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Abstract

Compared with image-based UDA, video-based UDA

is comprehensive to bridge the domain shift on both spa-

tial representation and temporal dynamics. Most previ-

ous works focus on short-term modeling and alignment

with frame-level or clip-level features, which is not dis-

criminative sufficiently for video-based UDA tasks. To ad-

dress these problems, in this paper we propose to estab-

lish the cross-modal domain alignment via self-supervised

contrastive framework, i.e., spatio-temporal contrastive do-

main adaptation (STCDA), to learn the joint clip-level

and video-level representation alignment. Since the ef-

fective representation is modeled from unlabeled data by

self-supervised learning (SSL), spatio-temporal contrastive

learning (STCL) is proposed to explore the useful long-

term feature representation for classification, using self-

supervision setting trained from the contrastive clip/video

pairs with positive or negative properties. Besides, we in-

volve a novel domain metric scheme, i.e., video-based con-

trastive alignment (VCA), to optimize the category-aware

video-level alignment and generalization between source

and target. The proposed STCDA achieves stat-of-the-art

results on several UDA benchmarks for action recognition.

1. Introduction

Unsupervised domain adaptation (UDA) has made great

progress on computer vision tasks with the improvement of

the representation ability on convolutional neural networks

(CNNs). It aims at transferring the knowledge from the la-

beled source domain with specific supervision to the target

domain with unlabeled data and the different domain dis-

tribution, for reducing dependencies on the comprehensive

∗ Corresponding authors.

This work was done during Xiaolin Song’s internship at Didi Chuxing.

S
o
u
rc
e

!&(⋅)

!'(⋅)

T
a
rg
e
t

!'(⋅)

!&(⋅)

➀

➁

➂

➃
Video-level Contrastive 

Domain Metric
Target ➂➃

Spatial➀➂

Temporal➁➃

Contrastive 

loss

Cross-entropy 

loss
Classifier

F
u
si

o
nSpatial➀

Temporal➁

Video-based Contrastive Alignment

Supervised Source Classification

Spatio-temporal Contrastive learning

Source ➀➁

..................................................

......................................................................

................................................................................

......................................................................

......................................................................

......................................................................

......................................................................

................................................................................

............................................................

Figure 1. Overview of STCDA framework. Spatio-temporal con-

trastive learning (STCL) and video-based contrastive alignment

(VCA) are proposed to model and align cross-domain features

with long-term spatio-temporal representation.

annotations and particular datasets. A great number of UDA

methods have been proposed for image-based benchmarks,

e.g., image classification [39, 34, 26], object detection

[11, 1, 13], and semantic segmentation [3, 6], which supply

the applications with unsupervised learning and leverage

impressive performance. However, the progress on UDA

for video analysis is still limited, since video-based UDA

tasks are more challenging. Firstly, video-based tasks need

to model the multi-dimension information, which includes

richer spatial appearance and temporal dynamics than im-

ages. Secondly, they require exploration of the association

and interaction in the space and time dimensions. Finally,

video UDA is essential to optimize the domain alignment in

both spatial and temporal association. Even though larger

datasets have been released with great diversity for video

understanding tasks, the applications on different scenes

are promoted in slow progress with limited generalization,

which rely on numerous unannotated videos for representa-

tion in the corresponding feature spaces.

In this paper, we address the challenging and valuable

task of UDA for action recognition in videos, and explore
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the spatio-temporal representation to facilitate video-level

modeling. Most previous UDA methods for action recog-

nition [15, 4] focus on the short-term temporal representa-

tion with frame-level or clip-level modeling, using adver-

sarial learning to align source and target features following

image-based UDA works. However, it is unreasonable to

ignore long-term modeling and alignment for video predic-

tion, which are essential for video-based UDA tasks.

Integrating self-supervision module is a creative explo-

ration for UDA to analyze the unannotated data for more

effective feature. With the development of self-supervised

algorithms, conducting supervised tasks with some cus-

tomized rules becomes essential to explore the intrinsic in-

formation and statistical characteristics of unlabeled data.

And these customized tasks are suitable for UDA to learn

the implicit properties of source and target data without any

labels. These tasks are suitable for UDA to learn the implicit

properties of source and target data without any labels. Fur-

thermore, self-supervision on the target data alone would

not exploit the performance in UDA tasks, and therefore

it is more reasonable to apply self-supervision on both the

source and target data. Most self-supervised learning (SSL)

methods [24, 9, 22, 18] are based on generative/predictive

tasks, with particular supervised functions. In contrast, con-

trastive methods learn representations by contrasting posi-

tive and negative samples, which are flexible for improv-

ing the capacity to model correlations or complex structures

with latent generalization, rather than overly pay attention

to detail tasks in generative methods.

