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Abstract

Gradient compression has been widely adopted in data-

parallel distributed training of deep neural networks to

reduce communication overhead. Some literatures have

demonstrated that large gradients are more important than

small ones because they contain more information, such

as Top-k compressor. Other mainstream methods, like

random-k compressor and gradient quantization, usually

treat all gradients equally. Different from all of them, we

regard large and small gradients selection as the exploita-

tion and exploration of gradient information, respectively.

And we find taking both of them into consideration is the

key to boost the final accuracy. So, we propose a novel gra-

dient compressor: Gradient Sampling with Bayes Prior in

this paper. Specifically, we sample important/large gradi-

ents based on the global gradient distribution, which is pe-

riodically updated across multiple workers. Then we intro-

duce Bayes Prior into distribution model to further explore

the gradients. We prove the convergence of our method

for smooth non-convex problems in the distributed system.

Compared with methods that running after high compres-

sion ratio at the expense of accuracy, we pursue no loss

of accuracy and the actual acceleration benefit in prac-

tice. Experimental comparisons on a variety of computer

vision tasks (e.g. image classification and object detec-

tion) and backbones (ResNet, MobileNetV2, InceptionV3

and AlexNet) show that our approach outperforms the state-

of-the-art techniques in terms of both speed and accuracy,

with the limitation of 100× compression ratio.

1. Introduction

Recently, deep learning has achieved great success in

many tasks, such as image classification [37, 45, 36], ob-

ject detection [23, 32, 28], video understanding [46, 8, 47]

and so on. By taking advantage of data-parallel distributed

training equipped with more and more GPU resources, the

expensive computational time-consuming of training deep

*Equal Contribution.

Figure 1. The core idea of our gradient compression method. The

left subfigure illustrates that we sample important gradients based

on gradient distribution. The right subfigure indicates that we also

select some “trivial” ones as the exploration of gradient informa-

tion.

neural networks have been dramatically reduced. However,

the communication cost keeps rising with the increasing

number of computing nodes. Even in All-Reduce archi-

tecture [31, 40], the transmission delay for communication

is obvious. To handle this problem, gradient compression

techniques [44, 22, 6, 14] have been put forward to reduce

gradients transfer data size, by substituting partial gradients

for full ones.

Although gradient compression has been well studied in

[44, 22, 6], it is still a great challenge to maintain the accu-

racy at a high compression ratio. [44] combines error reset

with partial synchronization to scale the compression ratio

up to 1024× successfully. But the random sampling strat-

egy adopted in partial synchronization overlooks the im-

portance of large gradients. In [14], two adaptive gradient

quantization schemes: ALQ and AMQ are proposed to im-

prove the final accuracy. Unfortunately, it still suffers from

some accuracy loss (more than 1.2% on ImageNet dataset),

due to the limited representations of low-bit.

To better capture the gradient statistics, in this paper,

we propose a new gradient compression method Gradient

Sampling with Bayes Prior to further improve the accuracy.

Compared with a very high compression ratio, we pursue

no loss of accuracy and the actual acceleration benefit in

practice. The major contributions of our work are outlined

12065



as follows:

• Based on the global gradient distribution, we propose

a novel gradient compression method called Gradient

Sampling to efficiently capture the large gradients.

• We improve Gradient Sampling scheme with Bayes

Prior to trade off the exploration and exploitation of

gradients information, which boosts the final accuracy

further.

• We prove the convergence bound of our proposed

methods, and verify the convergence rate of our meth-

ods are the same as SGD under common assumptions.

• Experimental results on a variety of computer vision

tasks and backbones show that our method is superior

to the state-of-the-art techniques in terms of both speed

and accuracy.

2. Related Works

Broadly, gradient compression methods can be roughly

divided into two main categories: gradient sparsification

and gradient quantization. We will introduce them respec-

tively.

2.1. Gradient Sparsification

With only a subset of components of the original stochas-

tic gradient selected, gradient sparsification produces sparse

vectors. We often classify sparsification compressors

into two major categories: fixed-dimension compressors

and variable-dimension compressors. Fixed-dimension

compressors mainly include two sparsification operators:

Random-k and Top-k sparsifiers. Random-k sparsifiers

[38, 12, 2] randomly sample k elements from the gradi-

ents for communication, it can not guarantee that large ones

are selected. Top-k sparsifiers [6, 4, 27] needs to sort the

gradients to select the largest k elements, resulting in ex-

tra computation overhead that can not be ignored in prac-

tice. Threshold-v [11] retains values whose magnitudes are

larger than v and is a variable-dimension compressor. It is

built on top of All-Gather architecture, which will incur ex-

tra index-value encoding. [42] proposes a variance-bounded

coding strategy by readjusting the magnitude of randomly-

dropping components in gradients. Yet unlike our work, no

large-scale experiment has been conducted in that paper.

