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Abstract

Multi-pedestrian trackers perform well when targets are

clearly visible making the association task quite easy. How-

ever, when heavy occlusions are present, a mechanism to re-

identify persons is needed. The common approach is to ex-

tract visual features from new detections and compare them

with the features of previously found tracks. Since those de-

tections can have substantial overlaps with nearby targets –

especially in crowded scenarios – the extracted features are

insufficient for a reliable re-identification. In contrast, we

propose a novel occlusion handling strategy that explicitly

models the relation between occluding and occluded tracks

outperforming the feature-based approach, while not de-

pending on a separate re-identification network. Further-

more, we improve the track management of a regression-

based method in order to bypass missing detections and to

deal with tracks leaving the scene at the border of the image.

Finally, we apply our tracker in both temporal directions

and merge tracklets belonging to the same target, which fur-

ther enhances the performance. We demonstrate the effec-

tiveness of our tracking components with ablative experi-

ments and surpass the state-of-the-art methods on the three

popular pedestrian tracking benchmarks MOT16, MOT17,

and MOT20.

1. Introduction

The tracking of multiple pedestrians is an impor-

tant component in many different applications, especially

surveillance related tasks. The goal is to detect and identify

each pedestrian in a video throughout the whole sequence

by assigning every target a unique ID.

Most of the existing approaches follow the tracking-by-

detection paradigm [4, 5, 28, 30, 32, 33, 34] first generating

a set of bounding boxes for each frame independently and

then associating those detections to tracks based on motion

patterns or visual cues. While this association step is easy to

perform when all pedestrians are clearly visible, the prob-

lem gets much harder in crowded scenes, where occlusions

lead to missing detections. To recover pedestrians, many

methods extract deep features from the detected bounding

boxes with a re-identification model [12, 28, 31, 33, 34].

The problems of these approaches are two-fold. First,

besides the object detector, a separate network has to be

trained, which is time consuming and increases the com-

putational complexity of the whole tracking pipeline. Sec-

ond, the image areas of the detected bounding boxes often

include parts of nearby pedestrians, especially in crowded

scenarios. This harms the representation ability of the ex-

tracted visual features and can cause false re-identifications.

In contrast, we propose a new strategy to re-identify tar-

gets that explicitly models the occlusion of pedestrians and

only takes their motion into account. We introduce the con-

cept of occluding and occluded tracks and check for new ar-

riving detections, whether they belong to a previously found

occluded track only considering its motion, thus removing

the need for a separate re-identification network.

The two new tracking states are combined with the idea

of active and inactive tracks with a sophisticated track man-

agement that also includes the termination of tracks which

are leaving the scene. To utilize the recognized tracks in

the consecutive frame, we follow the tracking-by-regression

paradigm first introduced in [2], where the regression head

of a two-stage object detector is exploited to regress the pre-

viously found bounding boxes to their new position, mak-

ing the association step obsolete. We extend this regression

to inactive tracks, while preferring active ones in the subse-

quent non-maximum suppression (NMS) in order to allow a

regression-based re-identification without the confusion of

active and inactive tracks under occlusion.

Furthermore, we propose an offline extension, which can

be applied to any multi-object tracker, that exploits a video

sequence in both temporal directions and merges interme-

diate results to further boost the tracking performance.

The effectiveness of our components is shown with ab-

lative experiments and state-of-the-art results are achieved

on the three benchmarks MOT16 [23], MOT17 [23], and

MOT20 [8].
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To summarize, the main contributions of our work are as

follows:

• We propose a new strategy introducing the concepts of

occluding and occluded tracks for re-identifying oc-

cluded pedestrians without the need for a separate re-

identification network.

• The track management of a regression-based tracker is

extended by our occlusion handling, the regression of

inactive tracks to bypass missing detections, and the

treatment of tracks moving over the image boundary.

• An offline extension is proposed that applies our

tracker in both temporal directions and combines the

results with a merging mechanism, which significantly

improves the overall performance.

