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Abstract

We present a method that takes as input a set of images

of a scene illuminated by unconstrained known lighting, and

produces as output a 3D representation that can be rendered

from novel viewpoints under arbitrary lighting conditions.

Our method represents the scene as a continuous volumetric

function parameterized as MLPs whose inputs are a 3D lo-

cation and whose outputs are the following scene properties

at that input location: volume density, surface normal, ma-

terial parameters, distance to the first surface intersection

in any direction, and visibility of the external environment

in any direction. Together, these allow us to render novel

views of the object under arbitrary lighting, including indi-

rect illumination effects. The predicted visibility and surface

intersection fields are critical to our model’s ability to simu-

late direct and indirect illumination during training, because

the brute-force techniques used by prior work are intractable

for lighting conditions outside of controlled setups with a sin-

gle light. Our method outperforms alternative approaches

for recovering relightable 3D scene representations, and

performs well in complex lighting settings that have posed a

significant challenge to prior work.

1. Introduction

A central problem in computer vision is that of inferring

the physical geometry and material properties that together

explain observed images. In addition to its importance for

recognition and robotics, a solution to this open problem

would have significant value for computer graphics — the

ability to create realistic 3D models from standard photos

could democratize 3D content creation and allow anyone

to use real-world objects in photography, filmmaking, and

game development. In this paper, we work towards this

goal and present an approach for estimating a volumetric 3D

representation from images of a scene under arbitrary known

lighting conditions, such that high-quality novel images can

be rendered from arbitrary unseen viewpoints and under

 (a) Input images of the scene under unconstrained varying (known) lighting conditions

(b) Output renderings from novel viewpoints and lighting conditions

Figure 1: We optimize a Neural Reflectance and Visibility Field

(NeRV) 3D representation from a set of input images of a scene

illuminated by known but unconstrained lighting. Our NeRV repre-

sentation can be rendered from novel views under arbitrary lighting

conditions not seen during training. Here, we visualize example

input data and renderings for two scenes. The first two output

rendered images for each scene are from the same viewpoint, each

illuminated by a point light at a different location, and the last image

is from a different viewpoint under a random colored illumination.

novel unobserved lighting conditions, as shown in Figure 1.

The vision and graphics research communities have re-

cently made substantial progress towards the novel view

synthesis portion of this goal. The Neural Radiance Fields

(NeRF) [32] approach has shown that it is possible to syn-

thesize photorealistic images of scenes by training a simple

neural network to map 3D locations in the scene to a contin-

uous field of volume density and color. Volume rendering is

trivially differentiable, so the parameters of a NeRF can be

optimized for a single scene by using gradient descent to min-

imize the difference between renderings of the NeRF and a

set of observed images. Though NeRF produces compelling

results for view synthesis, it does not provide a solution for

relighting. This is because NeRF models just the amount of
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outgoing light from a location — the fact that this outgoing

light is the result of interactions between incoming light and

the material properties of an underlying surface is ignored.

At first glance, extending NeRF to enable relighting ap-

pears to require only changing the image formation model:

instead of modeling scenes as fields of density and view-

dependent color, we can model surface normals and material

properties (e.g. the parameters of a bi-directional reflectance

distribution function (BRDF)) and simulate the transport

of the scene’s light sources (which we assume are known)

according to the rules of physically based rendering [38].

However, simulating the attenuation and reflection of light

by particles is fundamentally challenging in NeRF’s neural

volumetric representation because content can exist any-

where within the scene, and determining the density at any

location requires querying a neural network. Consider the

naı̈ve procedure for computing the radiance along a single

camera ray due to direct illumination, as illustrated in Fig-

ure 2: First, we query NeRF’s multi-layer perceptron (MLP)

for the volume density at samples along the camera ray to

determine the amount of light reflected by particles at each

location that reaches the camera. For each location along the

camera ray, we then query the MLP for the volume density at

densely-sampled points between the location and every light

source to estimate the attenuation of light before it reaches

that location. This procedure quickly becomes prohibitively

expensive if we want to model environment light sources

or global illumination, in which case scene points may be

illuminated from all directions. Prior methods for estimat-

ing relightable volumetric representations from images have

not overcome this challenge, and can only simulate direct

illumination from a single point light source when training.

The problem of efficiently computing visibility is well

explored in the graphics literature. In standard raytracing

graphics pipelines, where the scene geometry is fixed and

known ahead of time, a common solution is to precompute

a data structure that can be efficiently queried to obtain the

visibility between pairs of scene points, or between scene

points and light sources. This can be accomplished with

approaches including octrees [44], distance transforms [8],

or bounding volume hierarchies [38]. But these existing

approaches do not provide a solution to our task — our ge-

ometry is unknown, and our model’s estimate of geometry

changes constantly as it is optimized. Though conventional

data structures could perhaps be used to accelerate rendering

after optimization is complete, we need to efficiently query

the visibility between points during optimization, and ex-

isting solutions are prohibitively expensive to rebuild after

each training iteration (of which there may be millions).