2.2. Gradient Quantization

It will quantize the gradients into low-precision values to

reduce the communication overhead. 1-bit SGD [35] quan-

tizes the gradients aggressively to one-bit per value for spe-

cific recurrent networks. EF-SIGNSGD [19] generalizes

the 1-bit quantization with arbitrary compression operator

and has the same rate of convergence as SGD. [3] proposes

QSGD that can change the number of bits for quantization

per iteration to balance communication bandwidth and con-

vergence time. TernGrad [43] is a similar work to QSGD,

which uses ternary gradients to accelerate distributed deep

learning training. By observing the statistics of gradients

during training process, [14] introduces two adaptive quan-

tization schemes called ALQ and AMQ to improve the vali-

dation accuracy. Although gradient quantization can reduce

32-bits communication to the number of quantized bits, all

of above methods suffer from more or less accuracy loss.

Because the low-bit representation of gradients will lose

more or less information, especially for large gradients, the

quantization error will be larger.

3. Our Method

This section describes the formulation of our gradient

compression framework. First, we introduce the motiva-

tion of our method. Then, we describe the Gradient Sam-

pling compressor and its enhanced version combined with

Bayes Prior. We prove the convergence of both algorithms

under the most common assumptions. Finally, a complete

pipeline of our compressor is given. To facilitate our dis-

cussion, some notations are given below.

Our aim is to solve the following minimization problem

min
x

f (x) := 1
N

∑N
n=1 fn (x) , (1)

where x ∈ R
d is the model parameters, fn : Rd 7→ R is

the loss function corresponding to each training sample n,

with N total samples. The classic data-parallel stochastic

gradient descent (SGD) can be formulated as:

gt = ▽fn(xt), g
∗
t = Sync(gt), xt+1 = xt − ηg∗

t . (2)

At each iteration t, t ∈ (0, T ], gt is local gradient calculated

in each worker, g∗
t is global gradient after synchronization

and η is the learning-rate.

3.1. Motivation

According to different gradient attentions, we divide the

current mainstream gradient compression methods into two

categories: i) Treating large gradients more important

than small ones. The representative method is Top-k spar-

sifier. ii) Treating all gradients equally, such as Random-

k sparsifier and Gradient Quantization schemes. None of

them consider the two issues simultaneously.

Inspired by Reinforcement Learning [16, 5], sampling

large gradients can be regarded as the exploitation of gradi-

ent information, which will maximize the reward of current

training iteration. At the same time, we should take the ex-

ploration of gradient information (i.e., sampling small gra-

dients) into account [7, 41]. Especially in distributed train-

ing system, the increasing number of GPUs lead to the de-

crease of training times and sampling rate, merely concen-

tration on large gradients will reduce the communication of
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“trivial” gradients nearly to zero, which is harmful to the

final accuracy. As a result, our goal is to balance the gra-

dient exploitation and exploration with negligible computa-

tion overhead.

3.2. Gradient Sampling

3.2.1 Algorithm Description

At each iteration t, suppose we have access to global gra-

dient ▽f (xt) (how to get global gradient will be shown in

section 3.2.3). We define the sampling probability as fol-

lows:

pt,i =
▽f(xt)

2
i

‖▽f(xt)‖2
, (3)

where ▽f(xt)i (0 6 i < d) denotes ith gradient element

and ‖▽f(xt)‖
2 =

∑

i ▽f(xt)
2
i . It is clear that large ele-

ment has large pt,i.
Then, we draw a binary variable (0 or 1) from a Bernoulli

distribution B(pt,i). 1 means this element is sampled, 0 is

otherwise. Bernoulli sampling can make the gradient with

larger pt,i be selected for communication with higher prob-

ability.

