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Abstract

Message passing neural network has been an effective

method to represent dependencies among nodes by propa-

gating messages. However, most of message passing algo-

rithms focus on one structure and messages are estimated

by one single approach. For real-world data, like facial

action units (AUs), the dependencies may vary in terms

of different expressions and individuals. In this paper, we

propose a novel hybrid message passing neural network

with performance-driven structures (HMP-PS), which com-

bines complementary message passing methods and cap-

tures more possible structures in a Bayesian manner. Par-

ticularly, a performance-driven Monte Carlo Markov Chain

sampling method is proposed for generating high perfor-

mance graph structures. Besides, hybrid message passing

is proposed to combine different types of messages, which

provide the complementary information. The contribution

of each type of message is adaptively adjusted along with

different inputs. The experiments on two widely used bench-

mark datasets, i.e., BP4D and DISFA, validate that our pro-

posed method can achieve the state-of-the-art performance.

1. Introduction

Facial action units (AUs) detection is an essential tech-

nique to analyze human expressions in the field of artificial

intelligence. Ekman proposed Facial Action Coding Sys-

tem (FACS) [10] to model the relation between facial mus-

cle movements, i.e., AUs, and facial expressions. There-

fore, more studies estimate the human emotions and facial

behaviors via facial AU detection.

Convolutional neural networks (CNN) [15, 27, 41, 26,

44] have been extensively applied to various classification

and regression tasks because of the powerful local feature

representation capabilities. However, for facial AU detec-

tion, the structural information and dependencies among

Figure 1. Some facial images and AU occurrences for happiness

expression. The AUs with blue nodes are common AU occur-

rences and the AUs with green nodes are different AU occurrences.

Even for the same expression, the AU occurrences and dependen-

cies may be different. For example, AU6 (Cheek Raiser) occurs in

the first image and does not occur in the second image.

different AUs [17] should be taken into consideration dur-

ing AU detection. CNN can not fully characterize the re-

lationships among different AUs. Recently, graph neural

networks [13, 7, 9], also called message passing neural net-

works (MPNN), have been popular algorithm to charac-

terize the objects and their dependencies. Recent studies

[23, 11] employ message passing neural networks to solve

facial AU related tasks.

Generally, previous studies [17, 38] utilized prior knowl-

edge from FACS or training labels to define the graph

structure so as to represent the dependencies among AUs.

These common dependencies among AUs can provide use-

ful structural information. However, one type of constant

relationship among AUs is not sufficient to fully character-

ize the sophisticated correlations among AUs. The depen-

dencies among AUs may vary given different expressions.

Besides, individual difference is also a factor to induce dif-

ferent correlations among AUs. Even for the same expres-

sion, as shown in Figure 1, AU occurrences can be differ-

ent. Therefore, different graph structures should be taken

into consideration for effectively capturing different types

of dependencies for AU detection.
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For the graph structure of MPNN, some studies focused

on gradient-based methods to learn the discrete structure

by bilevel training [12]. However, the gradient-based is

easy to fall into the local optimal solution. Another popular

graph structure learning strategy is sampling-based method.

Metropolis-Hasting Monte Carlo Markov Chain sampling

(MH-MCMC) [14] is commonly applied to structure learn-

ing in probabilistic graphical model, which can sample an

ensemble of graph structures with the goodness of fit to

data. To improve the effectiveness of message passing neu-

ral networks, more effective ways to generate graph struc-

tures from data are necessary to be exploited.

Although there are many different ways to define mes-

sages, most of message passing neural networks [13, 39]

propagate information by only providing one type of mes-

sage. For facial AUs, some AUs are positively correlated,

like AU4 (brow lower) and AU7 (lid tightener), and some

AUs are negatively correlated, like AU12 (lip corner puller)

and AU15 (lip corner depressor). Apparently, traditional

message passing algorithms can not fully characterize these

different relationships among AUs. More message cate-

gories and more effective ways to combine different mes-

sages should be provided to represent diverse dependencies

and propagate the complementary information.

Based on aforementioned considerations, in this paper,

we propose a novel hybrid message passing neural net-

work with performance-driven structures (HMP-PS) for fa-

cial AU detection, which generates the predictions by con-

sidering different graph structures in a Bayesian manner.

For the structure of MPNN, traditional MH-MCMC sam-

pling draws the distribution of graph structure based on data

likelihood. Different from MH-MCMC, we focus on sam-

pling graph structures based on their performances on facial

AU detection. Therefore, we propose performance-driven

Monte Carlo Markov Chain sampling (P-MCMC) to gener-

ate the graph structures with high performance. And then,

the graph structures with high performance can be used for

MPNN. Besides, we propose the hybrid message passing

to dynamically combine three types of messages such that

more complementary information can be dynamically prop-

agated among different nodes.

The contributions of this paper can be summarized as

follows:

• We propose performance-driven Monte Carlo Markov

Chain sampling to generate high performance graph

structures.

• We propose the hybrid message passing to dynami-

cally combine different types of messages to exploit

their complementary information.

• Our method achieves better performance than the

state-of-the-art methods on two widely used bench-

mark datasets, i.e., BP4D and DISFA.

2. Related Works

2.1. Facial Action Unit Detection

With high performance computing and large scale

datasets, CNN has shown great power in automatic facial

action unit detection by extracting effective appearance fea-

tures [18, 27, 28, 19, 5]. As defined in FACS [10], there

are important dependencies among different AUs such that

more researches focus on incorporating the AU dependen-

cies to CNN model for facial AU detection.