Compared with pre-training on labeled data, CNNs

could obtain promising representing capability with

contrastive-learning-based pre-training. MoCo [10] bene-

fits downstream tasks with contrastive pre-training on Im-

ageNet dataset, and outperforms most image-based su-

pervised pre-training approaches. Thus the selection of

positive-negative samples plays a decisive role in ensur-

ing the quality of feature expression. Recent methods

[32, 31] exploit contrastive modeling for videos using cou-

pling networks, which are trained with frame-level or clip-

level positive-negative examples. However, self-supervised

contrastive learning for videos has been not leveraged for

long-term video-level representation. From this point of

view, we propose a novel decoupling framework for video

understanding based on spatio-temporal contrastive learn-

ing, with jointly global(video-level)-local(clip-level) mod-

eling in time dimension.

In addition, to optimize the feature alignment between

source and target domains, we propose a category-aware

video-level contrastive domain distance metric for UDA,

which aims at improving the discrimination via cross-

domain feature alignment. The alignment on clip and video

levels are utilized to draw closer the samples under the same

class and push apart the samples among different classes

between source and target domains. Specifically, we mea-

sure self-modal and cross-modal metric respectively for re-

ducing spatio-temporal domain shift. As shown in Figure

1, a novel spatio-temporal contrastive domain adaptation

(STCDA) framework is proposed to overcome the misalign-

ment in feature space and category confusion in different

domains for UDA on action recognition.

In summary, our contributions of the proposed frame-

work are as follows: (1) We design a novel spatio-temporal

contrastive learning (STCL) framework, for learning joint

clip-level and video-level feature representations by self-

supervision, which improves the generalization of local-

global temporal content modeling. (2) We propose a

novel domain metric, i.e., video-based contrastive align-

ment (VCA), to measure the video-level discrepancy be-

tween source and target domains. (3) Our proposed frame-

work achieves stat-of-the-art results on several domain

adaptation benchmarks for action recognition.

2. Related Work

Supervised action recognition. Supervised action recog-

nition methods have made great progress and achieved im-

pressive results using deep learning algorithms, especially

by leveraging CNNs for spatio-temporal information mod-

eling with various network architectures. Two-stream net-

works [29] utilize the multi-modal architecture and fuse the

prediction of each modality, i.e., appearance stream and mo-

tion stream. TSN [35] is an impressive extension of the two-

stream networks and leverages the long-term temporal mod-

eling as the input via sparse sampling of each video in time

domain. Besides, for temporal modeling via 3D convolu-

tion, C3D [33] uses a full 3D convolutional-layer architec-

ture for spatio-temporal feature extraction. I3D [2] uses an

inflated Inception architecture with 3D convolutional layers

utilized in each stage. In addition, some methods aim at

long-term temporal context modeling, e.g., non-local net-

work [36]. However, these supervised action recognition

approaches are still limited with the dependency on anno-

tated labels for each clip. There is no guarantee of the ro-

bust performance if the algorithms are directly transferred

to another domain, due to the presence of domain shift.

Self-supervision. Self-supervision is used to learn the

feature representation with the prior characters supervised

instead of the annotation supervised. Image-based self-

supervised methods address the spatial content association

to generalize the image representation, e.g., image coloriza-

tion [17] to perceive the color prior of natural images, and

jigsaw puzzle [24] and rotation prediction [9] to learn the

relative position correspondence. Furthermore, video-based

self-supervised methods aim at exploring the content and

association in both space and time dimensions. For con-

ducting generative/predictive tasks, Misra et al. [22] pro-

pose an unsupervised sequential task for temporal order
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verification. OPN [18] predicts the correct order of tem-

porally shuffled sequences for frame sorting. Xu et al.

[38] propose a clip order prediction framework to learn the

spatio-temporal video representation by sorting the order of

shuffled clips. MocycleGAN [5] uses optical-flow-based

correspondence warping to optimize the pixel-wise detail

characterization for unpaired video translation. For con-

ducting contrastive tasks, Wang and Gupta [37] propose a

Siamese-triplet network with a ranking loss to learn visual

positive-negative representations from videos. MoCo [10]

uses a momentum contrast mechanism to update the query

encoder in the decoupling networks. CMC [32] utilizes a

multi-view self-supervised contrastive framework, and uses

RGB and optical flow for frame-level contrastive learning.