In practice, in order to ensure that k elements in ▽f(xt)
are sampled, we do the following transformation: pt,i =
kpt,i to make

∑

i pt,i = k. After the transformation, pt,i
could be larger than 1. To satisfy the condition of Bernoulli

sampling (0 ≤ pt,i 6 1), we discard the part that exceeds

1, i.e., let pt,i = min(pt,i, 1). Then we increase the pt,i
of unsampled ones, and repeat the sampling process in case

the number of sampled elements is less than k. Algorithm

1 summarizes the iterative procedure.

According to Algorithm 1, the ultimate sampling proba-

bility can be represented as:

pt,i =

{

κ▽f(xt)
2
i /‖▽f(xt)‖

2,
▽f(xt)

2

i

‖▽f(xt)‖2 < θ

1,
▽f(xt)

2

i

‖▽f(xt)‖2 > θ
, (4)

where κ is a normalization constant, and θ is a dynamic

threshold controlling whether gradient element is fully sam-

pled (both κ and θ are adaptively computed in Algorithm 1).

In Eq. (4), the gradients larger than θ‖▽f(xt)‖
2 will be

chosen for synchronization, which can be seen as a variant

of Top-k compressor. It is noted that our Gradient Sampling

is different from Top-k compressor from two aspects: i) We

may sample some relatively large but not in Top-k gradi-

ents, i.e., the result of Algorithm 1 does not completely co-

incide with that of Top-k compressor, which is consistent

with the nature of exploitation. ii) The computational time

of Top-k compressor is O(d ∗ log(k)). log(k) can not be

ignored when the backbone is very huge. We don’t have to

sort the gradients to get the exact Top-k list, avoiding heavy

computational overhead.

Algorithm 1 Iterative Distribution Normalization.

Input: The sampling probability psamp ∈ R
d, the num-

ber of sampling elements k, k ∈ (0, d], maximum iter-

ation Tmax.

Output: normalized sampling probability pnorm and

normalized constant κ.

1: ∀i, pnorm0,i =
k(psamp

0,i )
2

∑
i(p

samp
0,i )

2

2: κ0 = k0 = k
3: for j ← 1 to Tmax do

4: // Collect the set of fully-sampling gradients

5: Sj =
{
∀i, pnormj−1,i > 1

}

6: l = |Sj | // the size of Sj

7: ∀i, pnormj,i = min
(
pnormj−1,i , 1

)

8: if l == 0 || kj−1 ≤ 0 then

9: break

10: else

11: s =
kj−1−l∑

i/∈Sj
pnorm
j,i

12: ∀i, pnormj,i = pnormj,i × s
13: κj = κj−1 × s
14: kj = kj−1 − l
15: end if

16: end for

17: Return pnormj , κj .

3.2.2 Theoretical Guarantees

In this section, we present the analysis for convergence rate

of Gradient Sampling. As usual, we introduce some widely

adopted assumptions.

A1. f (xt) is bounded below: ∃f⋆, f (xt) ≥ f⋆.

A2. f (xt) is L-Lipschitz continuous: f (xt+1) ≤ f (xt) +

〈▽f (xt) ,xt+1 − xt〉+
L
2 ‖xt+1 − xt‖

2
.

A3. ▽f (xt) has bounded variance: ‖▽f(xt)‖
2
≤ σ2.

A4. Gradients from different workers are independent and

identically distributed.

Based on the assumptions above, we can prove that Al-

gorithm 1 has the same asymptotic convergence rate as

vanilla SGD. Here, we give the framework and key lem-

mas in our analysis, and the missing proves are presented in

Appendix A.

We start from applying Eq. (4) in A2, which makes the

expected loss function satisfy

E [f (xt+1)] ≤ E [f (xt)]− ηE
[

‖▽f (xt)‖
2
]

+ηE [〈▽f (xt) , et〉]
︸ ︷︷ ︸

V 1

+
η2L

2
E

[

‖gt‖
2
]

︸ ︷︷ ︸

V 2

. (5)

where gt,i = pt,i▽f (xt)i , et = ▽f (xt) − gt. According

to sampling probabilty in Eq. (4), we can divide the gradi-

ents into two parts: i) fully sampled gradients, which satis-
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fied ∀i ∈ Sf ,▽f(xt)
2
i > θ‖▽f(xt)‖

2; ii) partially sampled

gradients of the remaining. We use l to denote the number

of fully sampled gradients. By independently treating these

two parts of gradients, we can explicitly derive the expecta-

tion of variance terms (V 1 and V 2) in Eq. (5) as follows.