In this work, we present a method to train a NeRF-like

model that can simulate realistic environment lighting and

global illumination. Our key insight is to train an MLP to

act as a lookup table into a visibility field during rendering.
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Figure 2: We visualize how “Neural Visibility Fields” reduce the

computational burden of volume rendering a camera ray with direct

(top) and one-bounce indirect (bottom) illumination compared to

naı̈ve raymarching, alongside each solution’s computational com-

plexity (n is the number of samples along each ray, ` is the number

of light sources, and d is the number of sampled indirect illumina-

tion directions). Black dots represent evaluating a shape MLP for

volume density at a position, red arrows represent evaluating the

visibility MLP at a position along a direction, and the blue arrow

represents evaluating the visibility MLP for the expected termina-

tion depth of a ray at a position along a direction (output visibility

multipliers and termination depths from the visibility MLP are

displayed as text). Brute-force light transport simulation through

NeRF’s volumetric representation with naı̈ve raymarching (left)

is intractable. By approximating visibility with a neural visibility

field (right) that is optimized alongside the shape MLP, we are able

to make optimization with complex illumination tractable.

Instead of estimating light or surface visibility at a given

3D position along a given direction by densely evaluating

an MLP for the volume density along the corresponding ray

(which would be prohibitively expensive), we simply query

this visibility MLP to estimate visibility and expected termi-

nation depth in any direction (see Figure 2). This visibility

MLP is optimized alongside the MLP that represents volume

density, and is supervised to be consistent with the volume

density samples observed during optimization. Using this

neural approximation of the true visibility field significantly

eases the computational burden of estimating volume ren-

dering integrals while training. Our resulting system, which

we call “NeRV” (“Neural Reflectance and Visibility Fields”)

enables the recovery of a NeRF-like model that supports

relighting in addition to view synthesis. While previous so-

lutions for relightable NeRFs [3] were limited to controlled

settings which required input images to be illuminated by a

single point light, NeRV supports training with arbitrary en-

vironment lighting and “one-bounce” indirect illumination.
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2. Related Work

Neural Radiance Fields [32] can be thought of as a mod-

ern neural reformulation of the classic problem of scene

reconstruction: given multiple images of a scene, inferring

the underlying geometry and appearance that best explains

those images. While classic approaches have largely relied

on discrete representations such as textured meshes [16, 53]

and voxel grids [48], NeRF has demonstrated that a continu-

ous volumetric function, parameterized as an MLP, is able

to represent complex scenes and render photorealistic novel

views. NeRF works well for view synthesis, but it does not

enable relighting because it has no mechanism to disentangle

the outgoing radiance of a surface into an incoming radiance

and an underlying surface material.

This problem of attributing what aspects of an image are

due to material, lighting, or geometric variation is commonly

referred to as “intrinsic image estimation” [2, 22] or “inverse

rendering” [40, 46], and is a classic problem in computer

vision and graphics. These classical approaches have derived

insightful observations about separating a single image into

shading and reflectance components [18], inferring surface

normals from the appearance of an image’s shading [17], or

jointly inferring shape, illumination, and reflectance from a

single image [1], but they are not designed to recover full

3D models that can be used for graphics applications.

The difficulty of this problem (a consequence of its un-

derconstrained nature) is typically addressed using one of

the following strategies: 1) learning priors on shape, illumi-

nation, and reflectance, 2) assuming known geometry, or 3)

using multiple input images of the scene under different light-

ing conditions. Most recent single-image inverse rendering

methods [23, 25, 45, 49, 56, 60] belong to the first category,

and use large datasets of images with labeled geometry and

materials to train convolutional neural networks to predict

these properties. Most prior works in inverse rendering that

recover full 3D models for graphics applications [57] fall un-

der the second category, and use 3D geometry obtained from

active scanning [37, 47, 61], proxy models [7, 10, 11], sil-

houette masks [35, 58], or multiview stereo [33] as a starting

point before recovering reflectance and refined geometry.

Our method belongs to the third category; we only re-

quire posed input images of a scene under different (known)

lighting conditions. The most related prior works are Deep

Reflectance Volumes [4], which estimates voxel geometry

and BRDF parameters, and the follow-up work Neural Re-

flectance Fields [3], which replaces Deep Reflectance Vol-

ume’s voxel grid with a continuous volume represented by an

MLP. Our work extends Neural Reflectance Fields (which re-

quires scenes to only be illuminated by a single point light at

a time due to their brute-force visibility computation strategy

visualized in Figure 2, and only models direct illumination)

to work for arbitrary lighting and global illumination.

