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Abstract

Most explanation methods in deep learning map impor-

tance estimates for a model’s prediction back to the original

input space. These “visual” explanations are often insuffi-

cient, as the model’s actual concept remains elusive. More-

over, without insights into the model’s semantic concept, it

is difficult —if not impossible— to intervene on the model’s

behavior via its explanations, called Explanatory Interac-

tive Learning. Consequently, we propose to intervene on a

Neuro-Symbolic scene representation, which allows one to

revise the model on the semantic level, e.g. “never focus on

the color to make your decision”. We compiled a novel con-

founded visual scene data set, the CLEVR-Hans data set,

capturing complex compositions of different objects. The

results of our experiments on CLEVR-Hans demonstrate

that our semantic explanations, i.e. compositional expla-

nations at a per-object level, can identify confounders that

are not identifiable using “visual” explanations only. More

importantly, feedback on this semantic level makes it possi-

ble to revise the model from focusing on these factors.

1. Introduction

Machine learning models may show Clever-Hans like

moments when solving a task by learning the “wrong”

thing, e.g. making use of confounding factors within a data

set. Unfortunately, it is not easy to find out whether, say, a

deep neural network is making Clever-Hans-type mistakes

because they are not reflected in the standard performance

measures such as precision and recall. Instead, one looks at

their explanations to see what features the network is actu-

ally using [23]. By interacting with the explanations, one

may even fix Clever-Hans like moments [43, 50, 47, 44].

This Explanatory Interactive Learning (XIL), however,

very much depends on the provided explanations. Most

explanation methods in deep learning map importance es-

*Equal contribution

Figure 1: Neuro-Symbolic explanations are needed to re-

vise deep learning models from focusing on irrelevant

features via global feedback rules.

timates for a model’s prediction back to the original input

space [46, 49, 48, 45, 7]. This is somewhat reminiscent

of a child who points towards something but cannot articu-

late why something is relevant. In other words, “visual” ex-

planations are insufficient if a task requires a concept-level

understanding of a model’s decision. Without knowledge

about and symbolic access to the concept level, it remains

difficult—if not impossible—to fix Clever-Hans behavior.

To illustrate this, consider the classification task depicted

in Fig. 1. It shows a complex scene consisting of objects,

which vary in position, shape, size, material, and color.

Now, assume that scenes belonging to the true class show

a large cube and a large cylinder. Unfortunately, during

training, our deep network only sees scenes with large, gray

cubes. Checking the deep model’s decision process us-

ing visual explanations confirms this: the deep model has

learned to largely focus on the gray cube to classify scenes

to be positive. An easy fix would be to provide feedback

in the form of “never focus on the color to make your deci-

sion” as it would eliminate the confounding factor. Unfor-

tunately, visual explanations do not allow us direct access to

the semantic level— they do not tell us that “the color gray
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is an important feature for the task at hand” and we cannot

provide feedback at the symbolic level.

Triggered by this, we present the first Neuro-Symbolic

XIL (NeSy XIL) approach that is based on decomposing a

visual scene into an object-based, symbolic representation

and, in turn, allows one to compute and interact with neuro-

symbolic explanations. We demonstrate the advantages of

NeSy XIL on a newly compiled, confounded data set, called

CLEVR-Hans. It consists of scenes that can be classified

based on specific combinations of object attributes and re-

lations. Importantly, CLEVR-Hans encodes confounders in

a way so that the confounding factors are not separable in

the original input space, in contrast to many previous con-

founded computer vision data sets.