V 1 =
∑

i/∈Sf

E

[(

1−
κ▽f(xt)

2
i

‖▽f(xt)‖2

)

▽f(xt)
2
i

]

, (6)

V 2 =E
[
‖▽f(xt)‖

2
]
− V 1. (7)

To further bound V 1, we denote the contribution of fully

sampled gradients to ‖▽f(xt)‖
2 as

∑

i∈Sf

▽f(xt)
2
i = ǫ‖▽f(xt)‖

2, (8)

where ǫ ≥ l/d. Then we can guarantee the following upper

bound of V 1

V 1 ≤ (1− ǫ)

[

1−
κ

d− l
(1− ǫ)

]

E
[
‖▽f(xt)‖

2
]
. (9)

Obviously, under 100% sampling ratio, ǫ is equal to 1 which

makes V 1 zero, and thus V 2 becomes exactly the same

as the variance term (i.e., E
[
‖▽f(xt)‖

2
]
) in vanilla SGD.

Now we are at the position to give the convergence rate of

gradient sampling method by combining Eq.(7), Eq.(9) and

Eq. (5), which becomes

min
t

{
1

T
E
[
‖▽f(xt)‖

2
]
}

≤
E [f (x0)]− f⋆

T
+

(

1−
ηL

2

)

(1− ǫ)

(

1−
κ (1− ǫ)

d− l

)

σ2

︸ ︷︷ ︸

V 3

+
ηL

2
σ2

︸ ︷︷ ︸

V 4

. (10)

In Eq. (10), V 4 is identical to the variance term in vanilla

SGD, and by making η = 1
T , we achieve well-known

O
(
1
T

)
convergence rate. On the other hand, the extra vari-

ance term caused by gradient sampling is V 3. In the worst

case, i.e., gradients are randomly distributed (being impos-

sible in real life), ǫ takes its maximum, which maximizes

V 3 and degrades the gradient sampling to a random sam-

pling. By choosing ǫ ≥ 1− d−l
2κ

(

1−
√

1− 4κ
d−l

ηL
2−ηL

)

, we

can ensure V 3 ≤ V 4, and thus gradient sampling achieves

the same O
(
1
T

)
convergence rate as vanilla SGD. More im-

portantly, by choosing ηL = 1, we can guarantee V 3 ≤ V 4
for any ǫ.

3.2.3 Gradient Distribution Estimation

How to get the global gradient is a key issue in Gradient

Sampling. We can use All-Reduce to obtain the global gra-

dient in each iteration, but it goes against the intention of

gradient compression (avoid full gradients communication).

If we utilize local gradients to execute the Gradient Sam-

pling, the index-value of sampled gradients are needed be-

cause the local gradients of each worker are different. On

the other hand, local gradients are not as accurate as global

gradients, especially the number of workers is very huge.

Considering the network training is a continuous pro-

cess, we can assume the gradient distribution changes lit-

tle in a short training interval τ , i.e., ▽f(xt1) ≈ ▽f(xt2),
when |t1 − t2| < τ . So, we use the historical gradient dis-

tribution ▽f(xt0) as the sampling distribution for the sub-

sequent τ training steps:

∀t0 < t < t0 + τ,▽f(xt) = ▽f(xt0). (11)

▽f(xt0) can be obtained by one All-Reduce communica-

tion. In the implementation of Gradient Sampling, τ is set

as large as 100, so the communication overhead of getting

▽f(xt0) can be limited.

3.3. Gradient Sampling with Bayes Prior

3.3.1 Algorithm Description

To coordinate the Gradient Sampling, we employ the Bayes

Prior to reach the trade-off between exploration and ex-

ploitation. First, we define the following prior probability:

pt,i(Θ) =
∏

t

Θt
i, (12)

Θt
i =

{
α, i ∈ St−1

1, i 6∈ St−1,
(13)

where St−1 is the set of sampling coordinates in the previ-

ous t − 1 training iterations, and α ∈ (0, 1] represents the

probability that the sampled coordinate will be resampled.

If one element is not selected during the previous iterations,

i.e., i 6∈ St−1, we set α to one, thus no prior information

is introduced. Otherwise, α will reduce the probability of

the element being sampled in previous steps. For example,

if we set α = 0.8, the prior probability of a coordinate be-

ing sampled three times in succession will reduce quickly

to 0.83 ≈ 0.5. In each training iteration, pt,i undergoes L1

normalization after it is updated by Eq. (12).