The semantic dependencies can be characterized by vari-

ous approaches. Walecki et al. [36] employed a conditional

random field (CRF) model to exploit the relations among

different AUs. A combination between CRF and deep learn-

ing is applied and the parameters are learned jointly. Zhao

et al. [45] proposed a deep model to simultaneously capture

the salient regions and exploit the AU dependencies. The

improvement validates the effectiveness of encoding the AU

dependencies. Cui et al. [6] employed a Bayesian Network

to encode the relations between AU labels, which were ap-

plied to correct the noisy AU labels. Recently, more studies

employed graph neural network to capture the AU depen-

dencies and provide a discriminative graph representation.

Li et al. [17] learned the graph based on FACS and incorpo-

rated the learned graph as prior information to graph neural

network for AU detection. Combined with prior knowledge,

graph neural network provides more effective way to cap-

ture the dependencies among AUs. Niu et al. [23] calcu-

lated the conditional probabilities of AU occurrences from

AU labels as the weighted adjacency matrix for graph con-

volution, which validated that the prior information about

AU dependency is helpful for semi-supervised AU detec-

tion. Most of these studies learn a constant graph to model

the relations among AUs and the individual and dynamic

dependencies among AUs are not addressed. In this paper,

we provide a more flexible and complementary way to rep-

resent the dynamic relations among AUs.

2.2. Message Passing Neural Network

Recently, message passing neural networks (MPNNs),

also called graph neural networks (GNNs), have been pop-

ular methods to characterize different objects and their rela-

tionships [39, 32, 33, 30, 29, 31]. Many researches work on

graph structure learning and the approach to calculate the

messages for improving the efficiency of MPNN.

For MPNNs, effective graph structure is essential to

propagate messages in right directions. Generally, there

are two strategies for structure learning. One is sampling-

based method and another is gradient-based method. For

gradient-based method, the structure is discrete and not dif-

ferentiable. Some studies [40, 22, 2] employed the Gumbel-

Sigmoid functions [16] to relax the discrete search to be

continuous such that the gradient back-propagate can be
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Figure 2. The architecture of hybrid message passing neural network with performance-driven structures for Facial AU detection. ResNet18

is the backbone network. A1, ...,AK denote different graph structures generated by performance-driven MCMC sampling.

conducted. Although gradient-based method needs small

computational power, it tends to fall into local minimum

solution. More importantly, it produces only one struc-

ture, hence tends to overfit. Sampling-based methods are

generally used for Bayesian structure learning. Especially,

Metropolis-Hasting MCMC sampling is popular method

to estimate the posterior distribution of graph structure

[14, 34]. It produces an ensemble of graph structures and

can generalize better. However, most of these sampling

methods try to sample the structures based on data likeli-

hood. For facial AU detection, a sampling method to im-

prove the performance of MPNN should be taken into con-

sideration.

The main idea of MPNN is to iteratively update the hid-

den state at each node by aggregating received messages.

Gilmer et al. [13] provided a review of some GNN vari-

ants and unified them into MPNN. Previous studies have

developed various methods to calculate messages and up-

date the hidden state at each node. Duvenaud et al. [9]

proposed to separately sum over connected nodes and con-

nected edges. However, it is problematic to identify corre-

lations between node states and edge states. Li et al. [20]

proposed to aggregate neighbor nodes based on discrete ad-

jacency matrix and update hidden state for each node by

Gated Recurrent Unit [3]. Battagelia et al. [1] employed

a neural network to calculate messages with the concate-

nation of node hidden states and edge hidden states as in-

put. The update function is also a neural work that takes

hidden states and messages as input. Defferrard et al. [7]

employed the parameterized weights by the eigenvectors of

graph Laplacian L to calculate the messages. The sigmoid

activation function and the ReLU function were provided as

update functions. Most of these previous works employed

one type of message and the constant connections, which

can not reflect the sophisticated correlations among AUs in

real-world data. Li et al. [42] proposed a dynamic message

passing network that adaptively generates the weighted ad-

jacency matrix for message passing. However, one type of

message is still limited to representing all useful informa-

tion from neighbor nodes. To provide more effective way

to aggregate messages, we exploit more types of messages

and dynamically combine these messages.

3. Method

The overall architecture of the proposed method is pre-

sented in Figure 2. We use adjacency matrix A to repre-

sent the graph structure. Inspired by Bayesian inference,

deep features are learned by considering different possi-

ble dependencies among AUs in a Bayesian manner. Par-

ticularly, different structures are sampled via the proposed

performance-driven MCMC sampling approach, based on

which we perform the hybrid message passing. The fi-

nal output is obtained through the integration over all the

sampled candidate structures. Our method is formulated as

Bayesian inference, i.e.,

p(h|D) =

∫

p(h|A,D)p(A|D)dA

≈
K
∑

k=1

p(h|Ak,D), A
k ∼ p(A|D)

=
K
∑

k=1

fHMP(D,Ak),

(1)

where h is the output of our message passing method, i.e.,

node feature, D is the data, Ak is the k-th sample gener-

ated from p(A|D) and fHMP is the hybrid message passing.

More possible structures from the posterior distribution of

graph should be considered for message passing. Below, we

first introduce performance-driven MCMC sampling to gen-

erate structure samples, and then the hybrid message pass-

ing algorithm, i.e., fHMP, finally hybrid message passing

with performance-driven sampled structures.