IIC [31] leverages an inter-intra contrastive framework with

preset positive-negative samples for clip-level representa-

tion, which however uses a coupled network and modified

optical flow clips of only one direction (u in x-axis direction

or v in y-axis direction).

Unsupervised Domain Adaptation. Unsupervised domain

adaptation (UDA) methods have been widely proposed for

image-based tasks. DAN [20] and JAN [21] are proposed to

align the joint distributions by minimizing maximum mean

discrepancy (MMD) and joint maximum mean discrepancy

(JMMD) between source and target domains, respectively.

CAN [16] models the domain discrepancy based on inter-

intra classes. Recently, there are several works on video do-

main adaptation. DAAA [15] utilizes an adversarial learn-

ing framework with 3D CNN to align source and target do-

mains. TA3N [4] leverages a multi-level adversarial frame-

work with temporal relation and attention mechanism to

align the temporal dynamics of feature space for videos.

TCoN [25] matches the feature distributions between source

and target domains, for temporal alignment using the cross-

domain co-attention mechanism.

Several methods also leverage video domain adaptation

using SSL auxiliary. MM-SADA [23] learns the multi-

modal correspondence of RGB and optical flow for self-

supervised domain adaptation. SAVA [7] proposes a self-

supervised predictive method for video domain adaptation,

which aims to predict the clip order with the adversarial

loss. However, there is no exploration on video domain

adaptation with self-supervised contrastive learning. We

propose a contrastive framework to model decoupled rep-

resentation of different modalities, and combine with the

proposed video-based contrastive metric for self-supervised

action recognition.

3. Method

In this section, we present the main building blocks of

the proposed spatio-temporal contrastive domain adaptation

(STCDA) framework for action recognition. The overview

of our STCDA is shown in Figure 1. For UDA, we con-

duct the network in two parts to capture the semantic infor-

mation from input videos. First, we build a video-based

contrastive learning framework for self-supervised learn-

ing (SSL), aiming at improving the clip-level and video-

level generalization capacity in the target domain. Sec-

ond, we propose the video-based contrastive distance met-

ric for mitigating the domain shift of data distribution be-

tween two domains. Each operation is adapted in both clip

and video levels, and the details of the framework are pre-

sented in Figure 2. Formally, denote the source samples as

S = {(XS
1 , y

S
1 ), ..., (X

S
NS , y

S
NS )}, and the target samples

as T = {XT
1 , , ..., XT

NT }. In each domain, x is denoted as

a clip of the entire video X . Denote the feature extractor as

φm(·), and m ∈ {S,T} is the modality of the input frames,

with S of spatial RGB and T of temporal optical flow.

3.1. Spatio-temporal Contrastive Learning

To conduct a video-based self-supervision task for UDA,

there are several key points to consider: (1) The built task is

helpful to promote the network to mine the essential video-

level representation of various inputs and spatio-temporal

association for video classification. (2) For domain adap-

tation objective, the proposed SSL framework should be

able to optimize the model to reduce the domain shift be-

tween source and target in feature space, and tries to learn

the representation in shared feature distribution. (3) The

SSL task should not bias the objective DA task overly, i.e.,

action recognition, and it provides a classification-aware

structure basis for the design to optimize video DA sys-

tem. Taking above points into consideration, we propose

a spatio-temporal contrastive learning (STCL) network for

self-supervised action recognition.

Unlike CMC [32] and IIC [31], we design a decoupling

SSL task for symmetrical modeling in spatial and tempo-

ral dimensions from RGB and optical flow individually due

to the different characteristics of the features. We involve

the clip-level and video-level contrastive losses for local-

global temporal content SSL expression, respectively. Es-

pecially, we expand the positive-negative selection for each

level. The positive clip samples are leveraged with the help

of video-level samples to improve the modeling robustness

from the disturbance of individual clips. At the clip level,

the positive samples are corresponding frames in another

modality or video aggregation in the same modality with

correct time order, and the negative samples are with wrong

time order or wrong pose frame. Similarly, at the video

level, the positive sample is the corresponding video in an-

other modality, and the negative samples are the aggregation

samples with at least one negative clips. The intra-negative

samples on the clip and video levels are selected as Fig-

ure 3. Formally, the clip-level feature is denoted as v and

v = φm(x), and the video-level feature V is the aggrega-

tion of multiple clip feature {vi}. The spatial and temporal
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Feature Space

Figure 2. The details of STCDA with two key operations. (a) Spatio-temporal Contrastive Learning (STCL) to the essential video-level

representation by self-supervision (Use the RGB modality as the example). (b) Video-based contrastive alignment (VCA) to bridge the

domain shift by video-level category-aware measurement.

