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Abstract

Deep learning methods have been widely applied to au-

tomatic facial action unit (AU) intensity estimation and

achieved the state-of-the-art performance. These methods,

however, are mostly appearance-based and fail to exploit

the underlying structural information among AUs. In this

paper, we propose a novel dynamic probabilistic graph con-

volution (DPG) model to simultaneously exploit AU appear-

ances, AU dynamics, and their semantic structural depen-

dencies for AU intensity estimation. Firstly, we propose to

use Bayesian Network to capture the inherent dependencies

among AUs. Secondly, we introduce probabilistic graph

convolution that allows to perform graph convolution on

the distribution of Bayesian Network structure to extract

AU structural features. Finally, we introduce a dynamic

deep model based on LSTM to simultaneously combine AU

appearance features, AU dynamic features, and AU struc-

tural features for AU intensity estimation. In experiments,

our method achieves comparable and even better perfor-

mance with the state-of-the-art methods on two benchmark

facial AU intensity estimation databases, i.e., FERA 2015

and DISFA.

1. Introduction

Facial muscle movements contain rich information re-

lated to human emotions, which are significant for human

communication. Ekman and Friesen proposed a Facial Ac-

tion Coding System (FACS) [8] to depict the movement of

these facial muscles. FACS defines rules to annotate the

intensities of different action units (AUs) and the AU inten-

sities are quantified into 6 discrete levels.

With the availability of high performance computing and
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Figure 1. The illustration of combining the dynamic and struc-

tural dependencies with semantic knowledge for AU intensity es-

timation.

the large scale datasets, deep neural network has been a

dominant method in many computer vision tasks [35, 13].

The most commonly used deep neural networks, i.e., Con-

volutional Neural Network (CNN) [19] and Long Short-

Term Memory Network (LSTM) [15], show excellent per-

formance in extracting discriminative local features and

capturing the temporal dependencies, respectively. Their

applications in the field of human behavior analysis also

achieve much improvement, including human action recog-

nition [26], expression recognition [41] and facial AU

recognition [24, 36, 6, 21, 30]. However, their success

highly rely on the large amount of training data, which is

difficult to obtain for facial AU intensity estimation. The

reason is that the process of facial AU intensity annotation

is time-consuming and requires strong domain expertise.

Moreover, the data distribution of AU intensity is generally

imbalanced. Therefore, the performance of deep method on

AU intensity estimation is limited under insufficient data.

Rather than increasing training data for AU intensity esti-

mation, the prior knowledge provides more generic infor-

mation that is helpful to improve the performance of deep

model. Because of the underlying facial anatomy and the

need to form a coherent facial expression, a certain group

of AUs may be activated under a specific expression and, at

the same time, they may suppress the activity of other AUs

[45]. For instance, cheek raiser and lip corner puller occur

simultaneously for smile. Besides, the changes of AU over

a short temporal period are usually observed as continuous
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and smooth. Therefore, not only the AUs spatial depen-

dencies, but also their temporal consistency, i.e., dynamics,

should be leveraged in estimating AU intensity.

Considering the aforementioned properties, we propose

a novel dynamic probabilistic graph convolution (DPG)

model that leverages semantic dependencies among AUs

and integrates these semantic probabilistic information into

a dynamic deep model for AU intensity estimation. As

shown in Figure 1, semantic AU knowledge and structural

dependency are combined within a unified probabilistic and

dynamic frame. Firstly, we capture AU semantic depen-

dencies with a Bayesian Network, which is advantageous in

capturing the causal relationships and provides interpretable

AU dependencies. Instead of using a deterministic graph, a

sampling method is employed to estimate the posterior dis-

tribution of graph structure given the AU intensity estima-

tion. We then introduce the proposed probabilistic graph

convolution by incorporating all possible semantic struc-

tures with their probabilities into the conventional graph

convolution. Finally, the probabilistic graph convolution

model is embedded in a dynamic deep model, which simul-

taneously captures AU appearance, semantic structural and

dynamic features for AU intensity estimation.

Our contributions can be summarized as follows:

• We propose a dynamic probabilistic deep framework to

simultaneously integrate the AU appearance informa-

tion, their dynamics and their structural dependencies

for AU intensity estimation.

• We introduce a probabilistic graph convolution that

allows learning structural features over probabilistic

graphs.

• Our method achieves comparable and even better per-

formance than the state-of-the-art methods on two

benchmark AU intensity estimation datasets.

2. Related Works

2.1. Deep Model for AU intensity estimation

In recent years, deep neural network has been a popu-

lar method and shown great progress on AU intensity esti-

mation due to its powerful representation ability [54, 22].

