nal labels.

2.3. Temporal consistency

Generating consistent results across adjacent frames is

essential for video applications.The recent works mainly fo-

cus on improving performance of per-frame result by ex-

ploiting information in the temporal domain [8, 43, 5, 16,

21, 11, 26, 4]. Some of the works aggregate local tempo-

ral context to help the inference of current frame. Optical

flow is always computed by [7] to propagate features across

frames [43, 4], while some methods integrate temporal con-

text by calculating affinity matrix [8, 21] to build temporal

correspondence. Nevertheless, only focusing the locality
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Figure 2. Our co-grounding networks with semantic attention for referring expression comprehension. The details for semantic attention

learning and co-grounding feature learnng are presented in Figure 3 and Figure 4, respectively.

may lead to the lack of long-term information. To aggregate

information beyond a small local range, [5] introduces a

global-local aggregation network, taking full consideration

of both global and local information. In addition, [16, 26]

share a similar idea which leverages the merits of recurrent

networks to make use of neighboring results. In our work,

we design a co-grounding module to leverage correlation

across frames, and further stabilize the prediction results

with a post-processing strategy.

3. The Proposed Method

Given an expression Q with N words and a video I with

T frames, our goal is to localize the object region {bt}
T
t=1 in

each frame described by Q, where bt represents a bounding

box in the t-th frame.

We build our baseline model following [36], which is

based on the one-stage object detection framework, i.e., Y-

OLOv3 [28]. We conduct bounding box prediction based on

cross-modal features, which are obtained by fusing visual

and textual features. For each spatial position of the cross-

modal features, the model outputs bounding box predictions

centered at the current spatial position, with a confidence to

indicate the probability of being the final grounding output.

The bounding box with the highest confidence is selected as

the final prediction. The basic objective function for train-

ing the model consists of the MSE (mean square error) loss

Lreg to regress the bounding box towards the ground-truth,

and a cross-entropy loss Lcls to select the right prediction

from all the bounding boxes. We refer readers to [36, 28]

for more details. Next, we elaborate the semantic atten-

tion learning and co-grounding feature learning introduced

to the framework.

3.1. Semantic attention learning

To reduce ambiguity from the expression, we propose

semantic attention learning to parse referring cues from the

input expression. Though the input expression is usually

complex, it is noticed that the words indicating subject and

location play a key role to distinguish the target. Thus, we

aim to decompose the expression into subject and location.

With more attribute-specific textual features, we build the

mapping between language and vision. Note that our se-

mantic attention learning is different from [38] since our

networks are end-to-end trainable without the reliance of

offline proposal detection and external label annotations.

As shown in Figure 2, the expression Q is encoded with

a text encoder consisting of bi-directional LSTM. The rep-

resentation for the n-th word is the concatenation of the hid-

den states from both directions:

hn = [
−→
h n,
←−
h n] = BiLSTM(en,

−→
h n−1,

←−
h n+1), (1)

where en is the embedding of the n-th word. The attribute-

specific textual features qm (m ∈ {sub., loc.}) are parsed

by fusing {hn}
N
n=1 with learnable weights wm ∈ R

N :

αm
n =

exp (wm
n hn)

∑N

i=1 exp (wm
i hi)

, (2)

qm =

N
∑

n=1

αm
n en. (3)

• Proposal-free subject attention. In this part, our net-

works learn wsub to parse subject from Q and generate sub-

ject attention map St for each frame in a proposal-free man-

ner. The subject attention map St ∈ R
H×W reflects visual

feature response to qsub by computing cross-modal similar-

ity as shown in Figure 3:

St(x) = δ(Vt(x),qsub) = qsub[Vt(x)]
T, (4)

where Vt(x) ∈ R
D is the feature vector at the position

x from visual feature map Vt ∈ R
H×W×D of the t-th

frame. Rank loss is exploited to train the network, where
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Figure 3. Details for semantic attention learning.

the score of the matched visual and textual features, i.e.,

(Vt(x
∗),qsub), should be higher than unmatched ones, i.e.,

(Vt(x
∗),q′

sub) and (Vt(x
′),qsub). Therefore, the objective

function is:

Lrank = max (0,∆+ δ (Vt(x
′),qsub)− δ (Vt(x

∗),qsub))

+ max (0,∆+ δ (Vt(x
∗),q′

sub)− δ (Vt(x
∗),qsub)) ,

(5)

where ∆ is a margin and set to 0.5 in our experiments. Dur-

ing training, the visual feature vector corresponding to qsub

can be localized with the ground-truth annotation. The key

issue in the training is how to select negative visual feature

vectors without having object proposals. Though differen-

t schemes of hard negative sample mining have been ex-

plored, we found it is enough to tackle the problem by ran-

dom sampling visual features from other training samples

within the same training batch.

•Object-aware location attention. In this part, our net-

works learn wloc to parse location from the expression, and

then generate location map Lt ∈ R
H×W to qloc. The key

challenge in learning location attention is how to match co-

ordinates with textual features because location is a relative

concept. When we say something is ‘on the left’, we have

to give a reference. Thanks to the aforementioned subject

attention map S which roughly identifies the subject region,

we design an object-aware location representation. Specifi-

cally, we follow [36] to initially encode the coordinate fea-

ture as Ut ∈ R
H×W×D′

. A 2D matrix Aloc
t ∈ R

HW×HW

is computed to model the relation between any two posi-

tions x and y:

Aloc
t (x, y) = [Ut(x)]

TUt(y). (6)

With the subject attention map St, we inject the reference

information into the location features as Aloc
t ⊗Flatten(St),

followed by an FC layer to shape it into HW × D. Then

the matrix is reshaped to H ×W ×D as the final location

features Ũt. A detailed illustration is shown in Figure 3.

Similar to Eq. 4, we obtain the location response

for position x by computing cosine similarity Lt(x) =
δ(Ũt(x),qloc). We train the location attention with cross-

entropy loss:

Lce = ✶loc log
exp(Lt(x))

∑

y exp(Lt(y))
, (7)

where ✶loc ∈ {0, 1}
H×W indicates the ground-truth loca-

tion.

Figure 4. Details for co-grounding feature learning.

With the subject and location attention maps, the confi-

dence map for the t-th frame is generated as Ct = Ot⊗St⊗
Lt. Recall that we generate a bounding box prediction for

each position x, Ot(x) indicates how likely the predicted

bounding box contains an object.

3.2. Cogrounding feature learning

For now, we have introduced how to parse referring cues

from expression and build correspondence between text and

visual features. However, the temporal dynamics in videos

would lead to unstable visual feature representations, which

may do harm to the cross-modal matching in both training

and testing. To enhance the visual feature representation

for a more robust learning, we propose co-grounding to in-

tegrate the temporal context by utilizing correlation across

frames. As shown in Figure 2, considering two frames

from the same video, we obtain the initial visual features

Fta ∈ R
H×W×D and Ftb ∈ R

H×W×D with a visual en-

coder. The correlation across the adjacent frames can be

described by a normalized affinity matrix M ∈ R
HW×HW ,

providing the measure for similarity of spatial features:

M(x, y) =
exp

(

[Fta(x)]
TFtb(y)

)

∑

y exp ([Fta(x)]
TFtb(y))

. (8)

Then we integrate the feature vectors from Ftb with M,

F̃tb(x) =
∑

y

M(x, y)Ftb(y). (9)

The final enhance feature Vta is obtained by:

Vta = Conv(Fta ⊕ F̃tb), (10)

where ⊕ indicate concatenation along the channel dimen-

sion, and Conv(·) denotes an 1 × 1 convolution operation.

The visual feature Vtb can be enhanced in the same way.

Figure 4 shows the details of co-grounding feature learning.