4’
3
1’
2’

4
3
2
1

3
4
1
2

4’
3
2’
1’

Spatial-negative Temporal-negativeClip anchor

4
3
2
1 5

6
7
8

9
10

11
12

4
3
2
1 5

6
7
8

9
10

11
12

5
6

7
8

9
10

11
12

Clip-level

Video-level

V
id

e
o

a
n

c
h

o
r

O
rd

e
r 

n
e
g

a
ti

v
e

C
li

p
 n

e
g

a
ti

v
e

Figure 3. Intra-negative samples at the clip/video level. At the clip

level, ‘Spatial-negative’ is the negative sample with wrong pose

frames, like random horizontal/vertical flip and rotation of some

frames in the clip, shown as 1’, 2’, and 4’, and ‘Temporal-negative’

is with the wrong time order. At the video level, ‘Order negative’

is with wrong clip order in the video, and ‘Clip negative’ is with

at least one negative clip.

networks are the two views of contrastive learning here, and

the clip-level and video-level losses are defined as follows

respectively (Take the first view (v1 and V 1) as the sample):

L
v1

i

clip
=

− log
Θ({v1i , V

1}) + Θ({v1i , v
2
i })

Θ({v1i , V
1}) +

k+1
∑

j=1

Θ({v1i , v
2
j }) +

k+1
∑

j=1

Θ({v1i , v
neg
j })

,

(1)

LV 1

vid = − log
Θ({V 1, V 2})

Θ({V 1, V 2}) + Θ({V 1, V neg})
, (2)

where vneg and V neg are intra-negtive features at the clip

level and the video level, respectively. The measurement

Θ({·, ·}) is defined as follows:

Θ({v1i , v
2
j }) = exp





v1i · v2j
∥

∥v1i

∥

∥ ·
∥

∥

∥v2j

∥

∥

∥

·
1

τ



 , (3)

where τ is a scalar hyper-parameter. The contrastive loss

for unlabeled videos X ∈ {S ∪ T } is combined with the

clip-level and video-level terms as follows:

LContrast = E
X

∑

m∈{S,T}

[

E
i

(

L
vm

i

clip

)

+ LV m

vid

]

. (4)

3.2. Video-based Contrastive Domain Alignment

To reduce the domain gap in distributions of different

domains, the network should be able to capture the content

and build up the relevance for generalization by UDA. How-

ever, self-supervision task is class-agnostic without any an-

notation. To compensate the representation on recogni-

tion for the network, we propose a video-level category-

aware distance metric, i.e., video-based contrastive align-

ment (VCA), to map the source and target data to a unified

feature space, and measure the inter-intra distance with the

auxiliary of the class label on source data and pseudo-label

on target data. This operation aims to jointly maximize

the discrepancy and separate the representations from dif-

ferent categories, and minimize the discrepancy and com-

pact the features from the same class in the feature space of

clip/video samples.

Similar to MMD [20], VCA defines the difference of

features extracted from source and target in the reproduc-

ing kernel Hilbert space (RKHS). Formally, denote κm

as the kernel of the feature from the spatial/temporal net-

work. Here clip-level and video-level features share the

same kernel in each modality m. Given a pair of video
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data and the labels (or pseudo-labels)(X, y), for domain

d1, d2 ∈ {S, T } (allow that d1 = d2), define a relation

of (Xd1 , yd1) and (Xd2 , yd2) as follows:

r
(

(Xd1 , yd1 ), (Xd2 , yd2 ); c1, c2
)

=

N1

∑

i=1

N2

∑

j=1

µc1c2 (y
d1
i , y

d2
j )

N1
∑

i=1

N2
∑

j=1

µc1c2 (y
d1
i , y

d2
j )

·
[

κm(vd1i , v
d2
j )

+κm(V d1
i , V

d2
j )

]

,

(5)

where c1 and c2 are two classes. c1 = c2 and c1 6= c2 means

the intra-category and inter-category settings, respectively.