Walecki et al. [42] integrated conditional random field

(CRF) with CNN model to encode AU intensity dependen-

cies, which demonstrated that the AU spatial relationship

plays a crucial role in performance improvement. In addi-

tion to spatial relationships, some works also tried to ex-

ploit temporal consistency during the onset/offset process.

Zhang et al. [48] proposed to extract features with CNN

and enforce temporal intensity order to improve the perfor-

mance. Intuitively, temporal consistency will show more

potential information in AU intensity estimation than de-

tection. Therefore, more works exploited both spatial and

temporal information in deep model for AU related tasks.

Both Chu et al. [3] and Zhang et al. [49] developed deep

networks, which extracted spatial representations by CNN,

and modeled the temporal dependencies with LSTMs. The

spatial relationship is obtained by the fully connected layer

of CNN model, which is just concatenation of features from

each AU. Sanchez et al. [32] jointly perform AU localisa-

tion and intensity estimation via heatmap regression, which

shows the stability against alignment errors. For AU inten-

sity problem, integrating both spatial relationship and tem-

poral consistency in a deep model based framework is ex-

pected to show performance improvement. Therefore, in

this paper, we explore an effective deep graph structure to

simultaneously characterize the structural and dynamic in-

formation of AUs.

2.2. Semantic Knowledge Model for AU

Some of the existing works encode the semantic knowl-

edge to represent structural information and then enforce

constraint to the learning procedure. Nicolle et al. [29] ex-

ploited the underlying common structure between multiple

tasks for AU intensity estimation. Eleftheriadis et al. [10]

proposed topological and global relational constraints on

Multi-conditional Latent Variable Model, which exploit the

structure-discovery capabilities of generative models. Zhao

et al. [52] derived two types of AU relations, i.e., posi-

tive correlation and negative competition, under the statis-

tic analysis of data. The pre-defined semantic knowledge

can improve the performance of the multi-label classifier.

Waleck et al. [43] proposed to model the co-occurrence of

AU intensity levels with the statistical framework of copula

functions, which effectively captures correlations between

facial features and co-occurrences of AUs. According to the

prior knowledge from FACS [8], Li et al. [20] proposed to

learn a semantic graph from data so as to construct a knowl-

edge graph coding AU correlation. Zhang et al. [50] and

Dong et al. [47] integrated human knowledge to the ex-

isting model, which all demonstrate effectiveness of the se-

mantic knowledge for AUs. Wang et al. [44] proposed a

method to obtain semantic knowledge from expression so

as to enhance the dependencies among AUs. Integrating the

knowledge model and the deep neural network in a unified

framework is expected to learn more consistent representa-

tion such that Benitez et al. [1] proposed a loss function

combining the recognition of isolated and groups of AUs.

In this paper, we integrate the semantic information into a

deep model so as to characterize meaningful structural and

dynamic dependencies AUs.

2.3. Graph Convolution

Graph convolution has been applied to many tasks, i.e.,

image classification [7], action recognition [46] and object

tracking [5]. Based on spectral graph theory [4, 39, 37, 38],

graph convolution provides an advantageous representation
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for intrinsic relationships among different nodes. To avoid

expensive calculation, Defferrard et al. [7] proposed an ef-

fective method to conduct graph convolution with low cost.

The Chebyshev polynomial is employed to construct the

graph convolution kernel. Shi et al. [33] proposed an adap-

tive method to generate the graph connections from data

to capture spatial information. The model with the learned

structure outperforms the model with the pre-defined struc-

ture. Jiang et al. [17] proposed the graph convolution based

on Gaussian distribution, which characterized local varia-

tions of graph. More studies leverage graph convolution to

exploit the relations among AUs. Niu et al. [30] employed

AU relations via graph convolution to exploit more infor-

mative information from unlabeled face images. Fan et al.

[11] proposed a dynamic graph convolution method to ex-

tract more discriminative features for AU intensity estima-

tion. The existing methods to construct graph connections

are deterministic model and mostly based on the natural

structure of nodes. However, the deterministic graph can-

not capture the underlying uncertain information in data.

Linh et al. [25] and Eleftheriadi et al. [9] proposed the

deep variational framework for the latent representation of

AUs, which demonstrates the effectiveness of the proba-

bilistic model for AU intensity estimation. Therefore, we

introduce graph convolution in a probabilistic way to cap-

ture the graph’s uncertain AU relations.

3. Proposed Method

In this section, we introduce the proposed dynamic prob-

abilistic graph convolution (DPG) model that combines the

dynamic discriminative deep model with probabilistic se-

mantic knowledge related to the dependencies among AUs.