3.3. Post processing

To further stabilize the bounding box prediction for each

frame, we design a post-processing scheme based on the

initial prediction results during inference. Suppose for the

video, we have the initial top K bounding box prediction-

s for each frame {{bit, c
i
t}

K
i=1}

T
t=1, where bit denotes the

location for the bounding box with the i-th highest confi-

dence cit for the t-th frame. The visual feature vectors cor-

responding to the bounding box location for the t-th frame
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is Vt = V1
t (b

1
t )⊕ ...⊕VK

t (bKt ) and Vt ∈ R
D×K . Now we

consider referring the neighboring P frames as a window to

stabilize the center frame t∗. For the i-th bounding box of

the center frame, we stabilize its confidence score by seek-

ing the most similar bounding box in each reference frame.

The similarity is measured by the affinity matrix:

Z(t∗,t) = V
T
t∗Vt, t = {t

∗ −∆t, ..., t∗ +∆t}, (11)

where ∆t = ⌊P/2⌋, and Z(t∗,t) ∈ R
K×K . For each bound-

ing box in {bit∗}
K
i=1, we select the most similar bounding

box from all the reference frames,

pt = [p
(1)
t , ..., p

(K)
t ], (12)

where

p
(i)
t = argmaxZ

(i)
(t∗,t), (13)

and Z
(i)
(t∗,t) denotes the i-th row of the matrix. The final

scores for the initial top K bounding boxes are:

C̃t∗ =
1

N

t∗+∆t
∑

t=t∗−∆t

✶pt
∗ Ct, (14)

where C̃t∗ ∈ R
K , Ct ∈ R

K and Ct = [c1t , ..., c
K
t ]. ✶pt

∈
[0, 1]K can be regard as a binary mask to choose the highest

score from Ct. The bounding box with the highest score in

Ct∗ is treated as the final prediction result. N is a normal-

ization factor.

4. Experiments

In this section, we introduce the datasets and implemen-

tation details, then report our evaluation on referring expres-

sion comprehension benchmarks. We first show the com-

parisons to other state-of-the-art methods, then give the ab-

lation study and comprehensive analysis to illustrate the ef-

fectiveness of each component. Finally we discuss the fail-

ure cases and future work.

4.1. Datasets

To evaluate our model, we conduct experiments on t-

wo dynamic video datasets (i.e., VID-Sentence [6], Lingual

OTB99 [17]) and one static image dataset (i.e., RefCOCO).

VID-Sentence (VID) [6]. This dataset consists of 7,654

trimmed videos with language descriptions, and provides

the sequences of spatio-temporal bounding box annotations

for each query. Following [6], the dataset is splited into

6,582/536/536 instances for training/validation/testing.

Lingual OTB99 (LiOTB) [17]. The LiOTB dataset ori-

gins from the well-known OTB100 object tracking dataset

in [22]. The videos in [22] are augmented with natural lan-

guage descriptions of the target object. We adopt the same

protocol as [17] that 51 videos are for training and the rest

are for testing.

RefCOCO [39]. The RefCOCO dataset is collected

from 19,994 images in MSCOCO [19] and 142,210 natu-

ral language descriptions. RefCOCO is splited into four

subsets, including train, validation, test A and test B. The

images in test A are with multiple people, while those in

test B are with multiple objects.

4.2. Implementation details

Training settings. Our visual encoder is based on Darknet-

53 [28] pretrained on MSCOCO [19]. We adopt multi-level

schemes in the grounding process, that we predict bound-

ing boxes on three levels of feature maps, the resolution of

which are 8 × 8, 16 × 16 and 32 × 32. The input images

are resized the long edges to 256 and then padded into the

size of 256 × 256. Following [28, 36], we adopt the data

augmentation including adding randomization to the color

space, horizontal flip, and random affine transformations.

The network is optimized with RMSProp [30] for 100 e-

pochs, the initial learning rate of which is set as 10−4 and

decayed under a polynomial schedule. The batch sizes for

VID, LiOTB and RefCOCO are 32, 8, 32, respectively. We

set the weights for Lrank and Lce as 100, 1, respectively.

By default, the top 5 bounding boxes from the neighbor-

ing 5 frames are considered in the post-processing for the

VID and LiOTB datasets during inference (i.e., K = 5,

P = 5). Note for the image dataset RefCOCO, we omit the

co-grounding feature learning.