2. Related Work

Tracking-by-Detection. The predominant majority of ex-

isting methods separate the multiple object tracking (MOT)

task into two subproblems – detection and association. As

object detection is a large research field itself, many MOT

methods focus on the association step, where different cues

(position, motion, visual appearance, pose, etc.) are consid-

ered for linking detections to tracks. SORT [4] propagates

the position of tracks to the following frame with a Kalman

filter and associates detection boxes to tracks based on

overlap measured by Intersection over Union (IoU). The

further development DeepSORT [33] integrates deep visual

features extracted by a convolutional neural network (CNN)

into the association process, while in [30] also human poses

are incorporated. The idea of combining different cues in

order to get high quality similarity measures is also pursued

in many other tracking frameworks [12, 28, 31, 34]. One

disadvantage of these approaches lies in the need for

designing and training separate networks, which comes

with additional computational costs. Contrarily, in [32],

an appearance embedding model is trained together with

the detection model in a shared network to make the whole

MOT system more efficient.

Joint Detection and Tracking. In contrast of performing

detection and association one after another, some recent

approaches integrate detection and tracking more tightly.

D&T [10] uses a single network to learn detection and

cross-frame regression of boxes at the same time and aid

the training process by introducing correlation features.

CenterTrack [39] takes a heatmap of previous track po-

sitions as input and predicts, besides the bounding boxes

from the underlying CenterNet [40] detector, offset vectors

representing the motion of objects. In [24], a 3D CNN is

designed to regress bounding boxes for multiple frames

simultaneously yielding short tracklets that afterwards are

merged to get the final tracks. Tracktor [2] leverages the

regression head of a Faster R-CNN [26] detector to regress

the previously found tracks in the current frame and, hence,

implicitly solves the data association problem. As this

tracking-by-regression paradigm achieves promising results

on pedestrian tracking benchmarks, it has been adopted by

some other methods [17, 22, 35] and also serves as baseline

for our approach. Since the regression stops when severe

occlusion occurs, Tracktor is extended by a re-identification

model to re-activate inactive tracks. In contrast, we propose

an occlusion handling strategy that does not rely on the

extraction of visible features with a separate model. A

second difference between our approach and Tracktor lies

in the additional regression of inactive tracks that, together

with our improved track management, effectively bypasses

missing detections and makes the re-activation of inactive

tracks possible, even when no new detections arrive.

Tracking through Occlusions. Comparing visual features

extracted by a re-identification model is the most popu-

lar technique to retrieve missed targets after occlusions

[1, 2, 30]. As stated earlier, this comes with an increased

computational complexity and often is insufficient because

overlapping parts from nearby occluders harm the repre-

sentational power of extracted features. Another idea to

handle occlusions is to apply a hierarchical data association

[1, 29], where at first short-term tracklets are generated

followed by different tracklet linking strategies. In [13],

it is distinguished between inter-object occlusion and

obstacle occlusion that are solved with an attention-based

appearance model and a scene structure model which

aims at segmenting static obstacles in surveillance scenes,

respectively. We also account for both occlusion types with

our occlusion handling strategy modeling the concept of

one pedestrian occluding another one and the regression

of inactive tracks that can retrieve occluded pedestrians

re-appearing after being occluded by a static obstacle.

Retrieving missed Detections. To further improve the

tracking results by re-discovering missed detections, dif-

ferent post-processing techniques exist. For example,

the V-IOU tracker [5] applies a single-object tracker like

KCF [16] or Medianflow [18] at the start point of a track in

the past temporal direction and at the end point of a track

in the future temporal direction. In [14], a trajectory filling

strategy is proposed that interpolates fragmented tracks tak-

ing both pedestrian motion and camera motion into account.

The post processing extension of our approach also aims at

recovering missing detections but, differently from the pre-

viously mentioned methods, we run our tracker completely

in both temporal directions by processing the sequences two

times – forward and backwards – and merge the two sets of

tracklets to obtain the final tracking results.
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Figure 1: Overview of our track management and occlusion handling. (a) Before the regression, a motion model (MM) and

a camera motion compensation (CMC) are applied on both active and inactive tracks. Depending on the regression score s

and the overlap with other active tracks o, a track is either inactivated, re-activated, keeps its state, or is deleted in case it

moves over the image border. Additionally, if one of two overlapping active tracks gets suppressed by NMS, those tracks are

marked as occluded and occluding as shown in Figure 2. (b) For a new detection, which is not filtered by active tracks via

NMS, it is checked with Equation (1), whether the detection belongs to an inactive occluded track. If this is the case, the

track is re-activated with the new detection, otherwise a new track is started. For more details refer to Sections 3.1 and 3.2.