Based on Eq. (12), we adopt Bayes’ theorem [18] to

express the posterior sampling probability as:

pt,i(Θ|G) =
pt,i(G|Θ)pt,i(Θ)

pt,i(G)
∝ pt,i(G|Θ)pt,i(Θ), (14)

where pt,i(G|Θ) comes from Gradient Sampling as detailed

in Eq. (4). We take Eq. (14) as sampling probability and

still resort to Algorithm 1.

After introducing the Bayes Prior, we can sample all

coordinates in a shorter training period. To verify this,

we apply Gradient Sampling (GS) and Gradient Sampling

with Bayes Prior (GSB) to gradients sampling of conv6 in
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Figure 2. Main workflow of Gradient Sampling with Bayes Prior. We use one All-Reduce to synchronize full gradients and update the

gradient distribution. Then in the following τ iterations, we only communicate the sampled gradients based on the gradient distribution

with Bayes Prior scheme.

ResNet-50. Under a high sampling ratio, e.g., φ = 0.1,

GS takes 200/φ steps to sample all coordinates, while GSB

only needs 2/φ steps. As for a low sampling ratio, e.g.,

φ = 0.01, GSB can make it within 5/φ steps, whereas GS is

almost impossible to sample all coordinates within limited

steps. Overall, Bayes Prior can explore all gradient coordi-

nates significantly faster.

3.3.2 Theoretical Guarantees

As discussed above, GSB aims to realize denser sampling

for the larger gradient components (Aim1), while guarantee

a limited sampling times for the smaller gradients (Aim2).

However, due to the coupling of historical information in

Bayes Prior, it is difficult to directly give a theoretical anal-

ysis. To overcome this problem, we design an alternative

method which has similar sampling results as GSB when

there are enough sampling steps. The key idea is to combine

Top-k method (Aim1) with Cyclic Coordinate Descent

sampling (Aim2), and thus we name it as TK-CCD.

In TK-CCD, we first divide the entire optimization pro-

cess into M stages, with each stage comprised of Q =
T/M trials. At the beginning of each stage m, we first

choose the j components (j ≤ k) with the largest mag-

nitude of the global gradients, denoted by Sm. In addi-

tion, for the remaining components in the gradients, denoted

by S̄m, we randomly divide it into Q groups, denoted by

{U} = U0, U1, ..., UQ−1, with each group comprising of

(d − j)/Q gradient components. Then, in the following Q
trials, we sequentially choose one set from {U}, and the

sampling gradient set becomes Sq
m = Sm ∪ Uq . Using the

same assumptions (A1 to A4), we can bound the expecta-

tion of loss function as

E
[
f
(
xq+1
m

)]
≤ E [f (xq

m)]−
η

2
E

[

‖▽f (xq
m)‖

2
]

+
ηLs

2
E

[∥
∥
∥x

q+1
m

∣
∣
S̄m
− xq

m|S̄m

∥
∥
∥

2
]

+
1− ηL

2η
E

[∥
∥xq+1

m − xq
m

∥
∥
2
]

, (15)

where Ls is the Lipschitz constant for a single gradient

component. We then choose ρ to make

E

[∥
∥
∥x

q+1
m

∣
∣
S̄m
− xq

m|S̄m

∥
∥
∥

2
]

≤ ρE
[∥
∥xq+1

m − xq
m

∥
∥
2
]

.

(16)

By further having 2η2ρLs ≤ 1, it is easily to show that Eq.

(15) leads to the same O
(
1
T

)
convergence rate as vanilla

SGD under η = 1
T .

Intuitively, GSB is a better implementation of TK-CCD,

because: i) for gradients in S̄m, the TK-CCD does not con-

sider the magnitude contribution; ii) GSB dynamically cal-

culate the hyper-parameter j, which is required to be man-

ually preset in TK-CCD; iii) utilization of cyclic coordinate

descent limits the sampling ratio to be about 1/Q, which is

not low enough in practice. Indeed, we notice that GSB is

an adaptive version of TK-CCD. Thus, by means of theoret-

ical analysis in TK-CCD, we guarantee that GSB also has

the same O
(
1
T

)
convergence rate as vanilla SGD.

