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Abstract

Knowledge distillation pursues a diminutive yet well-

behaved student network by harnessing the knowledge

learned by a cumbersome teacher model. Prior methods

achieve this by making the student imitate shallow behav-

iors, such as soft targets, features, or attention, of the

teacher. In this paper, we argue that what really matters

for distillation is the intrinsic problem-solving process cap-

tured by the teacher. By dissecting the decision process in a

layer-wise manner, we found that the decision-making pro-

cedure in the teacher model is conducted in a coarse-to-fine

manner, where coarse-grained discrimination (e.g., animal

vs vehicle) is attained in early layers, and fine-grained dis-

crimination (e.g., dog vs cat, car vs truck) in latter layers.

Motivated by this observation, we propose a new distillation

method, dubbed as Tree-like Decision Distillation (TDD),

to endow the student with the same problem-solving mech-

anism as that of the teacher. Extensive experiments demon-

strated that TDD yields competitive performance compared

to state of the arts. More importantly, it enjoys better inter-

pretability due to its interpretable decision distillation in-

stead of dark knowledge distillation.

1. Introduction

Knowledge Distillation (KD), whose ultimate goal is to

craft a lightweight student model with the aid of a capa-

ble yet cumbersome teacher model, has become one of the

most flourishing research topic in deep learning since the pi-

oneering work of [8]. Its success is largely attributed to the

dark knowledge learned by the over-parameterized teacher

model, which is exploited to regularize the learning of a

low-capacity student model without sacrificing too much

performance.

*Equal contribution
†Corresponding author
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Figure 1. An illustrative diagram of the coarse-to-fine decision

process on CIFAR10. After the first group of ResNet56, vehicles

and animals can be distinguished with accuracy of 80%, while the

10-way classification here reaches only 34%.

Although remarkable progress has been made in the last

several years, most existing KD methods are still stuck in

the stage of mimicking shallow behaviors, such as soft tar-

gets [8], features [21], or attentions [41], of the teacher. Few

of them attempt to figure out the problem-solving process

underlying the pre-trained teacher model, which leaves the

student produced by KD entirely a black box. Moreover, as

some behaviors are partially dependent on the network ar-

chitecture, directly copying these behaviors yields inferior

performance especially when the architecture gap between

the teacher and the student is significant [16, 31, 19].

In this paper, we argue that what really matters for dis-

tillation is the intrinsic problem-solving process captured

by the teacher. By dissecting the decision process in the

teacher model in a layer-wise manner, we found that al-

though most multi-layered neural networks are designed to

make the classification predictions in the last classification

layer, the decision-making procedure is in fact learned to

be conducted in a coarse-to-fine way and distributed over

many layers, as shown in Figure 1. The early layers tend

to capture the salient visual cues, and thus be capable of

distinguishing between categories that are visually diverse

enough, e.g., the human-made categories (vehicles) versus
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the natural categories (animals) in Figure 1. The latter lay-

ers, on the other hand, are amenable to make the final clas-

sification and thus able to conduct more fine-grained recog-

nition. The overall decision process in the deep network

is executed progressively in such an increasingly coarse-to-

fine manner, rather than being concentrated on the very last

classification layer.

We propose a new method, dubbed as Tree-like Deci-

sion Distillation (TDD), to endow the student with the same

problem-solving process as that of the teacher. TDD first

empirically analyzes the decisions made in different layers

of the teacher model, and then imposes the same decision

constraints on the student model, which impels the student

to master the same problem-solving solution. As the stu-

dent in TDD does not need to explore the solution flow

again during the training phase, it converges much faster

and achieves higher final accuracy. Furthermore, as TDD

explores the underlying decision process rather than simply

imitating some dark knowledge, it possesses better inter-

pretability than prior methods.

Our main contributions are therefore summarized as fol-

lows: (1) we empirically demonstrated that the decision

process underlying deep networks is executed in a coarse-

to-fine manner which is somewhat similar to that of a deci-

sion tree; (2) we propose TDD to distill the decision process

from teacher into the student, which relieves the student of

the burden of searching in the solution space; (3) extensive

experiments are conducted to demonstrate that TDD yields

competitive accuracy to the state of the arts. Meanwhile, it

enjoys better interpretability.