3.1. Performance­Driven MCMC Sampling for Dis­
crete Structure Learning

As shown in Eq.(1), we first need to obtain the posterior

distribution of graph such that multiple graph structures can

be considered. Directly estimating the posterior p(A|D) is

intractable and there is no analytic solution. For structure

learning, Metropolis Hasting Monte Carlo Markov Chain

sampling (MH-MCMC) [14] can be applied to sample an

ensemble of graph structures to approximate posterior dis-

tribution of graph structure, i.e., p(A|D). p(A|D) can be

represented as p(A|D) = p(D|A)p(A)
p(D) . Given an uniform

prior p(A), p(A|D) is proportional to p(D|A), and thus
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Figure 3. The framework of performance-driven MCMC sampling

method to generate the graph structures.

thus structures can be samples based on data likelihood

p(D|A) to approximate p(A|D). The sampled structures

have high data likelihood and characterize the goodness of

fit to data.

We use adjacency matrix, i.e., A ∈ R
N×N to represent

graph structure. N is the number of nodes. If there is an

edge from node i to node j, Ai,j should be 1, otherwise 0.

A is symmetric for undirected graph and is asymmetric for

directed graph or directed acyclic graph. In MH-MCMC,

given current sample An, a proposal probability of An+1

is required for generating the next sample An+1. and the

proposal probability is defined as

ppro(An+1) =
1

N (An)
, (2)

in which N (An) denotes the number of neighbor graph of

An. Particularly, the neighbor graph of An is obtained

by revising one edge of An, which means the neighbor

graph of An only contains one different edge compared to

An. Given the proposed graph sampled from the proposal

probability, the acceptance probability is defined to decide

whether to accept this new graph. The acceptance probabil-

ity can be calculated by

pacc(An+1) = min{1,
p(D|An+1)

p(D|An)
·
ppro(An+1)

ppro(An)
}, (3)

in which p(D|An+1) is the likelihood of An+1. Assuming

uniform p(A), the posterior p(A|D) is proportional to the

likelihood p(D|A) such that the sampled graphs can draw

the distribution of posterior p(A|D) based on the likeli-

hood p(D|A). A new graph with higher data likelihood has

higher probability to be accepted.

For classification tasks, we want to sample the graph

structures with higher classification accuracy. Previous

MH-MCMC sampling is based on the likelihood of graph to

generate samples. We propose performance-driven MCMC

sampling method to conduct the sampling process based on

the performance of neural network such that we can ensure

the next sampled structure has high probability to outper-

form the current one. The accept probability is defined as

pacc(An+1) = min{1,
acc(An+1, w)

acc(An, w)
·
ppro(An+1)

ppro(An)
},

(4)

in which acc(An+1, w) is the classification accuracy of

neural network and w denotes the parameter of neural net-

work. As shown in Figure 3, we can iteratively gener-

ate a group of graph structures, which draw the distribu-

tion of the performance of neural network. Multiple graph

structures with high classification performance can be se-

lected and provide different types of dependencies among

nodes. For AU detection, we employ the F1 score to es-

timate the performance. The graph structures with top K

highest F1 score, i.e., {Ak}Kk=1 are used as the candidate

graph structures for MPNN such that more possible depen-

dencies among nodes can be captured.

3.2. Hybrid Message Passing
In Eq.(1), we try to develop a more effective message

passing function to improve the performance. MPNN itera-

tively updates the node features by propagating information

between neighbor nodes, which provides the graph repre-

sentation. Generally, given the node features, we can use

message functions and update functions to characterize the

message passing neural network as
{

ml
i = F(hl

i, {h
l
j |j ∈ N (i)})

hl+1
i = U(hl

i,m
l
i),

(5)

in which hl
i is the node feature for node i in the l-th layer,

ml
i denotes the total message that node i received, N (i) de-

notes the neighbor nodes of node i, F is the message func-

tion and U is the update function.

Although previous studies about MPNNs [13, 9, 1] pro-

posed different methods to calculate messages, most of

them employ one type of message to propagate the infor-

mation. For real-world data, it is not sufficient to consider

only one type of message. Especially for facial AUs, some

are positive related and some are negative related. Besides,

the individual differences may also induce the diversity of

AU dependencies. Therefore, it is necessary to combine

different types of messages and provide more complemen-

tary information for message passing. As shown in Figure

4, we propose the hybrid message passing (HMP) to dy-

namically combine different messages. If there is a path-

way from node j to node i, given the node features (hidden

states), i.e., hi and hj ∈ R
1×d, for node i and node j, we

define three types of messages as










mls
i,j = MLPs(h

l
i + hl

j)

mlc
i,j = MLPc(cat[hl

i, h
l
j ])

mld
i,j = MLPd(h

l
i − hl

j),

(6)

in which mls denotes the summation message for the l-th

layer, mlc denotes the concatenation message and mld de-

notes the differential message. MLPs, MLPc and MLPd

are different Multilayer Perceptrons (MLP) to estimate dif-

ferent messages. Different types of messages can reflect

different dependencies, which provide a potential way to

exploit more complementary information. Rather than pro-

viding equal or constant weights for different messages, we
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Figure 4. Left: Traditional message passing with one type of mes-

sage. Right: Hybrid massage passing with three types of mes-

sages. Different colors of arrows denote different messages and

the thickness of arrow denotes the value of dynamic weight.

propose to generate the dynamic weights to adaptively se-

lect important messages and suppress the useless messages.