We also take inspiration from recent works that replace

discrete voxel and mesh geometry representations with

MLPs that approximate a continuous 3D function by map-

ping from an input 3D location to scene properties at that

location. This strategy has been explored for the tasks of

representing shapes [9, 12, 30, 36, 50, 54] and scenes under

fixed lighting for view synthesis [26, 32, 34, 51, 59]. One

technique that has been used for relighting these neural rep-

resentations is to condition the MLP’s output appearance on

a latent code that encodes a per-image lighting, as in NeRF

in the Wild [28] (as well as previously with discretized scene

representations [24, 31]). Although this strategy can effec-

tively explain the appearance variation of training images, it

cannot be used to render the same scene under new lighting

conditions not observed during training (Figure 6) because

it does not utilize the physics of light transport.

Our method is inspired by a long line of work in graph-

ics that explores precomputation [42, 52] and approxima-

tion [6, 14, 41, 43] strategies to efficiently compute global

illumination in physically-based rendering. Our “Neural

Visibility Fields” can be thought of as a neural analogue to

visibility precomputation techniques, and is specifically de-

signed for use in our neural inverse rendering setting where

geometry is dynamically changing during optimization.

3. Method

We extend NeRF to include the simulation of light trans-

port, which allows NeRFs to be rendered under arbitrary

novel illumination conditions. Instead of modeling a scene

as a continuous 3D field of particles that absorb and emit

light as in NeRF, we represent a scene as a 3D field of ori-

ented particles that absorb and reflect the light emitted by

external light sources (Section 3.2). Naı̈vely simulating light

transport through this model is inefficient and unable to scale

to simulate realistic lighting conditions or global illumina-

tion. We remedy this by introducing a neural visibility field

representation (optimized alongside NeRF’s volumetric rep-

resentation) that allows us to efficiently query the point-to-

light and point-to-point visibilities needed to simulate light

transport (Section 3.3). The resulting Neural Reflectance

and Visibility Field (NeRV) is visualized in Figure 3.

3.1. NeRF Overview

NeRF represents a scene as a continuous function, param-

eterized by a “radiance” MLP whose input is a 3D position

and viewing direction, and whose output is the volume den-

sity � and radiance Le (RGB color) emitted by particles at

that location along that viewing direction. NeRF uses stan-

dard emission-absorption volume rendering [19] to compute

the observed radiance L(c,ωo) (the rendered pixel color)

at camera location c along direction ωo as the integral of

the product of three quantities at any point x(t) = c� tωo

along the ray: the visibility V (x(t), c), which indicates the

fraction of emitted light from position x(t) that reaches the
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(a) Our Rendered Image  

(Novel View and Lighting)

(f) Normals (g) Albedo (h) Roughness (i) Shadow Map (j) Direct (k) Indirect

(e) BRDF(b) Light Visibility (c) Direct Illumination (d) Indirect Illumination

x ( ) d�
i+= ×= ×

x x x x x x

Figure 3: (a) Given any continuous 3D location as input, such as the point at the cyan “x”, NeRV outputs the volume density as well as: (b)

The visibility to a spherical environment map surrounding the scene, which is multiplied by (c) the direct illumination at that point and added

to (d) the estimated indirect illumination at that point to determine the full incident illumination. This is then multiplied by (e) the predicted

BRDF, and integrated over all incoming directions to determine the outgoing radiance at that point. In the bottom row, we visualize these

outputs for the full rendered image: (f) Surface normals, and BRDF parameters for (g) diffuse albedo and (h) specular roughness. We can

use the predicted visibilities to compute the fraction of the total illumination that is actually incident at any location, visualized as (i) a

shadow map. We also show the same rendered viewpoint if it were lit by only (j) direct and (k) indirect illumination.

camera at c, the density �(x(t)), and the emitted radiance

Le(x(t),ωo) along the viewing direction ωo:

L(c,ωo) =

Z
1

0

V (x(t), c)�(x(t))Le(x(t),ωo) dt , (1)

V (x(t), c) = exp

✓

�

Z t

0

�(x(s)) ds

◆

. (2)

A NeRF is recovered from observed input images of a scene

by sampling a batch of observed pixels, sampling the cor-

responding camera rays of those pixels at stratified random

points to approximate the above integral using numerical

quadrature [29], and optimizing the weights of the radiance

MLP via gradient descent to minimize the error between the

estimated and observed pixel colors.