3.4. Efficient Implementation

We summarize the complete dataflow of applying our

GSB for efficient communication in Figure 2. In this

method, there are two types of synchronization, i.e., one for

gradient distribution update (Sync1), and the other for ac-

tual gradient communication (Sync2). The sampling ratio
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of Sync1 is determined by synchronization period (τ ), be-

ing 1/τ , and that of Sync2 is exactly k/d. Thus, the overall

sampling ratio becomes 1/τ + k/d.

It must be noted that both Sync1 and Sync2 can be effi-

ciently implemented by All-Reduce operation in any main-

stream frameworks, e.g., Pytorch [30], TensorFlow [1],

Caffe [17]. Moreover, the computationally intensive proce-

dure of our method mainly comes from iterative distribution

normalization in Sync2. In practice, we limit the maximum

iteration steps to a very low value (i.e., 5), and thus avoid

extra computational overhead. The overall pipeline is pre-

sented in Appendix B.

4. Experiments

In this section, we compare our proposed method

with many other state-of-the-art methods on extensive im-

age classification and object detection tasks. In spe-

cific, the compared methods include DGC [26], dist-EF-

BlockSGDM (EB-SGD) [48], QSparse-local-SGD (QL-

SGD) [6], and CSER [44]. We briefly summarize the com-

pared methods as follows.

DGC. Adopts a Top-k sparsifier to compress the gradients

and employs momentum correction and local gradient clip-

ping on top of the sparsifier to maintain model performance.

EB-SGD. Introduces a blockwise compressor by partition-

ing the gradient into blocks so that each block could be com-

pressed and transmitted in 1-bit format with a scaling factor.

QL-SGD. Includes both quantization and sparsification

in compressor, incorporates error-feedback to correct the

residual errors, and also uses the infrequent synchronization

method as in local-SGD [22] to decrease the overall number

of communication rounds.

CSER. Introduces error reset to achieve better convergence

when aggressive compressors are used, and adds a second

compressor to partially synchronize the gradients on local

models in each iteration.

To implement these methods we followed the open-

source codes which are provided by these papers: DGC*,

EB-SGD†, QL-SGD‡, and CSER§. In order to test training

speed in practice, we conduct all of the experiments on the

GPU cluster with the following configurations: Up to 32

machines, and each machine is equipped with 2 NVIDIA

Tesla P100 (16 GB), which are interconnected with the

PICe bus. For network connectivity, each machine uses a

10-Gbps Ethernet card for message communication. The

deep learning framework PyTorch [30] is used to implement

the communication-efficient methods and we use Gloo ¶ as

*https : / / github . com / synxlin / deep - gradient -

compression
†https://github.com/ZiyueHuang/dist-ef-sgdm/
‡https : / / github . com / karakusc / horovod / tree /

qsparselocal
§https://github.com/xcgoner/NeurIPS2020_CSER
¶https://github.com/facebookincubator/gloo

Figure 3. The evolution curves of φ/% (largest elements in the

sampled gradients) and τ /% (gradients visited more than once)

for a convolution layer in ResNet-50.

communication backend.

The overall compression ratio is chosen as 1% for all

methods except EB-SGD and CSER. In our method, we

sample 1% gradients for communication and update global

gradient every 100 iterations (1%). They are transmitted

using FP16 format resulting in 1% compression ratio in to-

tal. As for EB-SGD, due to the utilization of a 1-bit com-

pressor, we set the compression ratio as its minimum, be-

ing 1/32. The CSER use default recommendation setting

to make overall 1/96 compression ratio. In DGC, the sam-

pling rate is directly set to 1%. In QL-SGD, the selected 8%

largest gradients are quantized to 8-bit, and the communi-

cation interval are adjusted to match target ratio.

All experimental settings are consistent with the vanilla

SGD to avoid extra hyperparameters tuning. Note that a

multistep learning rate scheduler is used for most of the

models, despite MobileNetV2 uses cosine scheduler [29] as

widely adopted. We set batch size to 2048 for each experi-

ment if there is no special explanation.

4.1. Ablation Study

We conduct the ablation study on ImageNet [10] with

popular ResNet-50. The baseline is chosen as random sam-

pling (RS), which serves as no additional knowledge of

sampling.

Gradient Sampling. To verify the effectiveness of GS, we

testify the ability to sample the most important gradients.