Evaluation metrics. We adopt different metrics to give a

fair and comprehensive evaluation of our framework. Ac-

c@0.5 is widely used to evaluate the grounding result-

s [36, 18], where a predicted bounding box is considered

correct if the IoU with the ground truth region is above 0.5.

Following [37], success and precision scores are reported to

evaluate the performance for videos. The success score is

actually the AUC (area under curve) metric, while the preci-

sion score measures the ratio of frames where the predicted

bounding box falls within a threshold of 20 pixels around

the ground-truth. Besides, mIoU is also reported to show

the quality of bounding boxes.

4.3. Comparison to the stateoftheart

Table 1 shows the referring expression comprehension

results on the video datasets VID and LiOTB, respectively.

We first present the per-frame inference results by the state-

of-the-art referring expression comprehension method [36]

in the first two rows. From the 3rd to the 6th rows, we

evaluate the results to see the performance when the prob-

lem is solved by per-frame tracking. Specifically, we adopt

the state-of-the art tracker [15] to track the given template.

With the grounding results from One-Stage LSTM [36], we

conduct experiments with the first, middle, last and random

frame as the tracking template, respectively. It is found that

treating referring expression grounding in videos as track-
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Table 1. Referring expression comprehension results on dynamic video datasets VID and LiOTB, respectively.

VID LiOTB

Accu.@0.5 Success Precision Accu.@0.5 Success Precision

One-Stage BERT [36] 52.39 0.427 0.373 49.13 0.358 0.468

One-Stage LSTM [36] 54.78 0.451 0.393 49.16 0.333 0.414

First-Frame Tracking 36.97 0.334 0.250 50.93 0.391 0.482

Middle-Frame Tracking 44.00 0.384 0.307 43.08 0.356 0.421

Last-Frame Tracking 36.26 0.328 0.239 44.17 0.327 0.391

Random-Frame Tracking 40.20 0.356 0.278 25.16 0.288 0.329

WSSTG [6] 38.20 - - - - -

LSAN [17] - - - - 0.259 -

Ours 60.25 0.495 0.462 52.26 0.392 0.500

Table 2. Referring expression comprehension results (Acc.@0.5)

on the static image dataset RefCOCO.

RefCOCO

Visual encoder val testA testB

MMI [23] VGG16 - 64.90 54.51

Neg Bag [24] VGG16 - 58.60 56.40

CMN [12] VGG16 - 71.03 65.77

SLR [40] ResNet-101 69.48 73.71 64.96

DGA [35] ResNet-101 - 78.42 65.53

MAttN [38] ResNet-101 76.40 80.43 69.28

CMCF [18] DLA-34 - 81.06 71.85

One-Stage BERT [36] Darknet53 72.05 74.81 67.59

One-Stage LSTM [36] Darknet53 73.69 75.78 71.32

Baseline Darknet53 73.72 76.24 71.19

S-Att. Darknet53 77.42 81.17 72.77

SL-Att.(Ours) Darknet53 77.65 80.75 73.37

ing leads to poor results compared to per-frame grounding

for almost all the cases. There are mainly two reasons to ex-

plain the poor results. On the one hand, we can not guaran-

tee the correct template is selected during tracking. On the

other hand, even given the correct template, the tracker may

fail due to its limitation. The analysis also applies to the un-

satisfactory results of LSAN [17]. Besides, we present the

results of WSSTG [6] which relies on spatio-temporal pro-

posal detection. Our results are shown in the last row. It can

be seen our framework outperforms the compared methods

by a large margin.

Table 2 shows the comparisons on the RefCOCO dataset

for referring expression comprehension. Our overall result-

s on RefCOCO are shown in the last row. To give a fair

comparison, we present the backbone structure of each vi-

sual encoder. Though MAttN [38] also explores the idea

of modular attention for both language and vision, it re-

quires an offline object detector and external attribute label-

s. However, our model can learn the semantic attention in

a proposal-free manner, which also makes our results out-

standing compared to other one-stage models [18, 36].