And µc1c2(y1, y2) is defined for the judgement of the pre-

diction as follows:

µc1c2 (y1, y2) = 1[

y1=c1
y2=c2

] =

{

1, if y1 = c1, y2 = c2,

0, otherwise.
(6)

Considering that the target labels are not available, the

evaluation of the target label ŷ is essential through itera-

tive optimization. Specially, both the spatial and temporal

videos are annotated by the pseudo-labels from the deci-

sion of spatio-temporal feature fusion, and then K-means

algorithm is adopted for the clustering of target samples in-

dividually, in each modality and attach corresponding la-

bels. Formally, for modality m, the cluster center of target

data CT
m is initialized with the source data category cen-

ter CS
m, of which features fused from spatial and temporal

feature extraction, i.e., CT
m ← CS

m =
∑NS

i=1 1[yS
i
=c]

Vi

||Vi||
,

where c is the labeled categories. Then the iteration for

optimizing the pseudo-labels is as follows during the train-

ing process. (1) The given pseudo-label ŷT is updated as

ŷT ← argmin
c

∑

m

Φ(V T , CT
m), which jointly employs the

spatial and temporal representation for video-level predic-

tion robustness. The operator Φ(·, ·) is the distance mea-

surement in the feature level, and here we use the Euclidean

distance, i.e., Φ(a, b) = ||a−b||2. (2) Because of the feature

space alignment from STCL between source and target, the

target cluster center CT
m is updated by the target feature ex-

pression as CT
m ←

∑NT

i=1 1[ŷT
i
=c]

Vi

||Vi||
till the convergence

or the iteration ending.

According to the predicted pseudo-labels, the distance

calculation of video-level domain discrepancy is defined as

follows:

D(ŷT ; c1, c2) = r
(

{XS , yS}, {XS , yS}; c1, c1
)

+r
(

{XT , ŷT }, {XT , ŷT }; c2, c2
)

−2r
(

{XS , yS}, {XT , ŷT }; c1, c2
)

.

(7)

Considering the inter-intra contrastive setting for opti-

mizing the distribution of category-aware features, the defi-

nition of VCA is calculated as follows:

DV CA = E
c
D(ŷT ; c, c)− E

c

[

E
c′ 6=c

D(ŷT ; c, c′)

]

. (8)

3.3. Overall Objective

For labeled source data, we train the network as the

traditional supervision task through minimizing the cross-

entropy loss for classification as follows:

LCE = − E
xS

NS

∑

n=1

[

yS log φm(xS)
]

. (9)

Therefore, the overall loss can be formulated as follows:

L = LCE + αLContrast + βDV CA, (10)

where α and β are the parameters to balance the weights of

each term.

4. Experiments

4.1. Datasets

We evaluate our approach on four DA datasets: UCF–

HMDBsmall, UCF–Olympic, UCF–HMDBfull and EPIC

Kitchens (D1, D2 and D3).

UCF–Olympic and UCF–HMDBsmall. These two

datasets are small-scale with a higher degree of distinc-

tion between the categories. UCF–Olympic [15] have 6

shared classes from UCF50 and Olympic datasets, and

UCF–HMDBsmall [30] have 5 shared classes from UCF101

and HMDB51.

UCF–HMDBfull. UCF–HMDBfull [4] is a complemen-

tary version of UCF–HMDBsmall, with 12 shared cate-

gories from UCF101 and HMDB51, respectively.

EPIC Kitchens. EPIC Kitchens [23] is a fine-grained ac-

tion recognition dataset of three domain partitions (D1, D2,

and D3) with 8 categories in varying amounts. It contains

different actions with fine details under the view of the first

person in indoor kitchen scenes.

4.2. Implementation Details

We use the BN-Inception [14] and I3D [2] architectures

as the backbone feature extractors for each clip of both

source and target videos for different datasets, and the two

backbones are initialized with the ImageNet [8] dataset and

the Kinetics dataset [2] pre-trained models, respectively.

The size of input clips is 16 frames with 224×224 pixels.

Specially, the channel numbers of RGB and optical flow

frame stacks are 3 (Red, Green and Blue) and 2 (u and v),

respectively. For the video level, the segment number of

clips per video is set to 3 for both training and testing.

For self-supervised spatio-temporal contrastive learning,

we adopt the memory bank training scheme following CMC
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[32], which stores the latent features to the memory bank

for each training input sample, to retrieve and compare pos-

itive/negative samples efficiently from the memory bank

buffer, without extra cost on feature extraction computation.

We train our proposed STCDA framework in three stages

as follows: (1) We firstly train the feature extractor of RGB

and optical flow with STCL under the contrastive loss in Eq.

4, based on both source and target data without any labels.

(2) After contrastive learning, we further train the model

with cross-entropy loss and contrastive loss with labeled

source data and unlabeled target data, where the hyper-

parameters are set to α = 2 and β = 0 in Eq. 10. (3)

We further train the full model with cross-entropy loss, con-

trastive loss and VCA, with the data used as step (2), where

the hyper-parameters are set to α = 2 and β = 0.5 in Eq.