3. Proposed Method

Our tracking framework comprises an object detector

that is used for regression-based tracking, an occlusion

handling strategy, a sophisticated track management, and

two motion models for pedestrian and camera motion. A

schematic overview is illustrated in Figure 1.

The tracking of multiple pedestrians is realized by ex-

ploiting the regression head of a two-stage object detector,

as first proposed from Bergmann et al. [2] Instead of using

a separate network to re-identify occluded persons, we pro-

pose an occlusion handling strategy that introduces the con-

cept of occluding and occluded tracks, while also taking the

motion of pedestrians into account. Furthermore, we adopt

the standard separation of active versus inactive tracks but

improve the track management by additionally regressing

inactive tracks, which enhances the chance of a successful

re-identification. Finally, we apply our tracker in both tem-

poral directions and merge the intermediate tracking results

to further boost the performance.

3.1. Track Management

Many MOT methods deem a track to be inactive when

the regression score falls below a threshold smin (tracking-

by-regression) or no detection is associated (tracking-by-

detection) but the reason for this inactivation is not consid-

ered. In contrast, we identify four different cases that can

make the score s of a regressed box drop:

1. Insufficient quality of image or detector: Motion blur,

bad lighting conditions, or other image deficiencies

can lead to a low regression score as well as objects

that become too small moving away from the camera.

2. Occlusion by objects (vehicles, lanterns, traffic signs,

etc.): We assume, that the underlying detector of the

regression-based tracker does not recognize these ob-

jects. Thus, we cannot distinguish this case by item 1.

3. The person is about to leave the camera’s field of view.

4. Occlusion by other pedestrians: Different from item 2,

other pedestrians are recognized by the regression head

of the detector. We take advantage of this in our occlu-

sion handling strategy described in Section 3.2.

As a consequence of the first and the second observation,

we propose to also regress inactive tracks. This makes a re-

identification possible even when no new detection is avail-

able, i.e., if the regression score exceeds smin. In the subse-

quent NMS, that filters strongly overlapping tracks, active

tracks are preferred over inactive ones. This is an important

detail that prevents an inactive track being regressed to an

active track’s position which could in turn inactivate the ac-

tive track. Without preferring active tracks in the NMS, a

repeating confusion between active and inactive tracks can

occur leading to a large number of identity switches (IDSW)

as found in early experiments.

As stated in the third item, when a pedestrian is about

to leave the scene at the border of an image, the regression

score will drop and the track is inactivated and stays at the

image boundary. As we also regress inactive tracks, those
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could be mistakenly re-identified by newly entering pedes-

trians a few frames later. To prevent this, if the regression

score s of a track falls below smin and its bounding box is at

the border of the image, we calculate the two-dimensional

velocity vector of the track and delete it from the set of

tracks if the vector points towards the image boundary.

The last item representing the most interesting reason

why the regression score can fall bellow smin – the occlu-

sion of pedestrians by other pedestrians – is treated in the

following section.

3.2. Occlusion Handling

When two pedestrians cross each other, the overlap of

their bounding boxes increases frame by frame until one re-

gressed box is filtered by the NMS because of a too large

overlap. Assume track A keeps active, while track B turns

inactive. In this case, we mark track A as occluding B and

track B as occluded by A. Whenever a new detection arrives

and an occlusion track pair exists, the center position of the

detection pD = (xD, yD) is compared with the estimated

position of the occluded inactive track pT = (xT, yT), af-

ter applying a MM and a CMC. If the following inequality

holds, the inactive track gets re-activated by the new detec-

tion and the occlusion information of the track pair (occlud-

ing B / occluded by A) is deleted.

||pD − pT|| ≤ dmax = ||vT|| · tinactive · α (1)

The maximum distance dmax for this assignment increases

with the velocity of the inactive track vT and the number of

frames the track has been inactive tinactive, since both terms

increase the uncertainty of the estimated position of the in-

active track. Moreover, the maximum distance can be tuned

by a parameter α. The procedure of our occlusion handling

is illustrated in Figure 2. Note that, before the regression of

our tracker, we follow a constant velocity assumption in our

MM and afterwards apply the CMC from [9] to predict the

position of a track in the current frame.