Table 3. Referring expression comprehension results for ablation

study on dynamic video datasets VID and LiOTB, respectively.

VID LiOTB

Acc.@0.5 mIoU Acc.@0.5 mIoU

w/o co-grounding

Parser 53.19 0.450 49.16 0.397

Baseline 54.41 0.448 49.11 0.405

S-Att. 58.03 0.488 49.66 0.411

SL-Att. 59.22 0.490 50.51 0.418

w/ co-grounding

CG-Baseline 55.88 0.477 50.56 0.405

CG-S-Att. 58.74 0.497 51.67 0.412

CG-SL-Att. 59.48 0.494 50.92 0.418

CG-SL-Att. + pp. 60.25 0.498 52.26 0.418

4.4. Ablation study

To show the effectiveness of each component in our

model, ablation study is conducted on VID, LiOTB and Re-

fCOCO datasets, respectively. We explore different settings

to give a comprehensive analysis. The results are presented

in Table 3 and Table 2. Note that we regard the model of

one-stage LSTM in [36] as our Baseline.

• Semantic attention learning. We first explore the

contribution of semantic attention learning without taking

co-grounding feature learning into account. For all the

datasets, subject attention (S-Att.) brings significant im-

provement compared to baseline results. It is largely be-

cause the subject attention reduces ambiguity in grounding

process when there are multiple entities in the expression

and images. Location attention (SL-Att.) further improves

the grounding accuracy. Overall, for the VID and LiOT-

B datasets, the gains from semantic attention learning over

baselines are 4.81% and 1.40%, respectively. For the Ref-

COCO dataset, our framework outperforms the baseline by

3.93%, 4.93%, and 2.18% under different split settings, re-

spectively. Moreover, we compare our automatic semantic

attention learning with manually semantic parser [13] in Ta-

ble 3 (see Parser). As analyzed in [38], parsing errors ex-

ist for the external parser which is not tuned for referring
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Figure 5. Visualization results of video grounding on the VID dataset. We show the ground-truths, baseline results, results of SL-Att. and

results of CG-SL-Att. in the green, blue, orange and red bounding boxes, respectively. The language queries are shown in the sub-captions.

Table 4. Ablation study for post-processing on the VID dataset in

terms of Acc.@0.5 and mIoU.

P=1 P=3 P=5 P=7 P=9

Acc.@0.5 59.48 59.50 60.25 60.16 59.63

mIoU 0.494 0.495 0.500 0.498 0.495

expressions. Therefore, we did not observe improvement

compared to baseline results.

• Co-grounding feature learning. We further ana-

lyze the contributions of our co-grounding feature learning

through Table 3. Conducting co-grounding feature learn-

ing with the baseline structure (CG-Baseline) brings 1.47%

and 1.45% gains in terms of Acc.@0.5 over Baseline on

the VID and LiOTB datasets, respectively. With semantic

attention learning, the co-grounding feature learning helps

further improve the performance on both datasets for each

setting (see CG-S-Att. vs. S-Att., CG-SL-Att. vs. SL-

Att.).

• Post processing. Finally we illustrate the effective-

ness of the post processing scheme. The results in the last

row of Table 3 (CG-SL-Att. + pp.) show that our post-

processing scheme is able to further improve the grounding

results in terms of Acc.@0.5 and mIoU. In Table 4, we fur-

ther explore the influence of different numbers of reference

frames. While the post-processing scheme consistently im-

prove the results compared to those without post-processing

(i.e., P = 1), we set P as 5 in all our experiments for the

tradeoff between efficiency and accuracy.