Inspired by attention mechanism [35, 37], for each path-

way, we employ an additional branch to generate the dy-

namic weights to combine different messages. The dynamic

weights can be calculated by

plij = softmax(Cat[hl
i, h

l
j ]W + b), (7)

in which plij ∈ R
1×3 is a vector to represent the weights for

three types of messages. W ∈ R
2d×3 and b ∈ R

1×3 are

parameters of this additional branch. The total message that

node i received can be expressed as

ml
i = FHMP(h

l
i, {h

l
j |j ∈ N (i)}) =

∑

j∈N (i)

ml
i,j

=
∑

j∈N (i)

plij1m
ls
i,j + plij2m

lc
i,j + plij3m

ld
i,j ,

(8)

in which FHMP denotes the hybrid message function to cal-

culate the combined message that node i received. The up-

dated feature for node i can be represented as

hl+1
i = U(hl

i,m
l
i) = ReLU(ml

i), (9)

in which ReLU is the update function and hl+1 is the up-

dated feature for node i. After training, for different inputs,

i.e., the node features, the network will adaptively generate

different weights to select useful messages, which provides

an effective way to measure the dependencies among AUs.

3.3. Hybrid Message Passing with Performance­
Driven Structures

In Eq.(1), different hybrid message passing layers with

different structures are combined. Based on the struc-

ture samples from P-MCMC sampling and the hybrid mes-

sage passing, we propose hybrid message passing with

performance-driven structures. The hybrid message pass-

ing layer with one graph structure can be expressed as

hl+1
i = fHMP(h

l
i, {h

l
j |j ∈ N (i)},A), (10)

where fHMP is the hybrid message passing layer (HMP) with

one sampled structure A to update the feature for node i.

The proposed P-MCMC sampling can generate the struc-

tures with high performance. These graph structures repre-

sent different dependencies among AUs. To utilize these

dependencies, we propose to combine different graph struc-

tures. Rather than providing equal weights, we provide the

dynamic weights to measure the contributions of different

graph structures. We use Hl = [hl
1; ...;h

l
N ] ∈ R

N×d to de-

fine the features of all nodes for the l-th layer. Let N be the

number of nodes and d is the dimension of node feature. As

shown in Figure 2, we use an adaptive branch to generate

the weights for different graph structures:

τ l = softmax((HlP + B)Q), (11)

in which P ∈ R
d×1, B ∈ R

N×1 and Q ∈ R
N×K are the

parameters of neural network. τ l ∈ R
K is the weights in

the l-th layer for different graph structures.

Specifically, the updated feature of our hybrid message

passing with performance-driven structures (HMP-PS) for

node i can be represented as

hl+1
i =

K
∑

k=1

τ lkfHMP(h
l
i, {h

l
j |j ∈ N (i)},Ak), (12)

in which τ lk is the k-th element of τ l. The updated node

feature is the linear combination of multiple hybrid message

passing layers with different graph structures by a group of

dynamic weights. For different input data, adaptive branch

adaptively generates the weights to select graph structures.

3.4. Loss Function

As shown in Figure 2, we employ ResNet18 [15] as the

backbone network to extract disentangled features for dif-

ferent AUs, which is similar with [23] (more details about

AU feature generation are in supplemental material). Af-

ter we obtain the disentangled features for different AUs,

we employ two HMP-PS layers to extract more discrimi-

native features. For each AU, one fully connected layer is

provided to reduce the feature dimension and one softmax

layer is employed to output probability of AU occurrences.

The total loss can be written as

L =
N
∑

c=1

[yclog(p(yc)) + (1− yc)log(1− p(yc))], (13)

in which L is total loss and yc is ground truth of the c-th AU.

p(yc) is predicted probability for the c-th AU occurrence.

4. Experiments

4.1. Setting

Datasets: In this paper, we evaluate our algorithm in

two widely used benchmark datasets, i.e., BP4D [43] and

DISFA [21]. BP4D is a spontaneous facial AU dataset that

includes 41 subjects with 18 male and 23 females. There are

8 sessions for each subject such that this dataset contains to-

tal 328 videos for 41 subjects. Specifically, about 140,000

frames are annotated with AU labels. 12 AUs are used

for evaluation with the subject-exclusive three-fold cross-

validation experiment protocol, which is consistent with
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Table 1. The F1 score (in %) for the recognition of 12 AUs reported by the proposed HMP-PS and the state-of-the-art methods on the BP4D

dataset. The best results are indicated using bold.

Methods AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg

DRML [45] 36.4 41.8 43.0 55.0 67.0 66.3 65.8 54.1 33.2 48.0 31.7 30.0 48.3

ROI [18] 36.2 31.6 43.4 77.1 73.7 85.0 87.0 62.6 45.7 58.0 38.3 37.4 56.4

DSIN [4] 51.7 40.4 56.0 76.1 73.5 79.9 85.4 62.7 37.3 62.9 38.8 41.6 58.9

MLCR [23] 42.4 36.9 48.1 77.5 77.6 83.6 85.8 61.0 43.7 63.2 42.1 55.6 59.8

JAA-Net [26] 47.2 44.0 54.9 77.5 74.6 84.0 86.5 61.9 43.6 60.3 42.7 41.9 60.0

ARL [27] 45.8 39.8 55.1 75.7 77.2 82.3 86.6 58.8 47.6 62.1 47.4 55.4 61.1

CMS [25] 49.1 44.1 50.3 79.2 74.7 80.9 88.3 63.9 44.4 60.3 41.4 51.2 60.6

SRERL [17] 46.9 45.3 55.6 77.1 78.4 83.5 87.6 60.6 52.2 63.9 47.1 53.3 62.9

LP-Net [24] 43.4 38.0 54.2 77.1 76.7 83.8 87.2 63.3 45.3 60.5 48.1 54.2 61.0

HMP-PS 53.1 46.1 56.0 76.5 76.9 82.1 86.4 64.8 51.5 63.0 49.9 54.5 63.4

Table 2. The F1 score (in %) for the recognition of 8 AUs reported by our HMP-PS and the state-of-the-art methods on the DISFA dataset.