2. Related Work

We briefly review two research topics which are most

related to this work, including knowledge distillation and

decision process in neural networks.

2.1. Knowledge Distillation

Knowledge distillation has attracted increasing attention

thanks to its important role in deploying deep networks to

low-capacity edge devices. The main idea is leveraging

the dark knowledge encoded in a bulky teacher to craft a

lightweight student model with performance on par with

the teacher. Over the last several years, most works de-

vote themselves to the exploration of different forms of the

dark knowledge, including soft targets [8, 24, 23, 38], fea-

tures [21, 25, 15, 37], attention [41], factors [11], activation

boundary [4], instance relationship [14, 17, 32, 36] and so

on. By imitating the teacher to behave in a similar way, the

student achieves comparable performance even with much

fewer parameters.

Albeit great successes achieved by these methods, exist-

ing methods still suffer from two shortcomings: (1) the dark

knowledge, as its name implies, is generally hard to explain;

(2) some dark knowledge is affected by not only the task,

but also the architecture itself. To alleviate these issues, we

propose to distill the underlying decision process to address

the KD problem. The work which shares the most similar

idea to our method is [39], where the authors utilize Flow

of Solution Procedure (FSP) to train the student. However,

FSP is simply defined as the Gramian matrix that is com-

puted by the inner products between features from two con-

secutive layers. It is still “dark” in interpretability and has

high requirements for architecture similarity.

2.2. Decision in Neural Networks

Albeit the widespread successes of deep models in var-

ious fields in recent years, the black-box pecularity still re-

mains an open problem to be resolved. Uncovering the mys-

tery of deep models has been the desiderata in the commu-

nity, and various approaches have been proposed. For ex-

ample, attribution methods [42, 27, 3, 26, 2, 35, 34] attempt

to understand how deep models work by identifying the im-

portant dimensions in the input space. Here we only review

those which explicitly explore the decision process in deep

neural networks. Frosst and Hinton [5] proposes a soft de-

cision tree that is more transparent to mimic the output of a

neural network. However, as every decision is made in the

original input space, the better interpretability is achieved

by sacrificing the performance. Tanno et al. [30] proposes

adaptive neural tree to unify neural networks and decision

trees, which also enjoys some human-interpretable prop-

erties. Recently, Wan et al. [33] proposes Neural-Backed

Decision Trees (NBDT) to resolve the tension between ac-

curacy and interpretability. However, the decision tree is

constructed from only the weight space of the classification

layer, which actually leaves a large portion of the network

unexplainable. In this paper, we dissect the decision in a

layer-wise manner, and our goal is to craft a lightweight

student model resorting to the decision process, which is

vastly different from previous works.

3. Method

In this section, we first introduce the preliminaries of

vanilla knowledge distillation, then delineate the proposed

method in more details.

3.1. Preliminaries

The goal of knowledge distillation is to optimize a

student model under the supervision from a pre-trained

teacher. [8] propose to distill the “dark knowledge” from

the teacher via aligning the soft targets

OKD = ℓ(fs(xi), yi) + αDKL [pτ (ft(xi)), pτ (fs(xi))] ,
(1)

where xi is the input and yi is its associated category la-

bel. ft and fs denote the functions underlying the teacher
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and the student models, respectively. ℓ is the conventional

cross entropy loss for classification problems, and DKL is

the Kullback-Leibler divergence between the predicted cat-

egorial distributions from the teacher and the student mod-

els. pτ transforms the logits into softened probability:

pτ (f(xi)) = softmax(f(xi)/τ), (2)

where τ is the non-negative temperature which is used to

smooth the distributions.

3.2. Tree­like Decision Distillation

In this paper, the term “decision” refers to making some

form of classification. A multi-layered network for classi-

fication can be viewed as making different decisions in dif-

ferent layers. The early layers, which tend to capture salient

visual cues, make some vague and coarse-grained classifi-

cation. The last layers, which produce linear discriminant

features, make the precise and fine-grained decision. The

goal of TDD is to distill the decisions in different layers

into the student. Specifically, TDD consists of three main

steps: layer-wise discriminant analysis, intermediate deci-

sion making and decision distillation. Layer-wise discrim-

inant analysis dissects the discrimination ability of the fea-

tures from the teacher in a layer-wise manner. Intermediate

decision making determines the intermediate decision based

on the discriminant analysis. Decision distillation utilizes

the intermediate decision objective from step 2 to train the

student model. Now we describe the details of TDD step by

step.