3.3. Tracking in Both Temporal Directions

Whereas our track management and occlusion handling

can run online, the extension described in this section aims

at generating the best tracking results without the need for

an online requirement. Normally, we start a new track

whenever a new detection is available and regress it in the

following frame. However, we also can regress the detec-

tion in the previous frame to get additional boxes that might

have been missed by the detector before. For simplicity, we

realize this by applying our tracker two times on each video:

One time the video is processed forward and one time back-

wards in order to get two sets of intermediate tracking re-

sults termed tracklets. To combine the generated two sets of

tracklets, we follow the merging strategy shown in Figure 3.

active

active

t
1

inactive / occluded

active / occluding

t
2

active

active

t
3

d < d
max

Figure 2: Visualization of our occlusion handling. Two ac-

tive tracks begin to overlap at t1 as it happens when two

pedestrians cross each other. The blue track of the hidden

pedestrian gets inactive at t2, since the NMS suppresses its

regressed box because of a too large overlap and a smaller

regression score compared to the red box. The blue track is

marked as occluded and the red one is marked as occluding.

The inactive blue track is propagated in consecutive frames

with its estimated velocity that is illustrated by the dotted

arrow. At t3, a new detection (yellow box) appears and its

center position is compared to the predicted position of the

blue track. As the distance d is smaller than dmax referring

to Equation (1), the blue track is re-activated by the orange

detection. A change of state is highlighted with italic text.

complete

overlap

partial

overlap

Figure 3: Proposed tracklet merging strategy. Completely

overlapping tracklets are merged by averaging their predic-

tions yielding the black boxes. For partially overlapping

ones, the highly overlapping boxes of the shorter tracklet

are deleted. Removed boxes are depicted with dotted lines.

One can think of the red tracklet generated by tracking

forward and the blue tracklet by tracking backwards. If two

tracklets overlap completely, i.e., the IoU threshold is ex-

ceeded in each frame where both tracklets have boxes, we

are sure that they belong to the same target and merge them

by calculating the average boxes shown in black. If the

two tracklets are only partially overlapping, i.e., there exist

frames with no overlap (IoU smaller than the threshold) as

it is the case for trajectories of two crossing pedestrians, we

delete the boxes of the shorter tracklet in each frame, where

the overlap is higher than the threshold, arguing that long

tracklets are probably more often correct than short ones.
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4. Experiments

4.1. Datasets

We test our approach on the three popular datasets for

multiple pedestrian tracking MOT16 [23], MOT17 [23],

and MOT20 [8]. The datasets have in common that a pub-

lic set of detections is provided by the authors in order to

allow a fair comparison between different tracking meth-

ods. While MOT16 and MOT17 contain the same videos,

7 for training and 7 for testing, the public detections differ:

In MOT16, only one set of detections from a deformable

part-based model [11] is available, whereas in MOT17 also

detections from Faster R-CNN [26] and SDP [36] are given.

Since this makes the evaluation of tracking results more

independent with respect to the applied detector, we use

the train split of MOT17 for all ablative experiments. For

MOT20, only one set of detections from Faster R-CNN is

provided for a total of 8 videos, 4 for training and 4 for test-

ing. Note that the annotations for the test sequences are not

publicly available and the tracking results have to be sub-

mitted to the official evaluation server (motchallenge.net).

All of the three datasets are very challenging including

crowded scenes with heavy occlusions, camera motion, and

both day and night sequences.

4.2. Regression Model

As underlying model for our regression-based tracker,

we choose Faster R-CNN [26] with a FPN [20] as neck and

a ResNet-101 [15] as backbone. In our experiments, only

the second stage of the Faster R-CNN is used for regress-

ing the public detections of the datasets and no additional

detections are generated, i.e., the region proposal network

(RPN) is discarded. For simplicity, all images of the train

split are utilized in the training and no validation split is

used, as the optimization of the regression model is not the

focus of our work. Note that our regression-based tracker

therefore may perform a bit over-confident in the ablation

study because the regression model is trained on the same

data. However, the generalization ability of the tracker is

proven on the test splits in Section 4.4, where state-of-the-

art-results are achieved. Since the sequences in the MOT20

dataset differ quite a lot from the MOT16 / MOT17 ones,

we train two separate models on the respective train splits

but with the same settings. We use the MMDetection tool-

box [7] and initialize the network weights with COCO [21]

pre-trained models. Training is performed on the full im-

ages using SGD with an initial learning rate of 0.01, batch

size of 2, momentum of 0.9, and weight decay of 0.0001.