To sum up, this work makes the following contributions:

(i) We confirm empirically on our newly compiled con-

founded benchmark data set, CLEVR-Hans, that Neuro-

Symbolic concept learners [31] may show Clever-Hans mo-

ments, too. (ii) To this end, we devise a novel Neuro-

Symbolic concept learner, combining Slot Attention [28]

and Set Transformer [24] in an end-to-end differentiable

fashion. (iii) We provide a novel loss to revise this Clever-

Hans behaviour. (iv) Given symbolic annotations about in-

correct explanations, even across a set of several instances,

we efficiently optimize the Neuro-Symbolic concept learner

to be right for better Neuro-Symbolic reasons. (v) Thus

we introduce the first XIL approach that works on both

the visual and the conceptual level. These contributions

are important to make progress towards creating conver-

sational explanations between machines and human users

[53, 33]. This is necessary for improved trust development

and truly Explanatory Interactive Learning: symbolic ab-

stractions help us, humans, to engage in conversations with

one another and to convey our thoughts efficiently, without

the need to specify much detail.1

2. Related Work on XIL

Our work touches upon Explainable AI, Explanatory In-

teractive Learning, and Neuro-Symbolic architectures.

Explainable AI (XAI) methods, in general, are used

to evaluate the reasons for a (black-box) model’s deci-

sion by presenting the model’s explanation in a hopefully

human-understandable way. Current methods can be di-

vided into various categories based on characteristics [55],

e.g. their level of intrinsicality or if they are based on back-

propagation computations. Across the spectrum of XAI

approaches, from backpropagation-based [49, 2], to model

distillation [41], or prototype-based [25] methods, very of-

ten an explanation is created by highlighting or otherwise

relating direct input elements to the model’s prediction, thus

visualizing an explanation at the level of the input space.

1Source code is available at https://github.com/ml-

research/NeSyXIL

Several studies have investigated methods that produce

explanations other than these visual explanations, such as

multi-modal explanations [36, 54, 40], including visual and

logic rule explanations [1, 39]. [32, 27] investigate methods

for creating more interactive explanations, whereas [3] fo-

cuses on creating single-modal, logic-based explanations.

Some recent work has also focused on creating concept-

based explanations [18, 59, 9]. None of the above studies,

however, investigate using the explanations as a means of

intervening on the model.

Explanatory interactive learning (XIL) [43, 47, 50, 44]

merges XAI with an active learning setting. It incorporates

XAI in the learning process by involving the human-user

—interacting on the explanations— in the training loop.

More precisely, the human user can query the model for ex-

planations of individual predictions and respond by correct-

ing the model if necessary, providing a slightly improved

—but not necessarily optimal— feedback on the explana-

tions. Thus, as in active learning, the user can provide the

correct label if the prediction is wrong. In addition, XIL

also allows the user to provide feedback on the explanation.

This combination of receiving explanations and user inter-

action is a strong necessity for gaining trust in the model’s

behavior [50, 44]. XIL can be applied to differentiable as

well as non-differentiable models [44].

Neuro-Symbolic architectures [8, 57, 31, 13, 52, 6]

make use of data-driven, sub-symbolic representations, and

symbol-based reasoning systems. This field of research has

received increasing interest in recent years as a means of

solving issues of individual subsystems, such as the out-

of-distribution generalization problem of many neural net-

works, by combining the advantages of symbolic and sub-

symbolic models. Yi et al. [57], for example, propose

a Neuro-Symbolic based VQA system based on disentan-

gling visual perception from linguistic reasoning. Each sub-

module of their system processes different subtasks, e.g.

their scene parser decomposes a visual scene into an object-

based scene representation. Their reasoning engine then

uses this decomposed scene representation rather than di-

rectly computing in the original input space. An approach

that also relates to the work of Lampert et al. [21, 22].

3. Motivating Example: Color-MNIST

To illustrate the problem setting, we first revert to a well

known confounded toy data set. ColorMNIST [17, 42] con-

sists of colored MNIST digits. Within the training set, each

number is confounded with a specific color, whereas in the

test set, the color association is shuffled or inverted.

A simple CNN model can reach 100% accuracy on the

training set, but only 23% on the test set, indicating that the

model has learned to largely focus on the color for accurate

prediction rather than the digits themselves. Fig. 2 depicts

the visual explanation (here created using GradCAM [46])
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Figure 2: Visual Explanations for ColorMNIST. (Left)

the general data distribution between train and test split.