3.2.1 Layer-wise discriminant analysis

Given the pre-trained teacher model, we first analyze the

discrimination of features from every layer. Let there be

N different categories, and each of which has K associated

training images. For the l-th layer in the teacher model,

the features extracted from the k-th image from the n-th

category are denoted by znk ∈ R
wlhlcl , where wl, hl and

cl denote the width, the height and the channels of the

feature map. As the dimensionality is high and different

for different layers, we adopt global average pooling to

squeeze out the spatial dimensions, i.e., zk becomes a cl-
dimensional vector. After that we adopt Linear Discrimi-

nant Analysis (LDA) to reduce the dimensions (c1, c2, ...)
of features from different layers to a fixed dimension c
(c ≤ c1, c2, ...). Specifically, for each layer we maximize

the following Fisher criterion

J (W) =
det (WT SBW)

det (WT SW W)
, (3)

where det represents matrix determinant. SB and SW are

the between-class and the within-class scatter matrices, re-

spectively:

SB =
∑N

i=1

K · (zi − z)(zi − z)T , (4)

SW =
∑N

i=1

∑K

k=1

(zik − zi)(zik − zi)T . (5)

zi and z denote the average of feature vectors from the i-
th category and the all the categories, respectively. LDA

reduces the dimensions and meanwhile preserves as much

of the class discriminatory information as possible. With

the optimal W∗ = argmaxW J (W), all original features

are projected to the lower-dimensional subspace.

In the subspace, the average feature vectors are com-

puted to represent the corresponding categories. Then the

agglomerative hierarchical clustering algorithm is utilized

to generate the category similarity tree, i.e., the dendrogram

as shown in Figure 2. This tree describes the category rela-

tionships between categories in the l-th feature space of the

teacher model, which we believe is beneficial for the student

to master the same problem solution.

3.2.2 Intermediate Decision Making

As hierarchical clustering exhaustively separates each cate-

gory apart, it is hard for us to understand what decision is

making in each layer. To resolve this problem, at this step

we need determine the intermediate decision that is made in

every layer. We first convert the dendrogram obtained from

hierarchical clustering to a decision tree. Here we adopt

a graph G = {V, E} to describe the decision tree, where

V = {v1, v2, ...} is the set of nodes, and E = {e1, e2, ...}
the set of edges between the nodes. The root node sub-

sumes all the categories, while each leaf node contains only

one. We use Yv to denote the categories in node v. From

the root node to the leaf nodes, the decision tree is actu-

ally conducting a coarse-to-fine decision process: from the

root node to its two children, the network makes the coars-

est decision; when it arrives to the leaves, the most precise

decision should be provided. Layers in different depth of

the network is actually making different levels of decision.

The hierarchical clustering exhaustively expands the de-

cision tree such that every category go to an individual leaf.

However, the intermediate layers only conduct some coarse-

grained classification. To determine the level of decision

the layer makes, we adopt a bottom-up breadth-first strat-

egy to merge leave nodes into their parents until the termi-

nal criterion is triggered. Specifically, each node v in G is

associated with two matrices, including a within-class scat-

ter matrix Sv
W and a between-class scatter matrix Sv

B . The

two matrices depict the compactness and the separation be-

tween projected features of the data from categories under

the node. The linear discrimination of features from differ-
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Figure 2. The pipeline of the proposed tree-like decision distillation. It mainly consists of three steps: 1) layerwise discriminant analysis,

2) intermediate decision making, and 3) decision distillation.

ent categories under node v is measure by

J (v) =

√

tr(Sv
B)

∑

y∈Yv
tr(Sv

W,y)
, (6)

where tr denotes the matrix trace, and Yv denotes the cat-

egories under node v. If J (v) is less than a pre-defined

threshold t, node v and its sibling node are merged into

their parent and the parent node becomes a new leaf, with its

associated Sv
B and Sv

W updated accordingly1. The process

repeats recursively until all leaves can not be merged any

more or the root node is reached. Finally, the original cum-

bersome tree G collapses to a simplified version G∗ where

each leaf node may subsume more than one category, i.e.,

|Yv∗ | ≥ 1.