3.2. Neural Reflectance Fields

A NeRF representation does not separate the effect of

incident light from the material properties of surfaces. This

means that NeRF is only able to render views of a scene

under the fixed lighting conditions presented in the input

images — a NeRF cannot be relit. Modifying NeRF to

enable relighting is straightforward, as initially demonstrated

by the Neural Reflectance Fields work of Bi et al. [3]. Instead

of representing a scene as a field of particles that emit light,

it is represented as a field of particles that reflect incoming

light. With this, given an arbitrary lighting condition, we

can simulate the transport of light through the volume as it

is reflected by particles until it reaches the camera with a

standard volume rendering integral [19]:

L(c,ωo) =

Z
1

0

V (x(t), c)�(x(t))Lr(x(t),ωo) dt , (3)

Lr(x,ωo) =

Z

S

Li(x,ωi)R(x,ωi,ωo) dωi , (4)

where the view-dependent emission term Le(x,ωo) in Equa-

tion 1 is replaced with an integral over the sphere S of in-

coming directions, of the product of the incoming radiance

Li from any direction and a reflectance function R (often

called a phase function in volume rendering) which describes

how much light arriving from direction ωi is reflected to-

wards direction ωo. We follow Bi et al. and use the standard

microfacet BRDF described by Walter et al. [55] as the re-

flectance function, so R at any 3D location is parameterized

by a diffuse RGB albedo, a scalar specular roughness, and

a surface normal. We replace NeRF’s radiance MLP with

two MLPs: a “shape” MLP that outputs volume density �

and a “reflectance” MLP that outputs BRDF parameters (3D

diffuse albedo a and 1D roughness �) for any input 3D point:

MLPθ : x ! �, MLPψ : x ! (a, �). Instead of parameter-

izing the 3D surface normal n as a normalized output of the

shape MLP, as in Bi et al. [3], we compute n as the negative

normalized gradient vector of the shape MLP’s output � with

respect to x, computed using automatic differentiation. We

further discuss this choice in Section 4.2.

3.3. Light Transport via Neural Visibility Fields

Although modifying NeRF to enable relighting is straight-

forward, estimating the volume rendering integral for gen-

eral lighting scenarios is computationally challenging with

a continuous volumetric representation such as NeRF. Fig-
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Figure 4: The geometry of an indirect illumination path from

camera to light source, and a visualization of our notation.

ure 2 visualizes the scaling properties that make simulating

volumetric light transport particularly difficult. Even if we

only consider direct illumination from light sources to a

scene point, a brute-force solution is already challenging

for more than a single point light source as it requires re-

peatedly querying the shape MLP for volume density along

paths from each scene point to each light source. Moreover,

general scenes can be illuminated by light arriving from

all directions, and addressing this is imperative to recover-

ing relightable representations in unconstrained scenarios.

Simulating even simple global illumination in a brute-force

manner is intractable: rendering a single ray in our scenes

under one-bounce indirect illumination with brute-force sam-

pling would require a petaflop of computation, and we need

to render roughly a billion rays over the course of training.

We ameliorate this issue by replacing several brute-force

volume density integrals with learned approximations. We

introduce a “visibility” MLP that emits an approximation

of the environment lighting visibility at any input location

along any input direction, as well as an approximation of

the expected termination depth of the corresponding ray:

MLPφ : (x,ω) ! (Ṽφ, D̃φ). When rendering, we use these

MLP-approximated quantities in place of their actual values:

V (x,ω) = exp

✓

�

Z
1

0

�(x+ sω) ds

◆

, (5)

D(x,ω) =

Z
1

0

exp

✓

�

Z t

0

�(x+ sω) ds

◆

t�(x+ tω) dt . (6)

In Section 3.5 we place losses on the visibility MLP out-

puts (Ṽφ, D̃φ) to encourage them to resemble the (V,D)
corresponding to the current state of the shape MLP.

Below, we provide a detailed walkthrough of how our

Neural Visibility Field approximations simplify the volume

rendering integral computation. Figure 4 is provided for ref-

erence. We first decompose the reflected radiance Lr(x,ωo)
into its direct and indirect illumination components. Let

us define Le(x,ωi) as radiance due to a light source arriv-

ing at point x from direction ωi. As defined in Equation 3,

L(x,ωi) is the estimated incoming radiance at location x

from direction ωi. This means the incident illumination Li

decomposes into Le + L (direct plus indirect light). The

shading calculation for Lr then becomes:

Lr(x,ωo) =

Z

S

(Le(x,ωi) + L(x,�ωi))R(x,ωi,ωo)dωi (7)

=

Z

S

Le(x,ωi)R(x,ωi,ωo)dωi

| {z }

component due to direct lighting

+

Z

S

L(x,�ωi)R(x,ωi,ωo)dωi

| {z }

component due to indirect lighting

.