(Right) a typical visual explanation of a CNN. Notice digit

pixels are considered as important for the wrong prediction.

of a zero that is predicted as a nine. Note the zero is colored

in the same color as all nines of the training set. From the

visual explanation it becomes clear that the model is focus-

ing on the correct object, however why the model is predict-

ing the wrong digit label does not become clear without an

understanding of the underlying training data distribution.

Importantly, although the model is wrong for the right

reason, it is a non-trivial problem of interacting with the

model to revise its decision using XIL solely based on these

explanations. Setting a loss term to correct the explanation

(e.g. [43]) on color channels is as non-trivial and inconve-

nient as un-confounding the data set with counterexamples

[50]. Kim et al. [17] describe how to unbias such a data set

if the bias is known, using the mutual information between

networks trained on separate features of the data set in order

for the main network not to focus on bias features. Rieger

el al. [42] propose an explanation penalization loss similar

to [43, 47, 44], focusing on Contextual Decomposition [35]

as explanation method. However, the utilized penalization

method is task-specific and detached from the model’s ex-

planations, resulting in only a slight improvement of a final

31% accuracy (using the inverted ColorMNIST setting).

4. Neuro-Symbolic Explanatory Interactive

Learning

The Color-MNIST example clearly shows that although

the input-level explanations of current XAI methods are an

important first step towards true explanations of a model’s

behavior, much ambiguity in a model’s decision process re-

mains. Using XIL on these visual explanations only, it can

be difficult to properly intervene on a model. What we

require is an understandable, disentangled representation

level, which the user can enquire from and intervene on.

Neuro-Symbolic Architecture. For this purpose, we

construct an architecture consisting of two modules, a con-

cept embedding and a reasoning module. The concept mod-

ule’s task is to create a decomposed representation of the

input space that can be mapped to human-understandable

symbols. The task of the reasoning module is to make pre-

dictions based on this symbolic representation.

Fig. 3 gives an illustrative overview of our ap-

proach, which we formulate more precisely in the fol-

lowing: Given an input image xi ∈ X , whereby

X := [x1, ..., xN ] ∈ R
N×M , with X being divided into

subsets of Nc classes {X1, ..., XNc
} ∈ X and with ground-

truth class labels defined as y ∈ [0, 1]N×Nc , we have two

modules, the concept embedding module, h(xi) = ẑi,

which receives the input sample and encodes it into a sym-

bolic representation, with ẑ ∈ [0, 1]N×D. And the rea-

soning module, g(ẑi) = ŷi, which produces the prediction

output, ŷi ∈ [0, 1]N×Nc , given the symbolic representa-

tion. The exact details of the g(ẑi) and h(xi) depend on

the specific implementations of these modules, and will be

discussed further in sections below.

Retrieving Neuro-Symbolic Explanations. Given

these two modules, we can extract explanations for the sep-

arate tasks, i.e. the more general input representation task

and the reasoning task. We write an explanation function

in a general notation as E(m(·), o, s), which retrieves the

explanation of a specific module, m(·), given the module’s

input s, and the module’s output if it is the final module or

the explanation of the following module if it is not, both

summarized as o here. For our approach, we thus have

Eg(g(·), ŷi, zi) =: êgi and Eh(h(·), êgi , xi) =: êhi . These

can represent scalars, vectors, or matrices, depending on

the given module and output. ê
g
i represents the explana-

tion of the reasoning module given the final predicted out-

put ŷi, e.g. a logic-based rule. êhi presents the explanation

of the concept module given the explanation of the reason-

ing module ê
g
i , e.g. a visual explanation of a learned con-

cept. In this way, the explanation of the reasoning module

is passed back to the concept module in order to receive the

explanations of the concept module that contribute to the

explanation of the reasoning module. This explanation pass

is depicted by the gray arrows of Fig. 3. The exact definition

of Eg and Eh used in this work are described below.