Here we adopt Gl = {Vl, El} to denote the decision

tree produced by the l-th layer. The simplified version

G∗
l = {V∗

l , E
∗
l } is harnessed to determine the intermedi-

ate decision which is made by this layer. If the tree is col-

lapsed to a single node, i.e., |V∗
l | = 1, the node subsumes

all the categories, which implies that the network cannot

make any decision in this layer. On the other hand, if G∗
l

contains more than one node, i.e., |V∗
l | > 1, then the l-th

layer is deemed to be making the differentiation between

some super-classes denoted by the leaves in G∗
l . In other

words, the l-th layer is making the

∣

∣

∣
V∗
l,leaf

∣

∣

∣
-way classifica-

tion where V∗
l,leaf refers to the leaves of G∗

l , V∗
l,leaf ∈ V∗

l .

Additionally, as the teacher model is not explicitly super-

vised by corresponding classification objective in the mid-

dle layers, these layers are actually making soft decisions.

3.2.3 Decision distillation

This step utilizes the soft decision made by different layers

from the teacher to optimize the student model. We omit

1Updating rules are provided in the supplementary materials.

those layers where |V∗
l | = 1 and utilize the layers with

|V∗
l | > 1 to guide the training of the student. Specifically,

let L = {l1, l2, ...} be the set of layers where |V∗
l | > 1 in

the teacher model. For each l ∈ L, a micro classification

module is attached to the corresponding layer in the student

model to help the student form the same decision process as

the teacher. The micro classification module is composed of

a global average pooling layer and a fully connected layer

which outputs the classification logits for the intermediate

classification.

Determining the corresponding layer in the student

model for the layer in the teacher model is not a trivial prob-

lem, as the student and the teacher models may be of differ-

ent number of layers or in heterogeneous architectures. We

solve this problem based on the following three observa-

tions: (1) experiments show that features from the first sev-

eral layers are usually not discriminative, i.e., they can not

make any decisions yet (|V∗
l | = 1); (2) features from ad-

jacent layers are approximately equally discriminative, i.e.,

they are making the similar decisions; (3) existing widely

used deep networks, albeit in different architectures or lay-

ers, have roughly the same number of pooling layers, e.g.,

ResNet [6] and VGG [28] for ImageNet.

Based on these observations, we ignore the first half part

of network and only distill the decisions from the layers

from the second half part. TDD are conducted only at

the feature space following the pooling layers, which are

sparsely distributed over the deep neural network. In thus

way, the layers for TDD in the teacher and the student mod-

els can correspond one by one. Finally, the TDD optimiza-

tion objective for training the student model is

OTDD = O + β
∑

l∈L
DKL

[

pτ (g
l(yi)), pτ (f

l
s(xi))

]

,

(7)

where f l
s(xi) denotes the logits produced from the layer in

the student model which corresponds to the l-th layer in

the teacher. O is the original classification loss. gl is the
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function converting the original category label to the coarse-

grained category which is differentiated by the l-th layer in

the teacher:

gl(xi) =
∑

v∈V∗

l,leaf

I(yi ∈ Yv)pl(yi), (8)

where I denotes the indicator function, and pl(yi) is a
∣

∣

∣
V∗
l,leaf

∣

∣

∣
-dimensional vector where the i-th element denotes

the probability of data from category yi is classified into the

i-th superclass in the subspace after LDA by nearest neigh-

bor classification. After the training of the student model,

those micro classification modules are removed when the

student is deployed to real-world scenarios.

Formally speaking, the proposed TDD objective is akin

to some previous works which also impose some constraints

on the intermediate layers, such as GoogleNet [29]. Here

we underline two vital differences: (1) GoogleNet is thus

designed for alleviating vanishing gradient [9], while TDD

is designed for regularizing the student to search within the

same solution space as that captured by the teacher; (2)

GoogleNet adopts the same classification objectives in dif-

ferent layers, while TDD adopts coarse-to-fine classifica-

tion objectives which avoids the overcorrection induced by

the final classification objective.