4.3. Ablation Study

Occlusion Handling versus Re-Identification Model.

The main purpose of our occlusion handling (OCC) strat-

egy is to make the use of a separate re-identification net-
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Figure 4: Comparison of our occlusion handling strat-

egy (OCC) with the re-identification baseline (REID).

work unnecessary. Since our method models the interac-

tion of pedestrians introducing the concept of occluding

and occluded tracks and, therefore, is purely logic-based,

there is no need for training a network on large pedestrian

datasets and no feature extraction has to be done for the

re-identification. We compare the proposed occlusion han-

dling with a re-identification model from [2] (REID) and

evaluate our tracker with different inactive patience. This is

a parameter of the track management determining the suc-

cessive number of frames a track can remain inactive be-

fore it is deleted. Figure 4 shows both the MOTA [3] met-

ric representing the overall tracking performance and the

IDF1 [27] metric that focuses on association accuracy.

For short occlusions, the overlaps are mostly not very

large and the REID baseline performs on par with OCC.

However, for longer occlusions which often contain severe

overlaps, the feature computation is harmed, so that the

appearance-based REID is clearly outperformed by the

proposed occlusion handling strategy. This is reflected by

a falling IDF1 score and a rising IDF1 score for REID and

OCC, respectively, when the inactive patience is increased.

In our method, the best trade-off between MOTA and

IDF1 is achieved with an inactive patience of 50 frames

which corresponds to roughly 1.7s. For this value, our

occlusion handling improves over the REID baseline by

1.3 points in IDF1 and 0.2 points in MOTA without the

need for a separate re-identification network. A qualitative

example, where our occlusion handling – unlike the REID

baseline – successfully recovers a target is given in Figure 5.

Robustness of Occlusion Handling. Referring to Equa-

tion (1), the maximum distance dmax that defines whether

a new detection is assigned to an occluded inactive track

can be tuned by the parameter α. As can be seen in the
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(a) REID baseline

(b) Occlusion handling

Figure 5: Qualitative comparison between the REID base-

line (a) and our proposed occlusion handling strategy (b).

While the REID model fails to re-identify the occluded

women with ID 10, our occlusion handling is successful.
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Figure 6: Ablation of the parameter α from Equation (1) of

our occlusion handling strategy.

IDF1 metric in Figure 6, the association performance first

increases for α ∈ [0.2, 1] and then slowly decreases for

α > 1.2. For a larger tolerance α, the number of correct re-

identifications increases but also the probability for a wrong

assignment gets bigger. The best balance is achieved for

α = 1. If we double this value, the performance drops only

by 0.2 points in IDF1, so we conclude that the occlusion

handling is quite robust to the choice of α. This is also

reflected in the MOTA score that remains nearly constant

(deviation of 0.1 points) for all evaluated values of α.

Table 1: Influence of MM and CMC.

MOTA IDF1 FP FN IDSW

No motion 71.4 72.4 2171 89530 4517

MM 72.2 74.7 2238 88546 2771

CMC 73.3 76.0 2194 87185 696

MM+CMC 73.5 76.6 2469 86294 648

MM and CMC. Before the regression of both inactive and

active tracks, a MM where we assume a constant velocity of

pedestrians is applied. Afterwards, a CMC from [9] aligns

the predicted tracks with the current frame. The influence

of those components is listed in Table 1. Both models im-

prove the tracking results, whereby the significant enhance-

ment comes from the CMC because sequences with severe

camera motion are present in the MOT17 dataset. Com-

bining MM and CMC yields 2.1 points higher MOTA and

4.2 points higher IDF1 compared to the no motion baseline.

For the CMC, we keep the settings from [2] finding that

the parameters are well tuned. In contrast to [2], we addi-

tionally apply a MM before the CMC. To predict the posi-

tion of a track in the next frame, we calculate its velocity

by averaging the displacement of the n previous bounding

box centers. As illustrated in Figure 7, the IDF1 reaches its

maximum for n = 5. A too small value makes the velocity

estimation noisy, since the regressed bounding boxes are not

always perfectly aligned with the pedestrians and the aspect

ratio of the boxes can change when pedestrians are moving.