3.1. Probabilistic Graph Convolution From Seman
tic Knowledge

The proposed probabilistic graph convolution (PGC) is

defined as the expected graph convolution over the poste-

rior distribution of graph, which represents the distribution

of semantic graph among AUs. Given AU intensity anno-

tations D in training dataset, we employ Bayesian Network

(BN) G to represent and encode probabilistic dependencies

among AUs, i.e., the posterior distribution p(G|D) of BN G
via Markov Chain Monte Carlo (MCMC) sampling method.

Since the correlations among AUs are important informa-

tion to estimate the AU intensities, we then convert directed

graph G to the undirected graph via moral graph and rep-

resent undirected graph by symmetric adjacency matrix A

with the corresponding probability p(A|D) for graph con-

volution.

3.1.1 Bayesian Network for AU Intensity Dependen-

cies Encoding

We propose to employ a Bayesian Network (BN) to cap-

ture and encode the prior knowledge on AU relations as

BN has strong interpretability in characterizing the relation-

ships among AUs and it has been widely used in the past

[44, 45, 23] for encoding AU dependencies. The Bayesian

network, i.e., the directed acyclic graph (DAG), can be de-

fined as G = (V, E), where V denotes nodes and E for

edges. Here, the nodes V represent AUs and the edges E
represent the probabilistic dependencies among AUs.

Given AU intensity annotations D, the posterior distribu-

tion p(G|D) of graph G captures probabilistic relationships

among AUs. Directly computing p(G|D) is intractable and

there exists no analytic solution. We use Markov Chain

Monte Carlo (MCMC) sampling method [27] based on

Metropolis Hasting algorithm (MH) [2], which generates

N graph samples {Gn}
N
n=1 to approximate p(G|D). The

posterior p(G|D) can be written as p(G|D) = p(D|G)p(G)
p(D) .

Assuming uniform p(G), p(G|D) is proportional to p(D|G),
i.e., p(G|D) ∝ p(D|G)P (G) ∝ p(D|G).

The marginal likelihood p(D|G) can be written as

p(D|G;α) =

∫
p(D|θ,G)p(θ;α)dθ, (1)

where the parameters θ of BN are used to represent the con-

ditional probability distribution of each node given its par-

ents. α is the hyper-parameter for the Dirichlet distribution

that represents the prior distribution of the parameters θ and

D contains AU intensity annotations. α is usually set to be

1 for uniform distribution. The marginal likelihood can be

solved analytically as

p(D|G;α) =

N∏
i=1

qi∏
j=1

Γ(αij)

Γ(N ′
ij + αij)

ri∏
k=1

Γ(N ′
ijk + αijk)

Γ(αijk)
,

(2)

where i indicates the ith node in G, j indicates the jth con-

figuration of node i’s parents, k indicates the kth configu-

ration of node i, N ′
ijk is the corresponding observed count

and Γ(·) is Gamma function.

During the MH sampling, we generate a sequence of

samples, following a Markov chain as determined the tran-

sition probability in Eq. (3). In particular, given a sample

Gn, a new sample Gn+1 is proposed with the proposal prob-

ability

ppro(Gn+1|Gn) =
1

|N (Gn)|
(3)

if Gn+1 ∈ N (Gn), and ppro(Gn+1|Gn) = 0 if Gn+1 6∈
N (Gn). N (Gn) denotes all neighboring DAGs of Gn. Since

p(G|D) ∝ p(D|G), we obtain
p(D|Gn+1)
p(D|Gn)

= p(Gn+1|D)
p(Gn|D) and

the proposed DAG Gn+1 is accepted with the acceptance

probability

pacc(Gn+1|Gn) = min{1,
p(D|Gn+1)

p(D|Gn)

|N (Gn)|

|N (Gn+1)|
} (4)
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Figure 2. The illustration about (a) the generation of p(G|D) from AU annotation D; (b) the generation of adjacency matrix from a directed

graph to moral graph.

where we calculate likelihoods p(D|Gn) and p(D|Gn+1)
with Eq.(2) with α = 1. The Markov chain is left un-

changed, i.e., Gn+1 := Gn if the new graph Gn+1 is not

accepted, which means we accept the new samples based

on the distribution of p(G|D). More details of MCMC sam-

pling have been presented in supplemental material.

After a sufficiently large number of Burn-in samples, we

can begin to collect N samples {Gn}
N
n=1 to estimate the

posterior distribution p(G|D) as shown in Figure 2 (a). The

dependencies between AUs are significant to analyze the

generation of AUs and some AUs have strong correlations.