4. Experiments

4.1. Implementation Details

4.1.1 Datasets

Three widely-used datasets as benchmarks for distillation

are adopted to validate the proposed method, including

CIFAR-10 [12], CIFAR100 [12] and tiny-ImageNet [13].

The CIFAR-10 dataset consists of 60, 000 32x32 colour im-

ages in 10 classes, with 6, 000 images per class. There are

50, 000 training images and 10, 000 test images in the orig-

inal split. CIFAR-100 is just like the CIFAR-10, except it

has 100 classes containing 600 images each. There are 500

training images and 100 testing images per class. The 100

classes in the CIFAR-100 are grouped into 20 superclasses.

Tiny-ImageNet is a subset of ImageNet with 200 classes,

where each image is down-sized to 64x64 pixels. Each class

has 500 training images, 50 validation images, and 50 test

images.

4.1.2 Models

Various architectures, including ResNet [6], Wide Resid-

ual Network [40], MobileNet [22], ShuffleNet [43] and

VGG [28], are used to evaluate TDD. TDD is tested un-

der two distillation schemes: homogeneous distillation and

heterogeneous distillation. Under the homogeneous distil-

lation, the student and the teacher are in different capac-

ity, but of the same type of architecture (e.g., Resnet56 →

ResNet20, WRN-40-2 → WRN-16-2). Under the hetero-

geneous distillation, the student mode is in a different ar-

chitecture from the teacher model (e.g., ResNet50 → Mo-

bileNetV2, WRN-40-2 → ShuffleNetV1).

4.1.3 Cross Validation

There are several hyper-parameters involved in the pro-

posed method, including α and τ in Eqn. 1, the pre-defined

threshold t for leaves merging in intermediate decision mak-

ing, and β in Eqn. 7. Exhaustively exploring the optimal

combinations of all these hyper-parameters is an unafford-

able burden for us. For α and τ , we directly adopt the

values adopted in prior work [31]. For t and β, we opt

for cross-validation to set their values. As CIFAR-10 and

CIFAR-100 have no validation set in their original split, we

randomly reserve 5, 000 images from their training set for

validation.

4.1.4 Training Details

As we are devoted to improve the knowledge distillation

performance, we adopt the same experimental settings for

training both the teacher and the student models, regardless

of the differences in model architectures and datasets. It

simplifies our experiments and help us make fair compar-

isons with state-of-the-arts. Specifically, we adopt Stochas-

tic Gradient Descent to optimize the network, and the ini-

tial learning rate is set 0.05, decaying by a factor of 0.1
at {150, 180, 210} epochs, respectively. The training phase

ceases at 240 epochs. The batch size is 64 and the weight

decay factor is 0.0005.

4.2. Benchmark Comparisons

As the architecture is found to be an important factor for

distillation, the proposed TDD is evaluated under two set-

tings: homogeneous distillation where the teacher and the

student models are in the same architecture, and heteroge-

neous distillation where the student model is in a different

architecture from that of the teacher model.

4.2.1 Homogeneous Distillation

Firstly we validate the proposed method under the homoge-

neous distillation settings. We compare the proposed TDD

with a bundle of existing distillers, including the vanilla

Knowledge Distillation (KD) [8], Fitnets [21], Attention

Transfer (AT) [41], Flow of Solution Procedure (FSP) [39],

Neural Selectivity Transfer (NST) [10], Factor Transfer

(FT) [11], Probabilistic Knowledge Transfer (PKT)[18],

Similarity-Preserving Knowledge Distillation (SPKD)[32],

Variational Knowledge Distillation (VID)[1], Correlation

Congruence Knowledge Distillation (CCKD) [20], Rela-

tional Knowledge Distillation (RKD) [17] and Contrastive

13492



Table 1. Top-1 accuracy of homogeneous distillation on CIFAR-10, CIFAR-100 and tiny-ImageNet (in %). Experiments are repeated for

three times and the average results are provided. Results on CIFAR-100 are copied from CRD [31]. The best results are shown in bold

font and the second best in blue font. “TDD+CRD” denotes that the proposed TDD is combined with CRD.