Figure 3(a) shows the evolution of the proportion of the

largest elements φ in the sampling elements within a short

time period (i.e., 100 training iterations). As expected, φRS

is only 1% on average, since gradients are impossible to be

uniformly distributed. More importantly, we can find that

φGS is about 8 times higher than that of φRS during the

examining period, which supports GS can more effectively

sample for the largest elements.

Bayes Prior. Our second experiment combines random

sampling with Bayes prior (RSB) to get rid of GS. We com-

pare the visited gradients τ in 100 continuous iterations us-

ing RS and using RSB. Figure 3(b) clearly shows that τRSB
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Method RS OursGS OursRSB Ours

Acc / % 75.65 76.13 75.97 76.41

Table 1. Ablation study on different sampling strategies.

α 0.6 0.7 0.8 0.9 0.95 0.99

Acc. 76.27 76.33 76.41 76.41 76.39 76.35

Table 2. Ablation study on different sampling strategies.

are increasingly larger than τRS as iteration goes, which in-

dicates that the addition of Bayes prior strongly boost the

efficiency of exploration.

Results. Table 1 summarizes the final accuracy of dif-

ferent sampling strategies. OursGS and OursRSB obtain

0.48% and 0.32% accuracy improvement over OursRS re-

spectively, showing again these two strategies are effec-

tive. Not surprisingly, our proposed framework Ours has

the highest accuracy improvement, i.e., 0.76%, which ex-

ceeds both OursGS and OursRSB. This demonstrates our

method could achieve a good balance between exploitation

and exploration of gradients.

To verify the stability of Bayes prior, we further examine

the sensitivity of prior probability α. As Table 2 lists, the

accuracy are similar when α is within (0.8, 0.95). This is

not surprising since too large α means no prior information

while too small α means prior information are too strong

to diminish the effect of GS. In the following text, we set

α = 0.9 for all examined experiments.

4.2. Image Classification

We show the classfication performance on CIFAR-10

[20] and ImageNet [10] datasets, with various backbones

such as AlexNet [21], ResNet [15], InceptionV3 [39], and

MobileNetV2 [34]. The results of distributed SGD opti-

mization are presented as the baseline.

In the experiments of CIFAR-10, Table 3 shows that our

performance is as accurate as SGD for all examined mod-

els. Especially, we surpass all other methods in ResNet-20

and InceptionV3. Surprisingly, DGC has more than 1% ac-

curacy drop in MobileNetV2. This may be attributed to that

depth-wise convolution requires sufficient gradient updat-

Method ResNet-20 InceptionV3 MobileNetV2

SGD 91.66 95.20 94.51

DGC[26] 91.13 94.67 93.44

EB-SGD [48] 91.31 94.46 94.24

QL-SGD[6] 91.50 95.03 94.72

CSER[44] 91.48 94.49 94.63

Ours 91.80 95.13 94.57

Table 3. The Top-1 accuracy on CIFAR-10 dataset.

Figure 4. Comparison of different methods of training ResNet-50

on ImageNet. (a) Loss function on training dataset. (b) Top-1

accuracy on evaluation dataset.

ing for each channel to stimulate the corresponding neurons,

while only the largest gradients are transmitted in DGC.

Table 4 shows the overall Top-1 accuracy using different

backbones with various methods on ImageNet. Our method

has achieved almost negligible accuracy degradation (≤
0.2%) compared with distributed SGD. It is noted that our

method has the best performance in most of the large mod-

els, i.e., ResNet-50, ResNet-101, InceptionV3, and Mo-

bileNetV2. This gives a direct evidence to the importance of

considering both exploitation and exploration in compress-

ing gradients. Among these compared communication-

efficient methods, EB-SGD and CSER have a bit accuracy

drop, because the former utilizes aggressive 1-bit compres-

sor while the random sampler in the latter does not consider

any magnitude contribution. The methods DGC and QL-

SGD both get relatively good results on many backbones,

but they all suffer from significant computational overhead

due to the utilization of Top-k operation.

Taking ResNet-50 as an example, we demonstrate the

evolution of training loss and validating results in Figure

4. We observe that the convergence rate of our method is

nearly consistent with SGD, which empirically proves our

theoretical derivation in section 3.3.2. The CSER has the

slowest convergence rate, since it cause additional difficulty

to train the network by separately synchronizing different

parts of gradient information.