Thus, we employed the undirected graph to capture the mu-

tual dependencies among AUs. To this goal, for each sam-

pled DAG Gn, we apply the moral graph [16] to obtain its

corresponding undirected graph Ḡn. The moral graph is an

undirected graph containing the same variables as the cor-

responding DAG and it contains the same independencies

as the DAG. As shown in Figure 2 (b), the moral graph

of a DAG is constructed by adding edges between all pairs

of non-adjacent nodes having a common child and remov-

ing directions of all edges, i.e., yielding the correspond-

ing undirected moral graph. Based on which, we obtain the

symmetric adjacency matrix A. After converting {Gn}
N
n=1

to {Ḡn}
N
n=1, we compute the corresponding N symmetric

adjacency matrices {An}
N
n=1. We use An,ij denotes the el-

ement of the ith row and the jth column of An. An,ij = 1
means the ith node and the jth node are connected. Other-

wise, An,ij will be 0 if the ith node and the jth node are not

connected. {An}
N
n=1 are representative for the underlying

posterior distribution of the adjacency matrix p(A|D).

3.1.2 Probabilistic Graph Convolution

Graph convolution provides a deep graphic representation

to capture the underlying structure of data and gives a mean-

ingful representation for the semantic relationships. The

structural information allows to aggregate nodes with mean-

ingful topological structure so as to explore more discrimi-

native deep features for classification and regression tasks.

Hammond et al. [12] conducted graph convolution in spec-

tral domain, however, the calculation of graph Fourier trans-

form is expensive. Defferrard [7] proposed to employ the

Kth-order Chebyshev polynomial to approximate the com-

putation of graph Fourier transformation. Recently, Kipf et

al. [18] further leverage a linear approximation of graph

convolution by reducing K to 1.

Let H ∈ R
M×d denote the input signals, where each

row of H denotes the feature vector for a node (AU), M is

the number of nodes, d is the length of the feature vector of

each node. One graph convolution layer g with input signal

H can be defined as follows

H ′ = g(A,H) = σ(D̃− 1
2 ÃD̃− 1

2HW ), (5)

where σ denote the activation function, Ã = A + I is the

adjacency matrix that contains the self-connection for each

node, H ′ is the output, I is the identity matrix and D̃ is a

diagonal degree matrix of Ã with D̃(i, i) =
∑

j Ã(i, j).
Conventional graph convolution is deterministic by na-

ture. It applies only to a given fixed graph. For this research,

instead of having a fixed graph, we obtain a distribution of

graph, i.e., p(G|D) also represented by p(A|D) from the

training data. The conventional deterministic graph convo-

lution is therefore not applicable. To overcome this limita-

tion, we introduce the probabilistic graph convolution:

H ′
p =

∫
p(A|D)σ(D̃− 1

2 ÃD̃− 1
2HW ) dA

= Ep(A|D)(g(A,H)),

(6)

where g(A,H) represents the conventional convolution

graph filter for an adjacency matrix A as defined in Eq.

(5). The probabilistic convolution filter hence is defined

as integration of the g(A,H) over the posterior distribu-

tion of p(A|D), i.e., the expected g(A,H) over p(A|D),
Ep(A|D)(g(A,H)). Integration of the graph structure dis-

tribution is intractable. Eq. (6) can be approximated by

summation over the structure samples, i.e.,

H ′
p ≈

1

N

N∑
n=1

g(An, H) =
K∑

k=1

p(Ak|D)g(Ak, H), (7)

where N is the number of samples we generated using MH

method from Section 3.1.1. K is the number of unique

graph structures. For a certain unique graph Ak, the prob-

ability of Ak given the data can be calculated by mk

N
, in

which mk is the frequency that the unique graph Ak appears
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Figure 3. (a) One stream LSTM. (b) The framework to extract AU features. (c) The illustration of the dynamic probabilistic graph

convolution model.

in N samples. The probabilistic graph convolution provides

a novel way to capture the uncertain semantic dependencies

among different nodes, which can be generalized to many

different tasks.

3.2. Dynamic Probabilistic Graph Convolution
Model

The changes among AUs are not independent and their

spatial and temporal changing patterns are significant for

AU intensity estimation. We incorporate the probabilistic

graph convolution that encodes the semantic structural de-

pendencies of AUs into multiple LSTMs that capture the

long-term dependencies and short-term dependencies in the

temporal dimension. The traditional one stream LSTM

showed in Figure 3 (a) focuses on capturing the temporal

dependencies of sequence. We devise a method to employ

multiple LSTMs so as to further exploit their spatial struc-

tural relationships.