10. The optimizer is stochastic gradient descent (SGD) with

momentum of 0.9 to train the network, and the weight decay

is set to 10−7. The batch size is set to 64, and the model is

trained in 300, 300, and 400 epochs at three stages, respec-

tively. The learning rate starts from 0.01, 0.01, and 0.001,

respectively, and it is divided by 10 after 100 epochs and

200 epochs.

4.3. Comparison with Stat-of-the-art Methods

We compare our proposed network with state-of-the-

art approaches for UDA on video action recognition, e.g.,

DAAA [15], TA3N [4], TCoN [25], SAVA [7] and MM-

SADA [23] in several benchmarks — UCF–HMDBsmall

and UCF–Olympic in Table 1, UCF–HMDBfull in Ta-

ble 2, and EPIC Kitchens in Table 3. In Table 1 and Ta-

ble 2, “Source only” and “Target only” mean the network is

trained with labeled source data (lower bound) and labeled

target data (upper bound), respectively. For a fair compari-

son, note that the modality of “RGB” and “R” in each table

means the network is only trained from RGB frames, with-

out optical flow used. As shown in these tables, we can see

that our proposed STCDA obtains the stat-of-the-art prefor-

mance in various scenarios.

UCF–HMDBsmall and UCF–Olympic. We utilize BN-

Inception architecture as the feature extractor. With the

strong representation capability of CNNs, our STCDA

achieves promising performance with 2D CNN in these two

small-scale datasets, i.e., BN-Inception against 3D CNN

(C3D). In particular, we obtain stat-of-the-art results on

HMDB→UCF with accuracy of 100% and UCF→Olympic

with accuracy of 98.1%.

UCF–HMDBfull. BN-Inception and I3D are used for fea-

ture extraction. Compared with other methods, STCDA

achieves stat-of-the-art results on HMDB→UCF with accu-

racy of 91.9% with only RGB modality used. In addition,

with efficient multi-modal contrastive learning and feature

fusion, STCDA obtains higher performance with accuracy

of 83.1% and 92.1% on UCF→HMDB and HMDB→UCF,

Table 1. Comparison of accuracy (%) on UCF–HMDBsmall and

UCF–Olympic.

Method Backbone U→H H→U U→O O→U

DAAA [15] (R) C3D — — 91.6 90.0

TA3N [4] (R) R-TRN 99.3 99.5 98.1 92.9

TCoN [25] (R+F) BNIncep — 96.8 95.8 94.1

TCoN [25] (R+F) C3D — — 95.9 94.8

TCoN [25] (R) B-TRN — — 96.8 96.8

Source only (R) BNIncep 94.7 97.7 91.6 90.4

STCDA (R) BNIncep 97.3 99.3 94.4 93.3

Target only (R) BNIncep 98.7 99.5 96.3 98.3

Source only (R+F) BNIncep 96.7 99.3 94.4 92.9

STCDA (R+F) BNIncep 98.7 100 98.1 96.3

Target only (R+F) BNIncep 100 100 98.1 100

“R” and “F” denote the RGB and optical flow modalities. “R-TRN” and “B-TRN”

denote ResNet-101-based TRN and BN-Inception-based TRN respectively, and “BN-

Incep” denotes BN-Inception.

Table 2. Comparison of accuracy (%) on UCF–HMDBfull.

Method Backbone Pre-train U→H H→U

Source only (R) R-TRN ImgNet 71.7 73.9

TA3N [4] (R) R-TRN ImgNet 78.3 81.8

Target only (R) R-TRN ImgNet 82.8 94.9

TCoN [25] (R) R-TRN ImgNet 87.2 89.1

Source only (R) I3D K400 80.3 88.8

SAVA [7] (R) I3D K400 82.2 91.2

Target only (R) I3D K400 95.0 96.8

Source only (R) BNIncep ImgNet 74.1 82.5

STCDA (R) BNIncep ImgNet 76.9 85.1

Target only (R) BNIncep ImgNet 91.7 94.7

Source only (R+F) BNIncep ImgNet 76.1 85.8

STCDA (R+F) BNIncep ImgNet 80.0 87.7

Target only (R+F) BNIncep ImgNet 94.2 96.8

Source only (R) I3D K400 80.8 88.4

STCDA (R) I3D K400 81.9 91.9

Target only (R) I3D K400 94.4 96.3

Source only (R+F) I3D K400 82.8 89.8

STCDA (R+F) I3D K400 83.1 92.1

Target only (R+F) I3D K400 95.8 97.7

“R” and “F” denote the RGB and optical flow modalities. “R-TRN” denotes ResNet-

101-based TRN, and “BNIncep” denotes BN-Inception. “ImgNet” indicates Ima-

geNet dataset, and “K400” indicates Kinetics400 dataset.