4.3. Object Detection

We now further test our method on popular detection

networks, being Faster-RCNN [33] and RetinaNet [24], on

COCO [25] and PASCAL VOC [13] datasets. We adopt the

open-source MMdetection [9] framework with the default

settings and take ResNet-50 as backbone. Here, the evalua-

tion metric is chosen as mean Average Precision (mAP).

As listed in Table 5, our method achieves the best perfor-

mance (less than 0.3%) for both Faster-RCNN (two-stage)

and RetinaNet (one-stage) on large-scale COCO datasets.

We note that DGC, QL-SGD, and our method surpass EB-

SGD and CSER for a large margin (≥ 0.5%), which indi-
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Method ResNet-18 ResNet-34 ResNet-50 ResNet-101 InceptionV3 MobileNetV2 AlexNet

SGD 70.22 73.46 76.44 77.59 77.32 71.86 58.15

DGC[26] 70.16 73.40 76.28 77.26 76.91 71.64 57.80

QL-SGD [6] 70.04 73.25 76.24 77.38 76.89 71.82 58.14

EB-SGD [48] 69.69 72.75 75.58 76.99 76.55 71.89 55.05

CSER[44] 69.98 72.85 75.76 76.86 76.60 71.21 57.53

Ours 70.13 73.38 76.41 77.57 77.13 71.96 58.10

Table 4. The Top-1 accuracy on ImageNet dataset.

Dataset COCO PASCAL-VOC

Backbone
Retina Faster Retina Faster

-Net -RCNN -Net -RCNN

SGD 36.4 37.5 77.3 79.5

DGC[26] 35.7 37.2 77.1 79.2

QL-SGD[6] 35.9 37.1 77.0 78.9

EB-SGD[48] 34.8 36.5 75.0 77.2

CSER [44] 35.3 36.6 76.6 78.6

Ours 36.1 37.4 77.3 79.0

Table 5. Detection Results on COCO and PASCAL VOC Datasets.

cates the compressor based on random sampling will easily

miss transmission for gradients of the most important an-

chors. On the small-scale PASCAL-VOC dataset, though

DGC has slightly better performance than our method in

Faster-RCNN, our method is still recommended due to less

computational overhead.

4.4. Acceleration Results

The capability of gradient compression is to speed up

training. For larger models, the communication overhead

becomes a major factor. Such models are expected to ben-

efit greatly with communication efficient methods. So we

stand to evaluate the actual performance in different meth-

ods.

For the reason that the method as QL-SGD adopts infre-

quent synchronization, and each method has its own com-

pressing operation which introduces different computation

overhead, so we use the training throughput and wall-clock

training time to measure the training speed for each one.

Here, we use AlexNet which is quite intensive in terms of

communication.

In Figure 5(a), we compare our proposed method with

others using system throughput which describes the speed

of processing training samples. It is clear that our proposed

method is superior to other methods except for CSER. How-

ever, in Section 4.2 we observed that CSER might lose accu-

racy, so it may not be the first choice for precision sensitive

tasks. As the number of workers participating in commu-

nication increases, the methods DGC, QL-SGD, and EB-

SGD suffer a great loss of training speed, because they must

Figure 5. Comparison of training speed using AlexNet on Ima-

geNet. (a) Throughput: Processing samples per second. (b) Evo-

lution of Top-1 accuracy on validation dataset with respect to wall-

clock time.

adopt sparse synchronization which is slow and inefficient.

The other reason is they use such compress operations as

Top-k or quantization which always introduces extra com-

putation overhead while leading to a larger variance in la-

tency of synchronization.

Figure 5(b) shows the wall-clock time of training. To

reach comparable accuracy (less than 0.5% accuracy loss,

CSER is not satisfied), our method outperforms other meth-

ods by more than 76%, which is a significant saving for

large-scale training. Moreover, we achieve 2.5× improve-

ment on ImageNet dataset in our training cluster. More ac-

celeration experiments will be shown in Appendix C.

5. Conclusion

In this work, we propose a novel gradient compression

method to balance the exploration and exploitation of gra-

dient information. In particular, we employ Gradient Sam-

pling to efficiently capture the large gradients based on the

periodic updated global gradient distribution. Then Bayes

Prior is introduced into the distribution model to boost the

final accuracy further. We theoretically and empirically

prove the convergence of our method. Our approach has

successfully trained on a variety of computer vision tasks

and networks with negligible accuracy degradation, which

sets a new state-of-the-art to the community.
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