The Model In Figure 3 (b), given a continuous facial se-

quence I = {I1, I2, ..., IT }, we extract the feature vectors

and each feature vector corresponds to one specific AU so

as to obtain more accurate and independent features related

to specific AUs. We employ ResNet50 [14] as the back-

bone network to extract the CNN features for each AU, rep-

resented by {x1,t, x2,t, ..., xM,t} ∈ R
1×d, where d is the

dimension of feature vector. For each AU, we pretrain a

ResNet50 by using the training data.

To explore the spatial structural dependencies among

AUs, multiple LSTMs are employed for AU intensity es-

timation and each LSTM focuses on the feature extraction

of one type of AU. In the (t-1)th iterative process, the mth

LSTM will generate a hidden state hm,t−1, which contains

the information of the mth AU in the (t-1)th image. In par-

ticular, we integrate the proposed probabilistic graph con-

volution into the LSTMs module such that this model can

iteratively capture the spatial semantic dependencies among

AUs. Let Ht−1 = [h1,t−1;h2,t−1; ...;hM,t−1] ∈ R
M×d be

the input hidden states for the tth iterative process. In the tth

iterative step, we can model the spatial dependencies among

AUs as following equation:

H
g
t−1 =

K∑
k=1

p(Ak|D)σ(D̃− 1
2 ÃkD̃

− 1
2HW ), (8)

where K is the number of unique graph structures,∑K

k=1 p(Ak|D)σ(D̃− 1
2 ÃkD̃

− 1
2HW ) denotes the proposed

probabilistic graph convolution operation, H
g
t−1 =

[hg
1,t−1;h

g
2,t−1; ...;h

g
M,t−1] ∈ R

M×d is the output hidden

states that fusing the semantic structural information, σ is

the sigmoid function and Wk ∈ R
d×d is signal transforma-

tion matrix. Since H
g
t−1 has obtained the structural infor-

mation among AUs of the (t-1)th frame, these information

can propagate to the processing of the tth frame.

Simultaneously, in the tth iterative process, we want to

capture the long-term and short-term temporal dependen-

cies among AUs. The tth iterative process in temporal di-

mension can be expressed as

im,t=σ(wmxi ·xm,t+wmhi ·h
g
m,t−1

+wmci◦ct−1+bmi)

fm,t=σ(wmxf ·xm,t+wmhf ·h
g
m,t−1

+wmcf ◦ct−1+bmf )

um,t= tanh(wmxc ·xm,t+wm,hc ·h
g
m,t−1

+bmc)

cm,t=fm,t◦cm,t−1+it◦um,t

om,t=σ(wmxo ·xt+wmho ·h
g
m,t−1

+wmco◦cm,t+bmo)

hm,t=om,t◦tanh(cm,t),m = 1, 2, ...,M.

(9)

im,t, fm,t, om,t, cm,t denote the input gate, the forget gate,

the output gate, the memory cell in the tth step of the mth

LSTM, respectively. wmxi, wmxf , wmxc, wmxo are weight

matrices specified for visual AU features. wmhi, wmhf ,

wmhc, wmho are weight matrices specified for spatial infor-

mation among AUs. wmci, wmcf , wmco denote the weight

matrices for temporal dependencies. bmi, bmf , bmc, bmo

are biases. ◦ denotes a point-wise product.
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Specifically, h
g
m,t−1 contains the semantic structural in-

formation and the short-term temporal information, and c

contains the long-term memory information. Therefore,

this structure combining probabilistic graph convolution

and multiple LSTMs can effectively capture the structural

features and dynamic features simultaneously. The illustra-

tion of the dynamic probabilistic graph model is shown in

Figure 3 (c). In particular, multiple LSTMs allow to ex-

tract more discriminative features from accurate locations

of AUs respectively. Compared with the multiple LSTMs

without information interaction, this structure extends the

field of view of each LSTM such that more information can

be fused to the feature extraction of next iterative process.

3.3. The Loss Function for AU Intensity Estimation

For each frame, the output hidden states, i.e., hm,t of

iterative blocks are connected with fully connected layers

to reduce the dimensions and predict the intensity of AUs.

The loss function can be defined as

loss =
1

N

N∑
n=1

(
1

T

T∑
t=1

m=M∑
m=1

‖ym,t,n − ȳm,t,n‖
2
2), (10)

in which ‖ · ‖2 is the l2 norm, N is the number of training

samples in one batch and ym,t,n, ȳm,t,n denote the true AU

intensity and the predicted AU intensity respectively.

4. Experiments

4.1. Setting

(a) (b)
Figure 4. The distribution of facial AU intensity. (a) BP4D. (b)

DISFA.