To calculate incident direct lighting Le we must account for

the attenuation of the (known) environment map E due to

the volume density along the incident illumination ray ωi:

Le(x,ωi) = V (x,ωi)E(x,�ωi) . (8)

Instead of evaluating V as another line integral through the

volume, we use the visibility MLP’s approximation Ṽφ. With

this, our full calculation for the direct lighting component of

camera ray radiance L(c,ωo) simplifies to:
Z

1

0

V
�
x(t), c

�
�
�
x(t)

�
Z

S

Ṽφ

�
x(t),ωi

�
E
�
x(t), 9ωi

�
R
�
x(t),ωi,ωo

�
dωidt .

(9)

By approximating the integrals along rays from each point

on the camera ray toward each environment direction when

computing the color of a pixel due to direct lighting, we have

reduced the complexity of rendering with direct lighting

from quadratic in the number of samples per ray to linear.

Next, we focus on the more difficult task of accelerating the

computation of rendering with indirect lighting, for which a

brute force approach would scale cubically with the number

of samples per ray. We make two approximations to reduce

this intractable computation. Our first approximation is to

replace the outermost integral (the accumulated radiance

reflected towards the camera at each point along the ray)

with a single point evaluation by treating the volume as a

hard surface located at the expected termination depth t0 =
D(c,�ωo). Note that we do not use the visibility MLP’s

approximation of t0 here, since we are already sampling �(x)
along the camera ray. This reduces the indirect contribution

of L(c,ωo) to a spherical integral at a single point x(t0):
Z

S

L
�
x(t0),�ωi

�
R
�
x(t0),ωi,ωo

�
dωi . (10)

To simplify the recursive evaluation of L inside this integral,

we limit the indirect contribution to a single bounce, and use

the hard surface approximation a second time to replace the

integral along a ray for each incoming direction:

L(x(t0),�ωi) ⇡

Z

S

Le(x
0(t00),ω0

i)R(x0(t00),ω0

i,�ωi)dω
0

i , (11)

where t00 = D̃φ(x(t
0),ωi) is the expected intersection depth

along the ray x
0(t00) = x(t0) + t00ωi as approximated by the

visibility MLP. Thus the expression for the component of

camera ray radiance L(c,ωo) due to indirect lighting is:
ZZ

S

Le(x
0(t00),ω0

i)R(x0(t00),ω0

i, 9ωi)dω
0

iR(x(t0),ωi,ωo)dωi ,

(12)
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and fully expanding the direct radiance Le(x
0(t00),ω0

i) inci-

dent at each secondary intersection point gives us:
ZZ

S

Ṽφ

�
x
0(t00),ω0

i

�
E
�
x
0(t00),�ω

0

i

�
R
�
x
0(t00),ω0

i, 9ωi

�
dω0

iR
�
x(t0),ωi,ωo

�
dωi ,

(13)

Finally, we can write out the complete volume rendering

equation used by NeRV as the sum of Equations 9 and 13:

L(c,ωo)=

Z
1

0

V
�
x(t), c

�
�
�
x(t)

�
Z

S

Ṽφ

�
x(t),ωi

�
E
�
x(t), 9ωi

�
R
�
x(t),ωi,ωo

�
dωidt

+

ZZ

S

Ṽφ

�
x
0(t00),ω0

i

�
E
�
x
0(t00), 9ω0

i

�
R
�
x
0(t00),ω0

i, 9ωi

�
dω0

iR
�
x(t0),ωi,ωo

�
dωi

(14)

Figure 2 illustrates how the approximations made by NeRV

reduce the computational complexity of computing direct

and indirect illumination from quadratic and cubic (respec-

tively) to linear. This enables the simulation of direct illumi-

nation from environment lighting and one-bounce indirect

illumination within the training loop of optimizing a contin-

uous relightable volumetric scene representation.

3.4. Rendering

To render a camera ray x(t) = c� tωo passing through

a NeRV, we estimate the volume rendering integral in Equa-

tion 14 using the following procedure:

1) We draw 256 stratified samples along the ray and query

the shape and reflectance MLPs for the volume densities,

surface normals, and BRDF parameters at each point: � =
MLPθ(x(t)), n = rxMLPθ(x(t)), (a, �) = MLPψ(x(t)).

2) We shade each point along the ray with direct illumination

by estimating the integral in Equation 9. First, we generate

E(x(t),�ωi) by sampling the known environment lighting

on a 12 ⇥ 24 grid of directions ωi on the sphere around

each point. We then multiply this by the predicted visibility

Ṽφ(x(t),ωi) and microfacet BRDF values R(x(t),ωi,ωo)
at each sampled ωi, and integrate this product over the

sphere to produce the direct illumination contribution.