Revising Neuro-Symbolic Concepts. As we show in

our experiments below, also Neuro-Symbolic models are

prone to focusing on wrong reasons, e.g. confounding fac-

tors. In such a case, it is desirable for a user to intervene

on the model, e.g. via XIL. As errors can result from dif-

ferent modules of the concept learner, the user must create

feedback tailored to the individual module that is producing

the error. A user thus receives the explanation of a module,

e.g. ê
g
i , and produces an adequate feedback given knowl-

edge of the input sample, xi, the true class label, yi, the

model’s class prediction ŷi and possible internal represen-

tations, e.g. ẑi. For the user to interact with the model, the

user’s feedback must be mapped back into a representation

space of the model.

In the case of creating feedback for a visual explanation,

as in [43], [50] and [44], the mapping is quite clear: the user

gives visual feedback denoting which regions of the input

are relevant and which are not. This “visual” feedback is

transferred to the input space in the form of binary image
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Figure 3: Neuro-Symbolic XIL for improved explanations and interaction. (Top) Neuro-Symbolic Concept Learner with

Slot-Attention and Set Transformer. (Bottom) Neuro-Symbolic revision pipeline with explanations of the model before (gray)

and after applying the feedback (orange).

masks, which we denote as Av
i .

The semantic user feedback can be in the form of rela-

tional functions, ϕ, for instance, “if an image belongs to

class 1 then one object is a large cube”:

∀img. isclass(img, 1) ⇒ ∃obj.[in(obj, img) ∧
size(obj, large) ∧ shape(obj, cube)] ,

We define As
i :=

∨

ϕ A
ϕ
i (ẑi |= ϕ) which describes the dis-

junction over all relational feedback functions which hold

for the symbolic representation, ẑi, of an image, xi.

An important characteristic of the semantic user feed-

back is that it can describe different levels of generalizabil-

ity, so that feedback based on a single sample can be trans-

ferred to a set of multiple samples. For instance ϕ can hold

for an individual sample, all samples of a specific class, j,

or all samples of the data set. Consequently, the disjunction,
∨

ϕ, can be separated as: As
i|yi=j

= A
sample
i ∨Aclass

c=j ∨Aall.

For the sake of simplicity, we are not formally introduc-

ing relational logic and consider the semantic feedback in

tabular form (cf. Fig. 3). To summarize, we have the bi-

nary masks for the visual feedback Av
i ∈ [0, 1]M and the

semantic feedback As
i ∈ [0, 1]D.

For the final interaction we refer to XIL with differen-

tiable models and explanation functions, generally formu-

lated as the explanatory loss term, Lexpl =

λ
∑N

i=1

r(Av
i , ê

h
i ) + (1− λ)

∑N

i=1

r(As
i , ê

g
i ) . (1)

Depending on the task, the regularization function, r(·, ·),
can be the RRR term of Ross et al. [43] or the HINT term of

Selvaraju et al. [47] (cf. Appendix for details on these loss

functions). The parameter λ controls how much the differ-

ent feedback forms are taken into account. Finally, the ex-

planatory loss is concatenated to the original task dependent

loss term, e.g. the cross-entropy for a classification task.

Reasoning Module. As the output of our concept em-

bedding module represents an unordered set, whose class

membership is unaltered by the order of the objects within

the set, we require our reasoning module to handle such an

input structure. The Set Transformer, recently proposed by

Lee et al. [24], is a natural choice for such a task.

To generate the explanations of the Set Transformer

given the symbolic representation, ẑi ∈ [0, 1]D, we make

use of the gradient-based Integrated Gradients explana-

tion method of Sundararajan et al. [49]. Given a function

g : RN×D → [0, 1]N×C the Integrated Gradients method

estimates the importance of the jth element from an input

sample zi, zij , for a model’s prediction by integrating the

gradients of g(·) along a straight line path from zij to the

jth element of a baseline input, z̃ ∈ R
D, as IGj(zi) :=

(zij − z̃j)×
∫

1

α=0

δ g(z̃ + α× (zi − z̃))

δzij
δα . (2)

Given the input to the Set Transformer, ẑ ∈ [0, 1]N×D, and

z̃ = 0 as a baseline input, we finally apply a zero threshold

to only receive positive importance and thus have:

ê
g
i :=

∑D

j=1

min(IGj(ẑi), 0) . (3)

(Slot) Attention is All You Need (for object-based ex-

planations). Previous work of Yi et al. [57] and Mao et
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Data Set Size Classes
Input-

dimensions

Multi-

object

Visual

confounder

Non-visual

confounder

Number of

rule-types

ToyColor [43] 40k 2 5× 5× 3 ✗ ✓ ✗ 1

ColorMNIST [17] 70k 10 28× 28× 3 ✗ ✗ ✓ 1

Decoy-MNIST [43] 70k 10 28× 28× 3 ✗ ✓ ✗ 1

Plant Data Set [44] 2.4k 2 213× 213× 64 ✗ ✓ ✗ 1

ISIC Skin Cancer

Data Set [4, 51]
21k 2 650× 450× 3 ✗ ✓ ✗ 1

Our CLEVR-Hans3 13.5k 3 320× 480× 3 ✓ ✓ ✓ 2

Our CLEVR-Hans7 31.5k 7 320× 480× 3 ✓ ✓ ✓ 4

Table 1: The complexity of

CLEVR-Hans. The CLEVR-

Hans data sets represent con-

founded data sets in which the

confounding factors are not

separable in the original in-

put space. Additionally, more

than one conceptual rule must

be applied in order to revise

the model.

al. [31] has shown an interesting approach for creating a

Neuro-Symbolic concept leaner based on a Mask-RCNN

[11] scene parser. For our concept learner, we make use of

the recent work of Locatello et al. [28]. Their proposed Slot

Attention module allows to decompose the hidden repre-

sentation of an encoding space into a set of task-dependent

output vectors, called ”slots”. For example, the image en-

coding of a CNN backbone can be decomposed such that

the hidden representation is separated into individual slots

for each object. These decomposed slot encodings can then

be used in further task-dependent steps, e.g. attribute predic-

tion of each object. Thus with Slot Attention, it is possible

to create a fully differentiable object-centric representation

of an entire image without the need to process each object of

the scene individually in contrast to the system of [57, 31].

An additional important feature of the Slot Attention

module for our setting is the ability to map each slot to the

original input space via the attention maps. These atten-

tion maps are thus natural, intrinsic visual explanations of

the detected objects. In contrast, with the scene parser of

[57, 31] it is not as straightforward to generate visual expla-

nations based on the explanations of the reasoning module.

Consequently, using the Slot Attention module, we can for-

mulate the dot-product attention for a sample xi, as

Bi := σ

(

1√
D′

k(Fi) · q(Si)
T

)

∈ R
P×K , (4)

where σ is the softmax function over the slots dimension,

k(Fi) ∈ R
P×D′

a linear projection of the feature maps Fi

of an image encoder for xi, q(Si) ∈ R
K×D′

a linear pro-

jection of the slot encodings Si and
√
D′ a fixed softmax

temperature. P represents the feature map dimensions, K

the number of slots and D′ the dimension which the key and

query functions map to.

Finally, we can formulate Eh(h(·), êgi ) based on the at-

tention maps Bi, and the symbolic explanation êhi . Specif-

ically, we only want an explanation for objects which were

identified by the reasoning module as being relevant for the

final prediction:

êhi :=

K
∑

k=1

{

Bik, if max(êgik) ≥ t

0 ∈ R
P , otherwise

, (5)

where t is a pre-defined importance threshold. Alternatively

the user can manually select explanations for each object.

Interchangeability of the Modules. Though both Slot-

Attention and Set Transformer have strong advantages as

stated above, alternatives exist. Deep Set Prediction Net-

works [58], Transformer Set Prediction Networks [20] or

Mask-RCNN based models [11] are viable alternatives to

the Slot Attention module as concept embedding mod-

ule. The generation of visual explanations within these

models, e.g. via gradient-based explanation methods, how-

ever, is not as straightforward. Truly rule-based classifiers

[38, 29], logic circuits [26], or probabilistic approaches

[5, 37, 19, 30], are principally viable alternatives for the Set

Transformer, though it remains preferable for this module

to handle unordered sets.