Datasets We evaluate the proposed method on two

benchmark databases, i.e., FERA 2015[40] and DISFA

[28] database. FERA 2015 consists of 328 videos from 41

subjects when they are performing 8 tasks. There are about

140,000 frames, which are annotated with the intensity of

5 AUs. We employ the official Training/Development splits

in our experiment, i.e., 21 subjects for Training split and 20

subjects for Development split. DISFA is a spontaneous ex-

pression database, which contains 27 videos from 27 sub-

jects when they are watching emotion elicitation videos.

There are around 130,000 frames annotated with the inten-

sity of 12 AUs. We employ 3-fold subject independent cross

validation for evaluation with 18 subjects for training and 9

subjects for testing. Both FERA 2015 and DISFA contain 6

different AU intensity status from 0 to 5.

Data preprocessing For each AU, we train a Resnet50

[14] given the training data so as to get disentangled fea-

ture for a specific AU. We use the output of the final

global pooling layer as the appearance feature of the spe-

cific AU. All the facial images are cropped and reshaped

into 256x256. During training the ResNet50, we randomly

crop the 256×256 images into 224×224, which are fed into

ResNet50. The ResNet50 were pre-trained using training

data. During training our DPG model, the parameters of

ResNet50 will not be updated.

Evaluation metrics and hyperparameters We use Intra-

Class Correlation (ICC(3,1) [34]) and Mean Absolute Error

(MAE) as evaluation metrics. For our DPG model, we em-

ploy 5 LSTMs in FERA 2015 and 12 LSTMs in DISFA. The

dimensions of the hidden states, memory cells of LSTMs

are set to 256. The learning rates are set to 0.001 in FEAR

2015 and DISFA. During training and testing, the length of

sequence is set to T=8 and the AUs intensities of each frame

are predicted. For probabilistic graph convolution, we em-

ployed the top-5 possible unique graph structures and their

normalized probabilities. The AU intensity annotations of

training data are used to learn BN.

Comparison model First, we compare our DPG with the

state-of-the-art methods, i.e., CCNN-IT [42], OR-CNN

[31], OSVR [53], KJRE [50], BORMIR [51], KBSS [48]

and CFLF [49] , 2DC [25] and SCC [11], for AU intensity

estimation. Then, we perform the ablation study to compare

the proposed DPG to some baseline methods. Resnet50

[14] is our backbone network and DPG-T denotes baisc

multiple LSTM model that captures temporal information

without graph. Further, we present the proposed model us-

ing the graph convolution with the unique graph structure,

which has the maximum posterior probability in p(A|D)
(DPG-MPG). Besides, we perform the graph convolution

(DPG-PK) with the prior knowledge graph structure de-

fined by the AU correlations in FACS [8] (Details in sup-

plemental material). Both DPG-MPG and DPG-PK are

deterministic models.

4.2. Results

4.2.1 Comparison with the state-of-the-art methods.

In Table 1, we compare the proposed method with the state-

of-the-art deep methods. CCNN-IT, OR-CNN and KBSS

are all deep methods that leverage structural or dynamic in-

formation. OSVR, KJRE, BORMIR and KBSS combine

prior knowledge or semantic information for facial AU in-

tensity estimation. 2DC also combines the deep model and

probabilistic model. SCC is a deep graph method for AU in-

tensity estimation. On FERA2015, our method achieves the

best MAE on average and the same ICC on average with

SCC. On DISFA, with more AU categories, our method
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Table 1. Comparison to the state-of-the-art AU intensity estimation methods. Numbers in bracket and bold denote the best performance;

numbers in bold denote the second best.

Database FERA 2015 DISFA

AU 6 10 12 14 17 Avg 1 2 4 5 6 9 12 15 17 20 25 26 Avg

IC
C

(3
,1

)