3) We shade each point along the ray with indirect illu-

mination by estimating the integral in Equation 13. First,

we compute the expected camera ray termination depth

t0 = D(c,�ωo) using the density samples from Step

1. Next, we sample 128 random directions on the up-

per hemisphere at x(t0) and query the visibility MLP for

the expected termination depths along each of these rays

t00 = D̃φ(x(t
0),ωi) to compute the secondary surface inter-

section points x0(t00) = x(t0) + t00ωi. We then shade each

of these points with direct illumination by following the pro-

cedure in Step 2. This estimates the indirect illumination

incident at x(t0), which we then multiply by the microfacet

BRDF values R(x(t0),ωi,ωo) and integrate over the sphere

to produce the indirect illumination contribution.

4) The total reflected radiance at each point along the camera

ray Lr(x(t),ωo) is the sum of the quantities from Steps 2

and 3. We composite these along the ray to compute the pixel

color using the same quadrature rule [29] used in NeRF:

L(c,ωo) =
X

t

V (x(t), c)↵(�(x(t))�)Lr(x(t),ωo) , (15)

V (x(t), c) = exp
�
�
P

s<t
�(x(s))�

�
, ↵(z) = 1� exp(�z) ,

where � is the distance between samples along the ray.

3.5. Training and Implementation Details

Instead of directly passing 3D coordinates x and direction

vectors ω to the MLPs, we map these inputs using NeRF’s

positional encoding [32, 54], with a maximum frequency

of 27 for 3D coordinates and 24 for 3D direction vectors.

The shape and reflectance MLPs each use 8 fully-connected

ReLU layers with 256 channels. The visibility MLP uses 8

fully-connected ReLU layers with 256 channels each to map

the encoded 3D coordinates x to an 8-dimensional feature

vector which is concatenated with the encoded 3D direction

vector ω and processed by 4 fully-connected ReLU layers

with 128 channels each.

We train a separate NeRV representation from scratch

for each scene, which requires a set of posed RGB images

and corresponding lighting environments. At each training

iteration we randomly sample a batch of 512 pixel rays

R from the input images and use the previously-described

procedure to render these pixels from the current NeRV

model. We additionally sample 256 random rays R0 per

training iteration that intersect the volume, and we compute

the visibility and expected termination depth at each location

and in either direction along each ray for use as supervision

for the visibility MLP. We minimize the sum of three losses:

L =
X

r2R

�
�
�⌧(L̃(r))� ⌧(L(r))

�
�
�

2

2

+ (16)

�
X

r
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�
�Ṽφ(r

0(t))� Vθ(r
0(t))

�
�
�

2

2

+
�
�
�D̃φ(r

0(t))�Dθ(r
0(t))

�
�
�

2

2

◆

,

where ⌧(x) = x/1+x is a tone-mapping operator [13], L(r)
and L̃(r) are the ground truth and predicted camera ray

radiance values (ground-truth values are simply the colors

of input image pixels), Ṽφ(r) and D̃φ(r) are the predicted

visibility and expected termination depth from our visibility

MLP given its current weights �, Vθ(r) and Dθ(r) are the

estimates of visibility and termination depth implied by the

shape MLP given its current weights ✓, and � = 20 is the

weight of the loss terms encouraging the visibility MLP to

be consistent with the shape MLP. Note that the visibility

MLP is not supervised using any “ground truth” visibility

or termination depth — it is only optimized to be consistent

with the NeRV’s current estimate of scene geometry, by

evaluating Equations 5 and 6 using the densities � emitted

by the shape MLPθ. We apply a “stop gradient” to Vθ and

Dθ in the last two terms of the loss, so the shape MLP is
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Hotdogs