However, considering too many past detections for estimat-

ing the velocity also introduces errors because the constant

velocity assumption is violated. We set n = 5 as it yields

the best performance in both IDF1 and MOTA.
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n
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Figure 7: Ablation of the parameter n denoting the num-

ber of previous frames that are considered in the velocity

estimation of the MM.
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Table 2: Impact of our tracking components.

Tracking direction Regress inactive Stop border Occlusion handling MOTA IDF1 FP FN IDSW

Forward ✗ ✗ ✗ 71.9 74.5 1937 91987 642

Forward ✓ ✗ ✗ 73.4 75.3 2809 86199 704

Forward ✓ ✓ ✗ 73.5 75.5 2503 86222 689

Forward ✓ ✓ ✓ 73.5 76.6 2469 86294 648

Backwards ✗ ✗ ✗ 73.9 75.4 1664 85586 639

Backwards ✓ ✓ ✓ 75.6 76.8 2350 79183 688

Forw. + Backw. ✓ ✓ ✓ 80.8 78.5 4227 58962 1351

Impact of Our Tracking Components. To get a deeper

insight into our method, we run several experiments adding

each tracking component one after another. We start from

a baseline that includes MM and CMC and regresses only

active tracks. After that, we also regress inactive tracks,

whereby active tracks are preferred over inactive ones in

the NMS step as explained in Section 3.1. Then, we add our

border handling to stop tracks at the image boundary leav-

ing the camera’s field of view. As third extension, we ap-

ply the occlusion handling strategy proposed in Section 3.2.

The results of these experiments, where the online version

of our tracker is applied, i.e., tracking is only performed in

forward direction, are shown in the first rows of Table 2.

The regression of inactive tracks substantially reduces

the number of false negatives (FN) with a smaller increase

in false positives (FP) and IDSW resulting in a gain of 1.5

points in MOTA and a gain of 0.8 points in IDF1. A suc-

cessful example of the regression of inactive tracks can be

seen in Figure 8. Deleting tracks that leave the scene at the

image border prevents some false associations for newly en-

tering pedestrians, which yields further improvements. The

proposed occlusion handling strategy enhances the IDF1 by

another 1.1 points showing its strengths in re-identifying oc-

cluded tracks.

Since our offline extension builds upon tracklets gener-

ated by tracking in both temporal directions, we addition-

ally apply our tracker backwards on the MOT17 train se-

quences. The results are given in the middle rows of Ta-

ble 2. One can see, that our tracker with all its compo-

nents achieves similar improvements over the baseline (+1.7

MOTA / +1.4 IDF1) as when tracking is performed in the

standard direction. Another interesting finding is that the

MOTA is 2.1 points higher for tracking backwards com-

pared to tracking forward. We hypothesize that the reason

for this performance gap lies in the distribution of public de-

tections in the sequences, since missed detections can only

be retrieved by the regression-based tracker from that point

in the sequence, where the corresponding object is first rec-

ognized in terms of public detections.

Finally, we evaluate the performance of our offline exten-

sion, where we merge the two sets of tracklets from tracking

(a) Without regression of inactive tracks

(b) With regression of inactive tracks

Figure 8: Bypassing missing detections with the regression

of inactive tracks. (a) Without regressing inactive tracks,

the blue track with ID 58 is lost after its regression score

falls below smin and cannot be re-identified (ID 66) when

a new detection arrives. (b) With the regression of inactive

tracks, missing detections are recovered and the same target

(ID 51) is successfully tracked.

forward and backwards, respectively, as described in Sec-

tion 3.3. The results can be perceived in the last row of

Table 2. The number of FP and IDSW is increased w.r.t. the

online variant, but, at the same time, the number of FN is

significantly more reduced raising the MOTA to 80.8% and

the IDF1 to 78.5%, underlining the effectiveness of our of-

fline extension. That the approach significantly reduces the

number of FN and in total more targets are tracked can be

seen in Figure 9.
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(a) Tracking only forward

(b) Tracking both forward and backwards

Figure 9: Comparison of tracking only forward (a) and

tracking in both temporal directions with subsequent track-

let merging yielding much more tracks (b).