CIFAR-10 CIFAR-100 tiny-ImageNet

Teacher ResNet56 WRN 40 2 WRN 40 2 ResNet56 WRN 40 2 WRN 40 2 ResNet56 WRN 40 2 WRN 40 2

Student ResNet20 WRN 16 2 WRN 40 1 ResNet20 WRN 16 2 WRN 40 1 ResNet20 WRN 16 2 WRN 40 1

Teacher 93.90 94.77 94.77 72.34 75.61 75.61 58.34 61.26 61.26

Student 92.49 93.65 93.46 69.06 73.26 73.26 52.66 57.17 56.25

KD [8] 92.78 94.54 93.95 70.66 74.92 73.54 53.04 59.16 57.75

Fitnets [21] 92.55 93.73 93.73 69.21 73.58 72.24 51.73 57.75 N/A

AT [41] 93.03 94.17 94.34 70.55 74.08 72.77 54.01 58.71 57.41

FSP [39] 91.93 93.43 N/A 69.95 72.91 N/A 53.55 57.33 N/A

NST [10] 92.81 94.15 93.90 69.60 73.68 72.24 51.89 – –

FT [11] 93.14 94.26 94.40 69.84 73.25 71.59 54.20 58.31 56.30

PKT [18] 93.19 94.61 94.12 70.34 74.54 73.45 54.31 59.06 57.27

SPKD [32] 93.05 94.16 94.01 69.67 73.83 72.43 54.03 55.69 53.74

VID [1] 92.80 94.17 93.60 70.38 74.11 73.30 53.20 58.51 57.45

CCKD [20] 92.39 93.67 93.29 69.63 73.56 72.21 52.38 58.32 55.72

RKD [17] 92.71 94.37 93.85 69.61 73.35 72.22 53.13 57.38 55.90

CRD [31] - - - 71.16 75.48 74.14 - - -

TDD 93.25±0.11 94.60±0.08 94.25±0.15 71.53±0.21 75.01±0.18 74.04±0.08 54.45±0.07 59.22±0.15 58.42±0.16

TDD+CRD 93.42±0.12 94.68±0.13 94.51±0.10 71.88±0.24 75.71±0.19 74.35±0.14 54.85±0.13 59.53±0.20 59.20±0.12

Table 2. Top-1 accuracy of heterogeneous distillation on CIFAR-10, CIFAR-100 and tiny-ImageNet (in %). Experiments are repeated for

three times and the average results are provided. Results on CIFAR-100 are copied from CRD [31]. The best results are shown in bold

font and the second best in blue font.

CIFAR-10 CIFAR-100 tiny-ImageNet

Teacher ResNet50 ResNet50 WRN 40 2 ResNet50 ResNet50 WRN 40 2 ResNet50 ResNet50 WRN 40 2

Student MobileNet VGG8 ShuffleNet MobileNet VGG8 ShuffleNet MobileNet VGG8 ShuffleNet

Teacher 94.88 94.88 94.77 79.34 79.34 75.61 68.97 68.97 61.26

Student 89.56 91.48 92.62 64.60 70.36 70.50 58.35 56.47 60.52

KD [8] 90.11 93.31 93.31 67.35 73.81 74.83 58.68 60.27 64.80

Fitnets [21] 89.52 90.94 93.34 63.16 70.69 73.73 57.55 57.11 N/A

AT [41] 87.54 92.73 94.21 58.58 71.84 73.32 50.91 52.42 63.90

NST [10] 88.81 91.01 93.83 64.96 71.28 74.12 – – –

FT [11] 88.98 92.40 94.03 60.99 70.29 72.03 58.65 57.69 62.47

PKT [18] 90.12 92.62 93.61 66.52 73.01 73.89 59.29 58.68 63.10

SPKD [32] 89.73 92.79 93.59 68.08 73.34 74.52 58.11 58.57 64.62

VID [1] 89.27 93.54 91.77 67.57 70.30 73.61 57.50 55.86 63.58

CCKD [20] 89.62 91.45 92.99 65.43 70.25 71.38 57.89 55.37 61.16

RKD [17] 90.02 93.24 93.51 64.43 71.50 72.21 58.33 56.87 60.52

CRD [31] - - - 69.11 74.30 76.05 - - -

TDD 90.32±0.17 93.66±0.11 93.57±0.16 68.37±0.08 74.41±0.19 75.60±0.15 59.09±0.15 60.42±0.12 65.27±0.10

TDD+CRD 90.66±0.22 94.25±0.25 93.71±0.18 69.22±0.05 74.47±0.15 76.34±0.13 59.72±0.17 61.23±0.19 65.50±0.20

Representation Distillation (CRD) [31]. All these works are

published within three years and well known in the field of

knowledge distillation. They clearly represent the state of

the arts.