respectively. Besides, we can observe that the larger net-

work architecture with 3D modeling (I3D) would obtain

the higher accuracy than the 2D CNN (BN-Inception) with

large margins, e.g., 83.1% vs. 80.0% on UCF→HMDB and

92.1% vs. 87.7% on HMDB→UCF, even though the upper

bounds of these two networks are similar. Compared with

2D CNNs, 3D CNNs can directly model spatio-temporal

video clips with richer representation and larger reception

field in space and time domain, which are significantly use-

ful for video understanding tasks.

EPIC Kitchens. We utilize I3D as the backbone following

MM-SADA [23]. In Table 3, we can see that STCDA ob-

tains the stat-of-the-art results with the mean accuracy on

six domain settings of 51.2%, achieving 0.9% improvement
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Table 3. Comparison of accuracy (%) on EPIC Kitchens. In each modality, STCDA enables the network to achieve better performance.

Method D2→D1 D3→D1 D1→D2 D3→D2 D1→D3 D2→D3 Mean

AdaBN [19] 44.6 47.8 47.0 54.7 40.3 48.8 47.2

MMD [20] 43.1 48.3 46.6 55.2 39.2 48.5 46.8

MCD [27] 42.1 47.9 46.5 52.7 43.5 51.0 47.3

MM-SADA (RGB) [23] 41.7 42.1 45.0 48.4 39.7 46.1 43.9

MM-SADA (Flow) [23] 45.0 45.7 49.0 58.9 44.8 52.1 49.3

MM-SADA (RGB + Flow) [23] 48.2 50.9 49.5 56.1 44.1 52.7 50.3

STCDA (RGB) 44.4 41.1 47.7 45.5 41.2 47.6 44.6

STCDA (Flow) 45.3 52.2 45.1 59.5 44.0 51.2 49.6

STCDA (RGB + Flow) 49.0 52.6 52.0 55.6 45.5 52.5 51.2

Table 4. Ablation study of accuracy (%) on hyper-parameters on

UCF–HMDBfull.

Method α β U→H H→U

Source only 0 0 76.1 85.8

STCL 1 0 77.5 86.2

STCL 2 0 78.1 86.5

VCA 0 0.5 78.3 86.9

VCA 0 1 77.8 86.5

STCL+VCA 2 0.5 80.0 87.7

Table 5. Ablation study of accuracy (%) on spatio-temporal con-

trastive learning (STCL) on UCF–HMDBfull.

Method STCL on U→H H→U

Source Target

Source only × × 76.1 85.8

VCA × × 78.3 86.9

Clip+VCA X X 79.7 87.2

Video+VCA X X 79.4 87.0

Clip+Video+VCA X × 79.2 87.2

Clip+Video+VCA × X 78.9 87.0

Clip+Video+VCA X X 80.0 87.7

than MM-SADA. In each individual modality, STCDA also

enables the network to achieve better performance with the

mean accuracy of 44.6% and 49.6% in RGB and optical

flow, respectively.

4.4. Ablation Study

We leverage ablation experiments on UCF–HMDBfull,

to analyze contributions of each component for UDA.

Hyper-parameters. As shown in Table 4, we evaluate the

hyper-parameters α and β in Eq. 10. According to the

contributions of STCL and VCA individually used, we set

the trade-off weights of α and β to 2 and 0.5, respectively,

which obtains the best performance with the accuracy of

80.0% on UCF→HMDB and 87.7% on HMDB→UCF.

Contribution of STCL. As shown in Table 5, the results

show the effect of STCL. “Source only” is trained on the

source data without adaptation components, from the BN-

Inception backbone within multi-modal setting. Here we

Table 6. Comparison of accuracy (%) effect on (a) video aggrega-

tion in STCL, (b) video fusion in VCA, and (c) different kinds of

pseudo-labels used in VCA on UCF–HMDBfull.

Method U→H H→U

Source only 76.1 85.8

(a)

Mean 79.7 87.4

Concat + FC 79.2 87.6

GRU 80.0 87.7

(b)

w/ adversarial loss 77.7 86.5

w/o spatio-temporal fusion 78.3 87.4

w/ spatio-temporal fusion 79.7 87.6

(c)
w/ fixed pseudo-labels 76.9 86.2

w/ updated pseudo-labels 78.3 86.9

perform the experiments on clip-level and video-level con-

trastive learning. Besides, with the flexible structure of

STCL, we compare the results using different input data

with the combination of source and target optionally. The

combination of clip-level and video-level contrastive learn-

ing obtains significant improvement over source only by

1.7% (78.3% to 80.0%).