4.4. Comparison with the State­of­the­Art

We compare our tracker, that we term TMOH for Track

Management and Occlusion Handling, with the state-of-

the-art approaches on the test sets of the three multi-

ple pedestrian tracking benchmarks MOT16, MOT17, and

MOT20. For a description of these datasets refer to Sec-

tion 4.1. We use the provided public detection sets for a

fair comparison and submit the generated tracks to the of-

ficial evaluation server. The results for the best officially

published and peer reviewed methods on the three bench-

marks are listed in Table 3, separated in online and offline

approaches and sorted with ascending MOTA. Note that we

evaluated not only our online variant but also the offline ex-

tension, where tracking is performed in both temporal di-

rections and the intermediate tracklets are merged to get the

final tracks. For both the online and offline entries, our ap-

proach surpasses the state-of-the-art on all evaluated bench-

marks by a large margin: The second best online (offline)

entries regarding the MOTA metric are beaten by 6.2 (5.5)

points on MOT16, 0.6 (4.6) points on MOT17, and 7.5 (3.6)

points on MOT20. Both the online and offline variants of

our tracker also reach the highest IDF1 scores improving

over the second best methods by 5.3 (2.3) points on MOT16,

3.2 (0.2) points on MOT17, and 8.5 (3.0) points on MOT20.

5. Conclusion

In this paper, we propose an occlusion handling strategy

for a regression-based multi-pedestrian tracker that explic-

Table 3: State-of-the-art approaches on the test sets of

MOT16, MOT17, and MOT20. The entries are categorized

in online (top rows) and offline (bottom rows) methods.

MOT16

Method MOTA IDF1 FP FN IDSW

PV [19] 50.4 50.8 2600 86780 1061

Tracktor++ [2] 54.4 52.5 3280 79149 682

DeepMOT [35] 54.8 53.4 2955 78765 645

GSM [22] 57.0 58.2 4332 73573 475

TMOH (online) 63.2 63.5 3122 63376 635

TPM [25] 51.3 47.9 2701 85504 569

MLT [37] 52.8 62.6 5362 80444 299

MPNTrack [6] 58.6 61.7 4949 70252 354

Lif T [17] 61.3 64.7 4844 65401 389

TMOH (offline) 66.8 67.0 5558 54032 997

MOT17

Method MOTA IDF1 FP FN IDSW

Tracktor++ [2] 53.5 52.3 12201 248047 2072

DeepMOT [35] 53.7 53.8 11731 247447 1947

GSM [22] 56.4 57.8 14379 230174 1485

CenterTrack [39] 61.5 59.6 14076 200672 2583

TMOH (online) 62.1 62.8 10951 201195 1897

MLT [37] 54.8 62.9 19118 234303 1077

TT17 [38] 54.9 63.1 20236 233295 1088

MPNTrack [6] 58.8 61.7 17413 213594 1185

Lif T [17] 60.5 65.6 14966 206619 1189

TMOH (offline) 65.1 65.8 17508 176389 2830

MOT20

Method MOTA IDF1 FP FN IDSW

SORT [4] 42.7 45.1 27521 264694 4470

Tracktor++ [2] 52.6 52.7 6930 236680 1648

TMOH (online) 60.1 61.2 38043 165899 2342

MLT [37] 48.9 54.6 45660 216803 2187

MPNTrack [6] 57.6 59.1 16953 201384 1210

TMOH (offline) 61.2 62.1 54572 141850 4154

itly models the concept of occluding and occluded tracks

and can successfully retrieve targets without the need for

an extra re-identification model. Moreover, we enhance the

track management by regressing inactive tracks bypassing

missing detections and also cope with tracks leaving the

camera’s field of view. In addition, we propose to apply

our tracker in both temporal directions and merge the in-

termediate tracklets to get high quality results. In the ab-

lation study, we analyze the impact of our tracking compo-

nents with extensive experiments. The superiority of our

approach is shown on three popular benchmarks, where we

achieve state-of-the-art results.
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[35] Y. Xu, A. Ošep, Y. Ban, R. Horaud, L. Leal-Taixé, and
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arXiv:1904.07850, 2019.

10967