Train Illum. Single Point Colorful + Point Ambient + Point OLAT

PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM

NLT [61] � � � � � � 23.57 0.851
NeRF+LE 19.96 0.868 17.88 0.758 20.72 0.869 � �

NeRF+Env 19.94 0.863 19.17 0.824 20.56 0.864 � �

Bi et al. [3] 23.74 0.862 22.09 0.799 20.94 0.754 � �

NeRV, NVF 23.93 0.860 24.37 0.885 25.14 0.892 � �

NeRV, Trace 23.76 0.863 24.24 0.886 25.06 0.892 � �

Lego

Train Illum. Single Point Colorful + Point Ambient + Point OLAT

PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM

NLT [61] � � � � � � 24.10 0.936
NeRF+LE 21.42 0.874 21.74 0.890 20.33 0.860 � �

NeRF+Env 21.13 0.855 20.27 0.878 20.24 0.852 � �

Bi et al. [3] 22.89 0.897 22.83 0.890 18.10 0.783 � �

NeRV, NVF 22.78 0.866 23.82 0.899 23.32 0.894 � �

NeRV, Trace 23.16 0.883 24.18 0.925 23.79 0.923 � �

Armadillo

Train Illum. Single Point Colorful + Point Ambient + Point OLAT

PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM

NLT [61] � � � � � � 21.62 0.900
NeRF+LE 20.35 0.881 18.76 0.863 17.35 0.859 � �

NeRF+Env 19.60 0.874 17.89 0.863 17.28 0.851 � �

Bi et al. [3] 22.35 0.894 21.06 0.892 19.93 0.842 � �

NeRV, NVF 21.14 0.882 22.80 0.910 22.80 0.897 � �

NeRV, Trace 22.14 0.897 23.02 0.921 22.81 0.895 � �

Table 1: Quantitative relighting and view synthesis results. For

every scene, we train each method on three datasets that contain

images of the scene under different illumination conditions, and

compare the metrics of all variants on the same testing dataset.

Please refer to Section 4 for details.

not encouraged to degrade its own performance to better

match the output from the visibility MLP. We implement

our model in JAX [5], and optimize using Adam [21] with a

learning rate that begins at 10�5 and decays exponentially

to 10�6 over the course of optimization (the other Adam

hyperparameters are default values: �1 = 0.9, �2 = 0.999,

and ✏ = 10�8). Each model is trained for 1 million iterations

using 128 TPU cores, which takes 1 day to converge.

4. Results

NeRV outperforms prior work, particularly in its ability

to recover relightable scene representations from images

observed under complex lighting. We urge the reader to

view our supplementary video to appreciate NeRV’s relight-

ing and view synthesis results. In Table 1 we show per-

formance for rendering images from novel viewpoints with

lighting conditions not observed during training. We eval-

uate two versions of NeRV: NeRV with Neural Visibility

Fields (NeRV, NVF) and NeRV with Test-time Tracing

(NeRV, Trace). Both methods use the same training proce-

dure as described above, and differ only in how evaluation

is performed: “NeRV, NVF” uses the same visibility ap-

proximations used during training at test time, while “NeRV,

Trace” uses brute-force tracing to estimate visibility to point

light sources to render sharper shadows at test time. We

compare against the following baselines:

Neural Light Transport [61] (NLT) requires an input

proxy geometry (which we provide by running marching

(a) Ground Truth (b) Bi et al. 
Point

(c) NeRV (Ours) 
Point

(e) NeRV (Ours) 
Ambient+Point

(d) Bi et al. 
Ambient+Point

Figure 5: Both (b) Bi et al. [3] and (c) NeRV recover high-quality

relightable models when trained on images illuminated by a sin-

gle point source. However, for more complex lighting such as

“Ambient+Point”, (d) Bi et al. fails as its brute-force visibility com-

putation is unable to simulate the surrounding ambient lighting

during training. Their model minimizes training loss by making the

scene transparent and is thus unable to render convincing images

for the “single point light” (row 1) or “colorful set of points lights”

(row 2) conditions. (e) Because NeRV correctly simulates light

transport, its renderings more closely resemble (a) the ground truth.

(a) Ground Truth (d) NeRV (Ours) 

Ambient+Point

(b) NeRF + LE 

Ambient+Point

(c) NeRF + Env. 

Ambient+Point

Figure 6: Modeling appearance changes due to lighting with a latent

code does not generalize to lighting conditions unlike those seen

during training. Here we train (b, c) the two latent code baselines

(d) and NeRV on the “Ambient+Point” dataset. The latent code

models are unable to produce convincing renderings at test time,

while NeRV trained on the same data renders high-quality images.

cubes [27] on NeRFs [32] trained from images of each scene

rendered with fixed lighting), and trains a convolutional net-

work defined in an object’s texture atlas space to perform

simultaneous relighting and view synthesis. Though our

method just requires images with known but unconstrained

lighting conditions for training, NLT requires multi-view im-

ages captured “One-Light-at-a-Time” (OLAT), where each

viewpoint is rendered multiple times, once per light source.

See the supplemental material for qualitative comparisons.

NeRF + Learned Embedding (NeRF+LE) and NeRF

+ Fixed Environment Embedding (NeRF+Env) represent

appearance variation due to changing lighting using latent

variables. Both augment the original NeRF model with an

additional input of a 64-dimensional latent code correspond-

ing to the scene lighting condition. These approaches are

similar to “NeRF in the Wild” [28], which also uses a latent

code to describe appearance variation due to variable light-
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ing. NeRF+LE uses a PointNet [39] encoder to embed the

position and color of each light, and NeRF+Env simply uses

a flattened environment map as the latent code.