Experiments are conducted on CIFAR-10, CIFAR-100

and tiny-ImageNet. Experimental results are listed in Ta-

ble 4.1.4 where top-1 accuracy is provided. From the re-

sults, we can see that the proposed TDD produces superior

or at least comparable accuracy compared to most existing

methods. CRD [31] is a strong competitor which is more

likely to produce higher accuracy in our experiments due to

the proposed contrastive representation learning in it. When

combined with the contrastive learning into our proposed

TDD, our method produces superior performance to all ex-
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isting methods including CRD. All these results demon-

strate the effectiveness of decision distillation for training

the lightweight student model.

4.2.2 Heterogeneous Distillation

As the model architecture itself provides strong regulariza-

tion on solving the problem, the “dark knowledge” explored

by prior methods are partially dependent on the architecture.

Existing knowledge distillation methods work poorly when

the teacher and the student models are vastly different in

architecture. Here we validate that the proposed method is

able to alleviate the problem thanks to its exploration into

the problem-solving process. Here the selected competi-

tors are the same as those used in the homogeneous distil-

lation except FSP which has strong requirements for sim-

ilar teacher and student architectures and thus can hardly

applied to heterogeneous distillation. Experimental results

are shown in Table 2. Under different architectures, most

prior distillation methods yield inferior performance to the

vanilla KD. Some of them even can not match the trivial

baseline without any distillation due to the large architec-

ture gap. However, as the proposed method TDD dives

into the problem solving process that is much more model-

agnostic, it thus exhibits higher accuracy to original KD and

other competitors in most settings. Similar to homogeneous

distillation, when combined with CRD, the proposed TDD

further improves the accuracy by a considerable margin. As

the proposed method exhibits better interpretability than all

these methods, we believe it is a good complement to the

current literature.

4.3. Ablation Study

Here we verify the necessity of ingredients in the pro-

posed method. To this end, we design three variants of the

proposed method: TDD-random, TDD-same and TDD-soft.

In TDD-random, the intermediate decisions are ran-

domly generated instead of being distilled from the pre-

trained teacher model. For example, on the CIFAR-10

dataset, TDD imposes a 2-way coarse classification objec-

tive on the feature space after the fourth pooling layer, with

one way subsuming 6 categories and the other way subsum-

ing 4 categories. For random decision, we also introduce a

2-way coarse classification here, however, the categories are

randomly determined for each way.

In TDD-same, like GoogleNet where middle layers are

imposed on the same optimization objective, we also con-

straint the middle layers of the student model using the same

optimization objective, i.e., the final classification objective.

This variant is used to verify the effectiveness of coarse-to-

fine decision process for distillation instead of the improve-

ment of gradient issues by intermediate objective functions.

TDD parses the decision process in a hierarchical way.
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Figure 3. Validation accuracy curves on CIFAR100. Left:

Resnet56→ResNet20. Right: WRN 40 2→ShuffleNet V1.

However, the decision-making process can also be inter-

preted in another way: the middle layers also make the same

target classification, but in a lower precision. TDD-soft ex-

ploits the final predictions from the teacher model softened

to varying degrees as the targets for middle layers in the stu-

dent model. We believe this is also an effective method for

distillation.

The validation accuracy curves of TDD, TDD-random,

TDD-same and TDD-soft are depicted in Figure 3. The

baseline is the student model trained without any distilla-

tion. It can be seen that TDD consistently yields superior or

comparable performance compared to the baseline and the

three variants under the two different experimental settings,

one for homogeneous distillation and the other for heteroge-

neous distillation. TDD-soft, which shares the similar idea

with TDD, also produces competitive performance in our

experiments. However, as it does not interpret the decision

process in a coarse-to-fine manner, the merit of higher in-

terpretability is lost in it.