Methods AU1 AU2 AU4 AU6 AU9 AU12 AU25 AU26 Avg

DRML [45] 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 21.8

ROI [18] 41.5 26.4 66.4 50.7 8.5 89.3 88.9 15.6 48.5

DSIN [4] 42.4 39.0 68.4 28.6 46.8 70.8 90.4 42.2 53.6

JAA-Net [26] 43.7 46.2 56.0 41.4 44.7 69.6 88.3 58.4 56.0

ARL [27] 43.9 42.1 63.6 41.8 40.0 76.2 95.2 66.8 58.7

CMS [25] 40.2 44.3 53.2 57.1 50.3 73.5 81.1 59.7 57.4

SRERL [17] 45.7 47.8 59.6 47.1 45.6 73.5 84.3 43.6 55.9

LP-Net [24] 29.9 24.7 72.7 46.8 49.6 72.9 93.8 65.0 56.9

HMP-PS 38.0 45.9 65.2 50.9 50.8 76.0 93.3 67.6 61.0

previous works [17, 26]. DISFA is also a spontaneous fa-

cial AU datasets with AU intensity labels. The facial images

with AU intensities equal or greater than 2 are considered as

the occurrence of AU. 27 videos are recorded from 12 fe-

males and 15 males and each video contains 4,845 images.

In this paper, we conduct subject-exclusive three-fold cross-

validation experiment protocol to evaluate our method and

8 AUs are provided for this experiment, which follows the

same setting with previous studies [17, 26].

Evaluation Metrics: F1 score is provided to evaluate our

algorithm. F1 score is often applied to binary classification

with imbalanced data. Given the precision p and the recall

r, F1 score is calculated by F1 = 2 p·r
p+r

. The F1 score of the

positive class is provided for AU detection.

Implementation Details: During the node feature extrac-

tion for AUs, we employed ResNet18 [15] model pre-

trained on ImageNet [8] as the initial model. And then, we

use the training data to train ResNet18 to extract the AU

features. For each facial image, we cropped the face region

and resized the cropped image into 256×256. And then,

these facial images are randomly cropped to 224×224 and

the random horizontal flipping is also used for data augmen-

tation. The dimension of each AU feature, i.e., d is set to

512. The learning rate is 0.001 and the batch size is 64.

For P-MCMC sampling, the architecture of the neural

network is: Backbone− HMP− HMP− FC− Softmax,

in which we employ two hybrid message passing layers

to test the performance, i.e., the averaged F1 score. The

graph structure is directed graph. 100 graph structures are

accepted and we select the graph structures with the top-

5 highest F1 scores as the candidate graph structures for

HMP-PS. The learning rate to train the neural network is

set to 0.001 and the batch size is set to 64.

For our HMP-PS, the architecture of neural network is:

Backbone − HMP-PS − HMP-PS − FC − Softmax , in

which employ two HMP-PS layers to predict the AU occur-

rence. The dimension of each type of message is set to 512

and the learning rate is set to 0.001. The batch size is set to

64. All the experiments are implemented with PyTorch on

a GeForce RTX 2080 GPU.

4.2. Compared with the State­of­the­art Methods

We compare our HMP-PS algorithm with the state-of-

the-art methods under the same subject-exclusive three-fold

cross-validation experiment protocol on BP4D and DISFA.

DRML [45], ROI [18], DSIN [4], MLCR [23], JAA-Net

[26], ARL [27], CMS [25], SRERL [17] and LP-Net [24]

are provided for comparison. Specifically, we focus on

frame-based AU detection in this paper such that ROI-

LSTM [18] and STRAL [28] are not presented as compar-

ison. To provide a fair comparison, we directly use the re-

sults of DRML, ROI, DSIN, JAA-Net, ARL, CMS, SRERL

and LP-Net reported in [45, 18, 4, 23, 26, 27, 25, 17, 24].

Table 1 provides the results of various state-of-the-art

methods on BP4D. Specifically, all the comparison methods

are based on deep models, which have good feature repre-

sentation capabilities. However, our HMP-PS still achieves
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Table 3. The F1 score (in %) of ablation experiments for the recognition of 12 AUs on the BP4D database reported by hybrid message

passing neural networks with different types of graph structures. ’w/o’ denotes ’without’.

Methods AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg

HMP-PS (w/o graph) 54.1 45.6 54.1 74.4 74.3 81.6 85.7 57.1 47.2 57.1 42.8 41.5 59.6

HMP-PS (with full connected graph) 48.6 41.4 54.1 72.4 72.8 79.5 84.3 60.8 42.4 58.2 40.1 48.9 58.6

HMP-PS (with prior graph) 53.5 46.2 53.5 75.7 74.4 82.7 86.0 61.7 49.8 59.8 43.6 49.0 61.3

HMP-PS (with gradient-based graph) 52.8 46.2 54.0 75.7 75.0 82.6 86.4 62.2 49.0 59.7 46.8 50.5 61.7

HMP-PS 53.1 46.1 56.0 76.5 76.9 82.1 86.4 64.8 51.5 63.0 49.9 54.5 63.4

Table 4. AU correlations from anatomy defined in FCAS[10].