Besides, there are three candidate options for video ag-

gregation operation, i.e., Mean for calculating the average

value for each clip feature, Concat+FC for concatenating

each clip feature and feeding to a fully-connected layer, and

GRU for recurrent modeling on each clip feature by Gated

Recurrent Unit (GRU) with 512 hidden units, and obtaining

the output from the last GRU node. The accuracy compar-

ison of these operators is indicated in Table 6(a) We can

see that the recurrent module of GRU is effective for tem-

poral aggregation and video-level representation on self-

supervised contrastive learning. Note that Mean aggrega-

tion is not used with time-order negative samples for con-

trastive learning.

Contribution of VCA. For video-based contrastive dis-

tance metric, the spatio-temporal fusion is important for ro-

bust video prediction of pseudo-labels, which are allocated

to both spatial and temporal inputs for higher confidence

in clustering. In Table 6(b), we observe that the cross-

modal video fusion is beneficial for better representation,
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(a) (b) (c) (d) (e)

Figure 4. Visualization of t-SNE on HMDB→UCF, and the stages are (a) source only; (b) w/ STCL; (c) w/ VCA; (d) the final result; (e)

target only. Features are extracted from the last fully-connected layer.

(a) (b)

baseline

kick_ball ✗

baseline

golf ✗

baseline

kick_ball ✗

baseline

climb ✗

STCDA

fencing ✓

STCDA

kick_ball ✓

STCDA

shoot_ball ✓

STCDA

ride_horse ✓

Figure 5. Visualization of Grad-CAM [28] on UCF–HMDBfull. Examples are sampled from (a) UCF and (b) HMDB datasets.

even than the adversarial losses used individually with the

gradient reversal layer (GRL).

Furthermore, we evaluate the clustering effect with dif-

ferent ways of pseudo-labels generation in Table 6(c).

“fixed pseudo-labels” means that the pseudo-labels of tar-

get is obtained from the initial clustering with CS
m and fixed

in the training process. With the iterative updated pseudo-

labels, the prediction of target data would be accurate with

better performance than the fixed pseudo-labels, where the

proposed VCA is efficient to adapt the target data with

higher robustness.

4.5. Visualization

We visualize the distribution of learned features by t-

SNE [12] embedding. As shown in Figure 4, we can ob-

serve that components of STCL and VCA achieve the con-

tributions of mixed clusters in each class (shown in differ-

ent colors) (Figure 4(b)(c)), for video-level feature align-

ment and classification generalization. Particularly, in Fig-

ure 4(d), our proposed framework leads to the discrimina-

tive distribution of target data, with the similar distribution

of supervised target only setting in Figure 4(e). However, in

terms of the limitation of confused category-aware cluster-

ing, the similar action would be closer, e.g., ride bike and

ride horse marked in green and cyan at the bottom in Figure

4(d). And it is meaningful to explore effective class-aware

discrimination algorithms for accurate classification.

Furthermore, we indicate some samples of target videos

and predictions in Figure 5. Grad-CAM [28] is used to

present the activation region for the video under the pre-

diction. The visualization results show that the network fo-

cuses on the irrelevant scene or objects without any domain

adaptation modules, while it pays more attention to key ac-

tions with the proposed STCDA framework, which aims at

transferring local-global temporal content learning, e.g., in

Figure 5(a) right and Figure 5(b) right, the baseline network

focuses on the persons, while STCDA makes a decision

based on the persons and the discriminative scene/object

(the goal in kick ball and the rim in shoot ball).

5. Conclusion

In this paper, we propose a self-supervised contrastive

network for videos, i.e., spatio-temporal contrastive learn-

ing (STCL), for learning joint clip-level and video-level rep-

resentations to improve the generalization of local-global

temporal content modeling. Besides, we propose the video-

based contrastive alignment (VCA) for multi-modal do-

main metric to measure the video-level discrepancy be-

tween source and target domains. Our spatio-temporal

contrastive domain adaptation (STCDA) framework with

STCL and VDA achieves stat-of-the-art results on sev-

eral UDA benchmarks of action recognition, e.g., UCF–

HMDB, UCF–Olympic and EPIC Kitchens. Furthermore,

we will explore the video-level spatio-temporal interaction

for UDA, and extend STCDA to other cross-domain video

tasks.
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