Note that here we do not exhaustively validate every

component in the proposed method, as we believe our main

idea can be implemented in several ways, not limited to the

proposed instantiation. We believe with more sophisticated

implementations, the distillation performance will be fur-

ther improved, which is left for future work.

4.4. Interpretability

In this section, we show that TDD enjoys some human-

interpretable properties. We first demonstrate the coarse-

to-fine decision process in trained deep networks, then the

human-interpretable intermediate decision is studied.

4.4.1 Coarse-to-fine Decision Process

To demonstrate the coarse-to-fine decision process underly-

ing pre-trained deep models, here we visualize the feature

distributions in different layers of ResNet56 on CIFAR10

in Figure 4. More results of other layers can be found in

the supplementary materials. From Figure 4, we can see

that from the first layer to the last layer, the extracted fea-

tures become increasingly distinguishable as expected. The

early layers are not capable of differentiating the final cat-
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Figure 4. Visualization of feature distributions after linear discriminant analysis from the first, the 19-th, the 37-th, and the last layers (from

left to right) using t-SNE [7].
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Figure 5. The decision process from a middle layer of ResNet56

on CIFAR10. Please zoom for better view.

egories as well as the last layer. However, these layers in-

cluding even the first layer exhibit great potential to dis-

tinguish coarser-grained classes. For example, the features

from the categories under the umbrella of vehicles tend to

cluster together, while the features of animal categories tend

to cluster in a different region.

To illustrate this point better, we depict the decision tree

from the 37-th layer in Figure 5 . In the decision tree, each

leaf node denotes one category and each non-leaf node is a

decision on its two parents. The “acc” in each node denotes

the classification accuracy in the feature space via nearest

neighbor search. For leaf nodes, the overall average clas-

sification accuracy is 50.95%. Based on this result, the

randomly guessing of the decision in the root node should

be about 77.0%. However, the nearest neighbor search at-

tains accuracy of 86.70% and 90.83% respectively for the

left and the right children, which is significantly higher

than randomly guessing. Similar conclusions can also be

made from other layers and models. These results again

prove that although the layers previous to the final classi-

fication layer can not make accurate predictions about the

final categories, they have the ability to differentiate be-

tween coarser-grained categories, which validates the main

assumption underlying the proposed method in this paper.

Table 3. Testing human-interpretable intermediate decision.

Layer #1 #13 #25 #37 Random

Top-5 Acc 45.0% 60.0% 74.0% 84.0% 19.0%

4.4.2 Human-interpretable Intermediate Decision

The proposed TDD actually decomposed the whole classifi-

cation task into a sequence of decisions. Although TDD im-

poses no human intervention on the decision process, some

intermediate decisions in middle layers still coincide well

with human perceptions. For example, from Figure 5 we

can see that the root note is making differentiation between

man-made vehicles and natural animals. To make a more

comprehensive study on this, we adopt CIFAR100, where

the 100 categories are grouped into 20 superclasses, to test

the consistency between data-driven decision process and

the human perceptions. Formally, every category y is used

to query the top-5 nearest categories Y ′ in the decision tree

from different layers. If one category in Y ′ and c are in

the same manually-defined superclass, the query is deemed

successful. Experimental results on WRN-40-2 is shown in

Table 3. It can be seen that almost all layers produce inter-

mediate decisions highly correlated with human perception.

As the layers go deeper, the correlation becomes higher.

5. Conclusions and Future Work

We propose Tree-like Decision Distillation (TDD) to ad-

dress the distillation problem. Unlike previous methods

that utilize dark knowledge, such as soft targets, features,

or attentions, for distillation, we argue what really matters

for distillation is the underlying problem-sovling process.

TDD first dissects the problem-solving process in a layer-

wise manner, then forces the student to mimic the decision

made by the teacher in different layers. Extensive experi-

ments demonstrate that the proposed method enjoys higher

accuracy, better interpretability and stronger generalization

across heterogeneous architectures. In our future work, we

will study more sophisticated implementations of the intro-

duced idea to further improve the distillation performance.
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