4.5. Qualitative results
• Overall grounding results. We choose several videos

from the VID dataset and visualize the grounding results in

Figure 5. We compare the results of the baseline, SL-Att.

and CG-SL-Att. with the blue, orange and red bounding

boxes, respectively. The ground-truths are in green. From

the visualization, it is observed that compared to baseline

results, SL-Att. provides more accurate prediction in most

cases, due to the explicitly parsed referring cues both for

language and vision. However, bounding box drifting is

a problem when we conduct per-frame inference without

taking the temporal context into account (see the drifting

orange bounding boxes). In Figure 5(b), the target bicy-

cle is small and obscure in the first several frames, mak-

ing the visual features vulnerable for SL-Att. model. In

Figure 5(c), the left stone mislead SL-Att. to ground it as

‘antelope’. With co-grounding feature learning, the visual

features are enhanced by integrating temporal context and

become more robust. Therefore, we obtain consistent re-

sults across frames (see the red boxes). Please refer to the

supplementary for more grounding results.

• Visualization on attention. We show the learned at-

tention patterns for language and vision in Figure 6. For

each side, different queries are given for the same frame. It

is found that the semantic attention for the given expression

successfully parses the words for subject entities and loca-

tion from the language. And the semantic attention for the

visual feature maps generate corresponding response for d-

ifferent attributes. In Figure 6(a) and (b), we show examples

that location attention helps the model handle ambiguities in

the frames and distinguish the correct bounding box. With

the parsed subject ‘monkey stands branch’ and ‘monkey s-

taying’, the model pays more attention on both monkeys in

the frame. However, with the guidance of the parsed words

describing location ‘right stands branch tree’ and ‘left s-

taying’, the model shows different response on the location

attention maps, providing essential cues to distinguish the

correct bounding box. For the examples on the right side,

there is not dominant location information in the input ex-

pressions, resulting in similar location maps in Figure 6(c)
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Figure 6. Visualization on attention patterns of our framework. The subject and location attention patterns for language are shown above

the images. We mark the attention values for each word. The attention patterns for visual features are shown as the heat maps overlayed

on the original images. The more reddish, the larger attention. Besides, we show the grounding results of baseline and SL-Att. in the blue

and red bounding boxes, respectively. Ground-truths are shown in green. (Best viewed in color.)

and (d). The multiple entities such as ‘whale’, ‘boat’ ap-

pearing in the sentences make the baseline model confusing

that which subject is correct to ground (see the blue bound-

ing boxes in Figure 6(c)(d)). In our model, the subject at-

tention for language effectively excludes the effect of other

entities in the expression, making it clear to ground ‘boat’

in Figure 6(c) and ‘body’ in Figure 6(d). It further leads to

corresponding high response on the subject attention maps

for visual features and then satisfactory grounding predic-

tions (see the red boxes). More visualizations can be found

in our supplementary.

• Failure case analysis and future work. We show

some typical failure cases in Figure 7, to illustrate the limi-

tations our model, and the challenges for the topic of video

grounding. (1) Multi-order reasoning is challenging for

one-stage referring expression comprehension because it al-

ways involves multiple entities and relation concepts. As

shown in Figure. 7(a), it is difficult for our model to locate

the airplanes with red smoke and then select the top one.

(2) Motion information is not explicitly explored and uti-

lized as grounding cues. As shown in Figure 7(b), we can

not determine which ‘zebra’ is ‘moving’ only by observing

static frames. (3) The language query may not apply to al-

l the frames. In Figure 7(c), the ground-truth is not in the

‘middle’ in some frames. How to further tackle the ambigu-

ity caused by dynamic scenes and expression is still worth

exploring. We leave how to solve these failure cases as in-

teresting future works.

5. Conclusion

In this paper, we tackle the problem of referring expres-

sion comprehension in videos. We propose to solve the

problem from a new perspective, co-grounding, with an el-

egant one-stage framework. To boost single frame results,

Figure 7. Failure cases. Ground-truths are in green and our results

are in red.

our model learns semantic attention to decompose ground-

ing cues into different attributes, which further contribute

to the reasoning of the target described by the input expres-

sion. To boost grounding prediction consistency, we pro-

pose co-grounding feature learning by integrating neighbor-

ing features across frames to enhance visual feature repre-

sentations. A post-processing scheme is conducted during

inference to further stabilize the predictions. Our model is

applicable to visual grounding both for videos and images.

Experiments on video and image grounding benchmarks il-

lustrate the effectiveness of our model.
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