AU correlation AUs

positive
(1,2), (4,7), (4,9), (6,12),

(9,17), (15,24), (17,24), (23,24)

negative (2,6), (2,7), (12,15), (12,17)

the highest averaged F1 score, i.e., 63.4, and outperforms

other state-of-the-art approaches. SRERL and MLCR ex-

ploited the semantic dependencies among AUs to enhance

the deep neural networks. Both SRERL and LP-Net utilized

additional landmark labels. Our HMP-PS still achieves bet-

ter results, which indicates that our method is more effec-

tive to characterize the sophisticated dependencies among

AUs. Both JAA-Net and ARL employed attention mecha-

nism to find the regions of interest and we also utilize at-

tention mechanism to select useful messages, which also

validates the effectiveness of our algorithm to dynamically

combine different messages. Our method performs well on

hard AUs, like AU1, AU2 and AU23, which have lower F1

scores compared with other AUs. All the results on BP4D

can validate the effectiveness of the proposed HMP-PS.

Table 2 provides the results of HMP-PS and the state-

of-the-art methods on DISFA. HMP-PS also achieves best

performance with averaged F1 score, i.e., 61.0, which out-

performs much better than SRERL by 5.1. All these re-

sults show the effectiveness of our method. The proposed

P-MCMC sampling can generate multiple effective graph

structures, which tend to have high performance. We con-

sider more possible graph structures to represent dependen-

cies among AUs and hybrid message passing provides more

effective way to propagate the complementary information.

4.3. Ablation Study

To investigate the effectiveness of each part in our HMP-

PS, we provide ablation study for further analysis.

Multiple Sampled Graph Structures: In our HMP-PS

model, as shown in Figure 4, multiple hybrid message pass-

ing layers with different graph structures are combined to

capture the dependencies among AUs. To validate the effec-

tiveness of different graph structures generated by proposed

P-MCMC sampling, we provide the results of ablation ex-

periments with different types of graph in Table 3. First, we

provide the results of baseline methods, i.e, HMP-PS(w/o

graph) and HMP-PS (with full connected graph). Further,

we use the prior knowledge in Table 4 defined in FACS [10]

to construct the graph structure of our model, i.e., HMP-

PS (with prior graph). We can see the graph structure will

directly affect the performance of our model on AU detec-

tion. Particularly, we provide the result of gradient-based

method, i.e, HMP-PS (with gradient-based graph). The

Gumbel-Sigmoid function [2] is employed to generate the

discrete graph structure. Finally, we provide the result of

HMP-PS. The performance of HMP-PS achieves signifi-

cant improvement compared with other baseline methods,

which validates the effectiveness of our P-MCMC sampling

method to generate the graph structures and the advantage

of multiple graph structures combination.

Table 5. The F1 score (in %) of ablation experiments on BP4D

and DISFA reported by HMP-PS with different types of dynamic

weights, i.e., τ and p.

Methods BP4D DISFA

HMP-PS (w/o both weights) 60.8 59.0

HMP-PS (w/o dynamic weights τ ) 62.5 60.4

HMP-PS (w/o dynamic weights p) 61.0 59.7

HMP-PS 63.4 61.0

Dynamic Weights for Multiple Graph Structures: In our

HMP-PS model, multiple hybrid message passing networks

with different graph structures are combined by dynamic

weights τ . To validate the effectiveness of dynamic weights

τ , we compare our HMP-PS with HMP-PS (w/o dynamic

weights τ ) in Table 5 on both BP4D and DISFA. The dy-

namic weights τ are helpful to improve the performance of

our model and provide an effective way to combine the node

features generated from different graph structures.

Dynamic Weights for Different Messages: For our HMP-

PS, we dynamically combine different types of messages by

using dynamic weights p. We also compare HMP-PS with

HMP-PS (w/o dynamic weights p) in Table 5. The results

indicate that dynamic weights p can significantly improve

the performance of our model on AU detection. Besides,

we also employ HMP-PS without both τ and p as a baseline

method, which validates the effectiveness of τ and p.

Hybrid Messages: In our HMP-PS model, we employ

three types of general approaches to estimate the messages,

i.e., summation message, differential message and concate-

nation message. To estimate the effectiveness of our hybrid

message passing, we show the results with only one type of

message respectively, i.e., HMP-PS (with hi + hj), HMP-

PS (with hi − hj) and HMP-PS (with cat[hi, hj]), as the
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Table 6. The F1 score (in %) of ablation experiments on BP4D and

DISFA reported by HMP-PS with different types of messages.

Methods BP4D DISFA

HMP-PS (with hi + hj) 61.6 58.4

HMP-PS (with hi − hj) 51.5 46.1

HMP-PS (with cat[hi, hj ]) 62.3 58.9

HMP-PS (w/o hi − hj) 62.7 60.4

HMP-PS (hybrid features) 63.4 61.0

baseline methods in Table 6. Our HMP-PS achieves bet-

ter performance than that with only one type of message,

which indicates that combining different types of messages

to propagate the hybrid information is helpful for the infer-

ence. Especially, the differential feature has the lowest F1

score on both BP4D and DISFA. We remove the differen-

tial feature from the HMP-PS, i.e., HMP-PS (w/o hi − hj).

HMP-PS outperforms HMP-PS (w/o hi − hj), which indi-

cates that the differential message also contains useful in-

formation. The combination of different types of messages

are necessary to improve the generalization capabilities of

message passing neural networks.

(a) (b)

Figure 5. (a): The F1 scores of HMP-PS with different message di-

mensions on BP4D. (b): The F1 scores of HMP-PS with different

message dimensions on DISFA.