OSVR[53] .65 .58 .78 .27 .45 .54 .21 .04 .25 .15 .23 .15 .31 .12 .07 .09 .62 .09 .19

OR-CNN[31] .74 .70 .85 .34 .51 .63 .01 .02 .21 .10 .47 .30 .76 .14 .21 .07 .84 .59 .31

CCNN-IT[42] .75 .69 .86 .40 .45 .63 .20 .12 .46 .08 .48 .44 .73 .29 [.45] [.21] .60 .46 .38

KJRE[50] .71 .61 .87 .39 .42 .60 .27 .35 .25 .33 .51 .31 .67 .14 .17 .20 .74 .25 .35

BORMIR[51] .73 .68 .86 37 .47 .62 .20 .25 .30 .17 .39 .18 .58 .16 .23 .09 .71 .17 .35

KBSS[48] .76 .75 .85 .49 .51 .67 .23 .11 .48 .25 .50 .25 .71 .22 .25 .06 .83 .41 .36

CFLF[49] .76 .70 .83 .41 .60 .66 .26 .19 .46 .35 .52 .36 .71 .18 .34 [.21] .81 .51 .41

2DC[25] .76 .71 .85 .45 .53 .66 .70 [.55] .69 .05 .59 [.57] [.88] [.32] .10 .08 .90 .50 .50

SCC[11] .74 [.82] .86 [.68] .51 [.72] [.73] .44 .74 .06 .27 .51 .71 .04 .37 .04 .94 [.78] .47

DPG [.80] .77 [.89] .50 [.61] [.72] .46 .46 [.75] [.63] [.61] .48 .84 .29 .44 .18 [.95] .63 [.56]

M
A

E

OSVR[53] 1.02 1.13 .95 1.35 .93 1.08 1.65 1.87 2.94 1.38 1.56 1.69 1.64 1.10 1.61 1.37 1.33 1.79 1.66

OR-CNN[31] .56 .72 .49 .95 .69 .68 .48 .45 .95 .04 .28 .23 .27 .12 .47 .12 .40 [.32] .34

CCNN-IT[42] 1.17 1.43 .97 1.65 1.08 1.26 .73 .72 1.03 .21 .72 .51 .72 .43 .50 .44 1.16 .79 .66

KJRE[50] .82 .95 .64 1.08 .85 .87 1.02 .92 1.86 .70 .79 .87 .77 .60 .80 .72 .96 .94 .91

BORMIR[51] .85 .90 .68 1.05 .79 .85 .88 .78 1.24 .59 .77 .78 .76 .56 .72 .63 .90 .88 .79

KBSS[48] .56 .65 .48 .98 .63 .66 .48 .49 .57 .08 .26 .22 .33 .15 .44 .22 .43 .36 .33

CFLF[49] .62 .83 .62 1.00 .63 .74 .33 .28 .61 .126 .35 .28 .42 .18 .29 .16 .53 .40 .33

2DC[25] .75 1.02 .66 1.44 .88 .95 .32 .39 .53 .26 .43 .30 [.25] .27 .61 .18 .37 .55 .37

SCC[11] .61 [.56] .52 [.73] [.50] .58 [.16] [.16] [.27] [.03] [.25] [.13] .32 .15 [.20] [.09] .30 [.32] [.20]

DPG [.50] .61 [.43] .81 .52 [.57] .29 .26 .39 [.03] .27 .14 .27 [.10] .25 .11 [.24] .34 .22

is advantageous to model their dependencies achieves the

best performance in ICC on average. Especially, on both

databases, our method outperforms over CCNN-IT, which

is also a method combining semantic information with deep

neural networks. Compared with KBSS that integrates dy-

namic information, our method achieves better results on

both FERA2015 and DISFA. On DISFA, most of the AU

intensity states are 0. SCC tends to correctly recognize

more AUs with 0 state and our method tend to recognize

more AUs with high intensities. This is why our method

have higher ICC score than SCC but SCC has a lower

MAE score. Especially, our DPG achieves much better

ICC score, 0.56 than 2DC, i.e., 0.5, which is the best re-

sult among comparison methods on DISFA. CFLF is also

a method that takes into consideration of spatial relation-

ships among AUs and our method outperforms CFLF on

both FERA2015 and DISFA. Compared with FERA2015,

training data on DISFA is more unbalanced and the results

demonstrate our method is more powerful to deal with these

unbalanced data by integrating semantic structural informa-

tion with dynamic information. The aforementioned results

further validate the effectiveness of our method.

4.2.2 Ablation study

The results for ablation study are presented in Table 2.

The proposed DPG model achieves the best average per-

formance on both FERA2015 and DISFA databases. To

evaluate the dynamic information, DPG-T (with dynamic

information) is compared with ResNet50 (without dynamic

information) and DPG-T achieves better performance than

ResNet50. Especially, we conduct our model with different

types of graph convolution. The model with probabilistic

graph convolution (DPG) has shown improvement over the

model with a deterministic prior knowledge graph (DPG-

PK) and the model with the maximum posterior probabil-

ity graph (DPG-MPG). The probabilistic graph convolution

(DPG) considers more uncertain graph structures such that

richer structural information can be fused into deep model,

which demonstrates the effectiveness of the probabilistic

graph. In summary, DPG provides an effective deep ar-

chitecture to characterize the temporal dynamic informa-

tion and the spatial structural information simultaneously.