Neural Reflectance Fields (Bi et al. [3]) uses a similar

neural volumetric representation as NeRV, with the critical

difference that brute-force raymarching is used to compute

visibilities. This approach is therefore unable to consider illu-

mination from sources other than a single point light during

training. At test time, when time and memory constraints are

less restrictive, it computes visibilities to all light sources.

We train each method (other than NLT) on nine datasets.

Each consists of 150 images of a synthetic scene (“Hotdogs”,

“Lego”, or “Armadillo”) illuminated by one of 3 lighting

conditions: 1) “Point” contains a single white point light

randomly sampled on a hemisphere above the scene for each

frame, representing a laboratory setup similar to that of Bi et

al. [3]. 2) “Colorful + Point” contains a randomly-sampled

point light, as well as a set of 8 colorful point lights whose

locations and colors are fixed across all images in the dataset.

This represents a challenging scenario with multiple strong

light sources that cast shadows and tint the scene. 3) “Am-

bient + Point” contains a randomly-sampled point light, as

well as a dim grey environment map. This represents a chal-

lenging scenario where scene points are illuminated from all

directions. We separately train each method on each of these

nine datasets and measure performance on the corresponding

scene’s test set, which consists of 150 images of the scene

under novel lighting conditions (containing either one or

eight point sources) not observed during training, rendered

from novel viewpoints not observed during training.

4.1. Discussion

Our method outperforms all baselines in experiments

that correspond to challenging complex lighting conditions,

and matches the performance of prior work in experiments

with simple lighting. As visualized in Figure 5, the method

of Bi et al. performs comparably to ours in the case it is

designed for: images illuminated by a single point source.

However, their model’s performance degrades when it is

trained on datasets that have complex lighting conditions

(“Colorful+Point” and “Ambient+Point” experiments in Ta-

ble 1), as its forward model is unable to simulate light from

more than a single source during training. As visualized in

Figure 6, our method thoroughly outperforms both latent

code baselines, as they are unable to generalize to lighting

conditions that are unlike those seen during training. Our

method generally matches or outperforms the NLT baseline,

which requires a controlled laboratory lighting setup and

substantially more inputs than all other methods (the multi-

view OLAT dataset we use to train NLT contains eight times

as many images as our other datasets, and the original NLT

paper [61] uses 150 OLAT images per viewpoint).

(a) NeRV (Ours) with Indirect (b) NeRV (Ours) Direct Only

Figure 7: NeRV’s ability to simulate indirect illumination pro-

duces realistic details such as the additional brightness in the lego

bulldozer’s cab due to interreflections.

(a) NeRV (Ours) with Analytic Normals (b) NeRV (Ours) with MLP-Predicted Normals

Figure 8: While obtaining surface normals (a) analytically or (b) as

an output of the shape MLP produces similar renderings, analytic

normals are much closer to the true surface normals.

Scene Hotdogs Lego Armadillo

PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM

Ours, No Indirect 24.43 0.861 23.06 0.888 21.27 0.878
Ours, MLP Normals 25.60 0.893 23.18 0.886 22.40 0.891
Ours, NVF 25.14 0.892 23.32 0.894 22.80 0.897
Ours, Trace 25.06 0.892 23.79 0.923 22.81 0.895

Table 2: Quantitative ablation results trained on the “Ambi-

ent+Point” dataset. Please refer to Section 4.2 for details.

4.2. Ablation Studies

We validate our choices of using analytic instead of MLP-

predicted surface normals and simulating one-bounce in-

direct illumination through the ablation study reported in

Table 2. We can see that modeling indirect illumination im-

proves performance (Figure 7), even for our relatively simple

scenes. Although using analytic instead of MLP-predicted

normals is less numerically significant, Figure 8 shows that

it results in more accurate estimated surface normals, which

may be important for downstream graphics tasks.

5. Conclusion

We have demonstrated a method for recovering re-

lightable neural volumetric representations from images of

scenes illuminated by environmental and indirect lighting,

by using a visibility MLP to approximate portions of the vol-

ume rendering integral that would otherwise be intractable to

estimate during training by brute-force sampling. We believe

that this work is an important initial foray into leveraging

learned function approximation to alleviate the computa-

tional burden incurred by using rigorous physically-based

differentiable rendering procedures for inverse rendering.
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and Frédo Durand. Sample-based monte carlo denoising

using a kernel-splatting network. ACM TOG, 2019.

[14] Paul Green, Jan Kautz, and Frédo Durand. Efficient re-
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