4.4. Influence of Message Dimension

To investigate the influence of message dimension, we

show the F1 scores with different message dimensions in

Figure 5. Overall, different message dimensions will gener-

ate small influence on the result. However, proper message

dimension is still helpful to achieve better performance. On

both BP4D and DISFA, we achieve the best results when

message dimension is set to 512. Small message dimension

or large message dimension will have lower F1 scores.

Table 7. Training time for one epoch and inference time for all test

data on BP4D.

Methods Training Inference

MLCR[23] 531s 77s

HMP-PS 685s 31s

4.5. Complexity analysis

The MCMC smapling is time-consuming, but can be

done off-line. Once MCMC is done, the training time and

inference time are not time consuming. In Table 7, we

show training and inference time of HMP-PS and LP-Net on

BP4D with a GeForce RTX 2080ti GPU. Our training time

is slightly longer than a graph-based method, i.e., MLCR

but the inference is much faster.

Figure 6. The visualized examples about the changes of dynamic

weights p in terms of different AU occurrences. The left two im-

ages show the weights of the link from AU6 to AU12. The right

two images show the weights of the link from AU23 to AU24.

‘Diff’ denotes the dynamic weight of differential message. ‘Sum’

denotes the dynamic weight of summation message. ‘Cat’ denotes

the dynamic weight of concatenation message. The AUs with red

color mean that these AUs occur and the AUs with green color

mean that these AUs don’t occur.

4.6. Visualization Analysis

To show the process that the hybrid message passing dy-

namically selects different messages, we visualize some ex-

amples in Figure 6. By comparing the first and the sec-

ond images, we can see that the differential message will

have larger weight if AU6 and AU12 occur. If both AU6

and AU12 don’t occur, the concatenation message will have

larger weight. As shown in the third and the fourth images,

we have the similar conclusion. The weight for the differen-

tial messages is 0.177 when AU23 and AU24 don’t appear.

If AU23 and AU24 appear, the weights for the differential

message will increase to 0.307 and the weights for concate-

nation message will decrease from 0.505 to 0.344. These

examples indicate that our hybrid message passing neural

network will adaptively select different messages based on

different input data, which provide an effective way to char-

acterize the dependencies among AUs.

5. Conclusion

In this paper, we focus on the graph structure learning

and message propagation. First, we propose performance-

driven MCMC sampling to generate multiple graph struc-

tures with high performance on AU detection. Second,

we propose the hybrid message passing so as to propagate

more complementary information. And then, we propose a

novel framework (HMP-PS) for AU detection, which ex-

ploits more possible dynamic dependencies and achieves

the state-of-the-art performance on two widely used AU de-

tection databases. In the future, more effective ways in-

spired by belief propagation to extract the message can be

applied to message passing neural networks.
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[7] Michaël Defferrard, Xavier Bresson, and Pierre Van-

dergheynst. Convolutional neural networks on graphs with

fast localized spectral filtering. In Advances in neural infor-

mation processing systems, pages 3844–3852, 2016. 1, 3

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009. 6

[9] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre,

Rafael Bombarell, Timothy Hirzel, Alán Aspuru-Guzik, and

Ryan P Adams. Convolutional networks on graphs for learn-

ing molecular fingerprints. In Advances in neural informa-

tion processing systems, pages 2224–2232, 2015. 1, 3, 4

[10] Rosenberg Ekman. What the face reveals: Basic and ap-

plied studies of spontaneous expression using the Facial Ac-

tion Coding System (FACS). Oxford University Press, USA,

1997. 1, 2, 7

[11] Yingruo Fan, Jacqueline CK Lam, and Victor On Kwok

Li. Facial action unit intensity estimation via semantic cor-

respondence learning with dynamic graph convolution. In

AAAI, pages 12701–12708, 2020. 1

[12] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and

Xiao He. Learning discrete structures for graph neural net-

works. arXiv preprint arXiv:1903.11960, 2019. 2

[13] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol

Vinyals, and George E Dahl. Neural message passing for

quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

1, 2, 3, 4

[14] Paolo Giudici and Robert Castelo. Improving markov chain

monte carlo model search for data mining. Machine learn-

ing, 50(1-2):127–158, 2003. 2, 3

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 1, 5, 6

[16] Eric Jang, Shixiang Gu, and Ben Poole. Categorical

reparameterization with gumbel-softmax. arXiv preprint

arXiv:1611.01144, 2016. 2

[17] Guanbin Li, Xin Zhu, Yirui Zeng, Qing Wang, and Liang

Lin. Semantic relationships guided representation learning

for facial action unit recognition. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 33, pages

8594–8601, 2019. 1, 2, 6

[18] Wei Li, Farnaz Abtahi, and Zhigang Zhu. Action unit de-

tection with region adaptation, multi-labeling learning and

optimal temporal fusing. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1841–1850, 2017. 2, 6

[19] Wei Li, Farnaz Abtahi, Zhigang Zhu, and Lijun Yin. Eac-

net: Deep nets with enhancing and cropping for facial action

unit detection. IEEE transactions on pattern analysis and

machine intelligence, 40(11):2583–2596, 2018. 2

[20] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard

Zemel. Gated graph sequence neural networks. arXiv

preprint arXiv:1511.05493, 2015. 3

[21] S Mohammad Mavadati, Mohammad H Mahoor, Kevin

Bartlett, Philip Trinh, and Jeffrey F Cohn. Disfa: A spon-

taneous facial action intensity database. IEEE Transactions

on Affective Computing, 4(2):151–160, 2013. 5

[22] Ignavier Ng, Zhuangyan Fang, Shengyu Zhu, and Zhitang

Chen. Masked gradient-based causal structure learning.

arXiv preprint arXiv:1910.08527, 2019. 2

[23] Xuesong Niu, Hu Han, Shiguang Shan, and Xilin Chen.