Besides, DPG also integrates the semantic knowledge, i.e.,

the AU dependencies, into deep architecture so as to capture

more comprehensive information.
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Table 2. The ICC and MAE results using different baseline methods on FERA2015 and DISFA for facial AU intensity estimation.

Database FERA 2015 DISFA

AU 6 10 12 14 17 Avg 1 2 4 5 6 9 12 15 17 20 25 26 Avg

IC
C

(3
,1

)

Resnet50 .76 .73 .88 .42 .59 .68 .43 .39 .63 .62 .53 .36 .82 .33 .41 .18 .92 .50 .51

DPG-T .77 .76 .86 .48 .58 .69 .45 .44 .70 .32 .61 .47 .82 .25 .44 .17 .92 .61 .52

DPG-MPG .79 .75 .87 .49 .59 .70 .46 .45 .74 .40 .60 .46 .83 .27 .45 .18 .93 .62 .53

DPG-PK .78 .76 .87 .49 .58 .70 .46 .45 .73 .51 .61 .47 .83 .27 .44 .18 .93 .62 .54

DPG .80 .77 .89 .50 .61 .72 .46 .46 .75 .63 .61 .48 .84 .29 .44 .18 .95 .63 .56

M
A

E

Resnet50 .62 .70 .45 .92 .55 .64 .38 .38 .65 .07 .36 .34 .35 .19 .38 .21 .38 .50 .35

DPG-T .55 .65 .50 .85 .57 .62 .32 .31 .48 .06 .30 .19 .32 .13 .29 .13 .34 .38 .27

DPG-MPG .50 .62 .44 .80 .52 .58 .31 .30 .44 .06 .29 .17 .31 .13 .29 .12 .32 .33 .26

DPG-PK .50 .62 .48 .80 .53 .59 .32 .30 .44 .05 .29 .18 .31 .13 .28 .12 .31 .38 .26

DPG .50 .61 .43 .81 .52 .57 .29 .26 .39 .03 .27 .14 .27 .10 .25 .11 .24 .34 .22

(a) (b) (c) (d)
Figure 5. The graph with the maximum probability and the graph probability distributions. (a) FERA 2015; (b) The first fold of DISFA;

(c) The second fold of DISFA; (d) The third fold of DISFA;

4.2.3 Computational complexity

The probabilistic graph convolution (PGC) is linear sum-

mation of traditional graph convolution (GCN) such that

the time complexity will not increase too much. With a

RTX2080 Ti GPU, we predict the result of 90 sequences

(one batch) on Tensorflow. The time cost is 0.22s with GCN

and 0.29s with PGC.

4.3. The Visualization of Graph

To further analyze the semantic dependencies among

AUs, we visualize the moral graph with the maximum prob-

ability and show the probabilities of all unique graphs using

DPG in Figure 5.

For FEAR 2015, as shown in Figure 5 (a), AU6 has con-

nections with AU10 and AU12, which means that cheek

raiser (AU6) has the strong connections with upper lip raiser

(AU10) and lip corner puller (AU12). At the same time, lip

corner puller (AU12) also has the strong connections with

dimpler (AU14) and lower lip depressor (AU17). Afore-

mentioned discussions are based on the graph with maxi-

mum probability and there are still many weak connections

among AUs that are not displayed. Besides, some facial ex-

amples that reflect the AU dependencies are shown in sup-

plemental material.

For DISFA, we present three different graphs and prob-

ability distributions in Figure 5 (b), (c) and (d) since we

employ 3-fold subject independent cross validation to eval-

uate the proposed method. Some connections among AUs

are different and the probability distributions also reflect

differences, which means the distribution of AU dependen-

cies will change in terms of different people. The proposed

Bayesian-based method captures different semantic depen-

dencies and can be generalized into different training data.

Though we leverage the AU intensity annotation of training

data of 3-fold experiments to generate graphs, there are still

many common connections among AUs. For instance, AU1

is connected with AU2, AU2 is connected with AU12 and

AU25 is connected with AU26. Besides, AU2 and AU12

have at least four connections with other AUs.

5. Conclusion

We proposed a novel DPG model to simultaneously cap-

ture AU appearance features, AU dynamic features, and AU

semantic structural features for AU intensity estimation. By

performing the Bayesian Network and deep graph neural

networks, we offer promising new directions to combine the

probabilistic model with the deep model. The distribution

of the graph sampled from data is presented to exploit use-

ful semantic knowledge and capture underlying uncertain

dependencies among AUs. We hope our DPG model can

inspire more studies on exploiting the underlying semantic

knowledge for AU intensity estimation.
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