Multi-label co-regularization for semi-supervised facial ac-

tion unit recognition. In Advances in Neural Information

Processing Systems, pages 909–919, 2019. 1, 2, 5, 6, 8

[24] Xuesong Niu, Hu Han, Songfan Yang, Yan Huang, and

Shiguang Shan. Local relationship learning with person-

specific shape regularization for facial action unit detection.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 11917–11926, 2019.

6

[25] Nishant Sankaran, Deen Dayal Mohan, Srirangaraj Setlur,

Venugopal Govindaraju, and Dennis Fedorishin. Represen-

tation learning through cross-modality supervision. In 2019

14th IEEE International Conference on Automatic Face &

Gesture Recognition (FG 2019), pages 1–8. IEEE, 2019. 6

[26] Zhiwen Shao, Zhilei Liu, Jianfei Cai, and Lizhuang Ma.

Deep adaptive attention for joint facial action unit detection

and face alignment. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), pages 705–720, 2018. 1,

6

[27] Zhiwen Shao, Zhilei Liu, Jianfei Cai, Yunsheng Wu, and

Lizhuang Ma. Facial action unit detection using attention

and relation learning. IEEE Transactions on Affective Com-

puting, 2019. 1, 2, 6

[28] Zhiwen Shao, Lixin Zou, Jianfei Cai, Yunsheng Wu,

and Lizhuang Ma. Spatio-temporal relation and attention

6275



learning for facial action unit detection. arXiv preprint

arXiv:2001.01168, 2020. 2, 6

[29] Tengfei Song, Lisha Chen, Wenming Zheng, and Qiang Ji.

Uncertain graph neural networks for facial action unit detec-

tion. In Proceedings of the AAAI Conference on Artificial

Intelligence, 2021. 2

[30] Tengfei Song, Suyuan Liu, Wenming Zheng, Yuan Zong, and

Zhen Cui. Instance-adaptive graph for eeg emotion recogni-

tion. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 34, pages 2701–2708, 2020. 2

[31] Tengfei Song, Suyuan Liu, Wenming Zheng, Yuan Zong,

Zhen Cui, Yang Li, and Xiaoyan Zhou. Variational instance-

adaptive graph for eeg emotion recognition. IEEE Transac-

tions on Affective Computing, (01):1–1, 2021. 2

[32] Tengfei Song, Wenming Zheng, Peng Song, and Zhen Cui.

Eeg emotion recognition using dynamical graph convolu-

tional neural networks. IEEE Transactions on Affective Com-

puting, 2018. 2

[33] Bowen Tang, Skyler T Kramer, Meijuan Fang, Yingkun Qiu,

Zhen Wu, and Dong Xu. A self-attention based message

passing neural network for predicting molecular lipophilic-

ity and aqueous solubility. Journal of Cheminformatics,

12(1):1–9, 2020. 2

[34] Martin Trapp, Robert Peharz, Hong Ge, Franz Pernkopf, and

Zoubin Ghahramani. Bayesian learning of sum-product net-

works. In Advances in Neural Information Processing Sys-

tems, pages 6347–6358, 2019. 3

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In Advances in neural

information processing systems, pages 5998–6008, 2017. 5

[36] Robert Walecki, Vladimir Pavlovic, Björn Schuller, Maja

Pantic, et al. Deep structured learning for facial action unit

intensity estimation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3405–

3414, 2017. 2

[37] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng

Li, Honggang Zhang, Xiaogang Wang, and Xiaoou Tang.

Residual attention network for image classification. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 3156–3164, 2017. 5

[38] Shangfei Wang, Longfei Hao, and Qiang Ji. Knowledge-

augmented multimodal deep regression bayesian networks

for emotion video tagging. IEEE Transactions on Multime-

dia, 22(4):1084–1097, 2019. 1

[39] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,

Chengqi Zhang, and S Yu Philip. A comprehensive survey

on graph neural networks. IEEE Transactions on Neural Net-

works and Learning Systems, 2020. 2

[40] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.

Snas: stochastic neural architecture search. arXiv preprint

arXiv:1812.09926, 2018. 2

[41] Yao Xue, Nilanjan Ray, Judith Hugh, and Gilbert Bigras.

Cell counting by regression using convolutional neural net-

work. In European Conference on Computer Vision, pages

274–290. Springer, 2016. 1

[42] Li Zhang, Dan Xu, Anurag Arnab, and Philip HS Torr. Dy-

namic graph message passing networks. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 3726–3735, 2020. 3

[43] Xing Zhang, Lijun Yin, Jeffrey F Cohn, Shaun Cana-

van, Michael Reale, Andy Horowitz, and Peng Liu. A

high-resolution spontaneous 3d dynamic facial expression

database. In 2013 10th IEEE International Conference

and Workshops on Automatic Face and Gesture Recognition

(FG), pages 1–6. IEEE, 2013. 5

[44] Yong Zhang, Weiming Dong, Bao-Gang Hu, and Qiang Ji.

Weakly-supervised deep convolutional neural network learn-

ing for facial action unit intensity estimation. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2314–2323, 2018. 1

[45] Kaili Zhao, Wen-Sheng Chu, and Honggang Zhang. Deep

region and multi-label learning for facial action unit detec-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3391–3399, 2016. 2,

6

6276