5. The CLEVR-Hans Data Set

Several confounded computer vision data sets with vary-

ing properties, e.g. number of classes, already exist. Tab. 1

provides a brief overview of such data sets. We distinguish

here between the number of samples, number of classes,

image dimensions, and whether an image contains multiple

objects. More important are whether a confounding factor

is spatially separable from the relevant features, e.g. the col-

ored corner spots in Decoy-MNIST, whether the confound-

ing factor is not visually separable, e.g. the color in Col-

orMNIST that superimposes the actual digits, and finally,

once the confounding factor has been identified, how many

different conceptual rule-types must be applied in order to

revise the model, i.e. the corner rule for the digits in Decoy-

MNIST is the same, regardless of which specific class is

being considered.

To the best of our knowledge, the confounded data sets

listed in Tab.1, apart from ColorMNIST, possess spatially

separable confounders. One can, therefore, revise a model

by updating its spatial focus. However, this is not possible if

the confounding and true factors are not so easily separable

in the input dimensions.

The CLEVR data set of [14] is a particularly interesting

data set, as it was originally designed to diagnose reasoning

modules and presents complex scenes consisting of mul-
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Figure 4: Schematic of the CLEVR-Hans3 data set. At-

tributes in brackets are the confounding factors in the train

and validation sets.

tiple objects and different relationships between these ob-

jects. Using the available framework of [14], we have thus

created a new confounded data set, which we refer to as the

CLEVR-Hans data set. This data set consists of CLEVR

images divided into several classes. The membership of a

class is based on combinations of objects’ attributes and re-

lations. Additionally, certain classes within the data set are

confounded. Thus, within the data set, consisting of train,

validation, and test splits, all train, and validation images

of confounded classes will be confounded with a specific

attribute or combination.

We have created two variants of this data set2, which we

refer to as CLEVR-Hans3 and CLEVR-Hans7. CLEVR-

Hans3 contains three classes, of which two are confounded.

Fig. 4 shows a schematic representation of this data set. Im-

ages of the first class contain a large cube and large cylinder.

The large cube has the color gray in every image of the train

and validation set. Within the test set, the color of the large

cube is shuffled randomly. Images of the second class con-

tain a small sphere and small metal cube. The small sphere

is made of metal in all training and validation set images,

however, can be made of either rubber or metal in the test

set. Images of the third class contain a large blue sphere and

a small yellow sphere in all images of the data set. This class

is not confounded. CLEVR-Hans7 contains seven classes,

of which four are confounded. This data set, next to con-

taining more class rules, also contains more complex class

rules than CLEVR-Hans3, e.g. class rules are also based on

object positions. Each class in both data sets consists of

3000 training, 750 validation, and 750 test images.

Finally, the images were created such that the exact com-

binations of the class rules did not occur in images of other

2https://github.com/ml-research/CLEVR-Hans

classes. It is possible that a subset of objects from one class

rule occur in an image of another class. However, it is not

possible that more than one complete class rule is contained

in an image. In summary, these data sets present an op-

portunity to investigate confounders and model decisions

for complex classification rules within a benchmark data

set that is more complex than previously established con-

founded data sets (see Tab. 1).

6. Experimental Evidence

Our intention here is to investigate the benefits of Neuro-

Symbolic Explanatory Interactive Learning. To this end, we

make use of our CLEVR-Hans data sets to investigate (1)

the downsides of deep learning (DL) models in combina-

tion with current (visual) XAI methods and, in comparison,

(2) the advantages of our NeSy XIL approach. In particular,

we intend to investigate the benefits of neuro-symbolic ex-

planations to not just provide more detailed insights of the

learned concept, but allow for better interaction between hu-

man users and the model’s explanations. We present qual-

itative as well as quantitative results for each experiment.

Cf. Appendix for further details on the experiments and im-

plementation, and additional qualitative results.

Architectures. We compared our Neuro-Symbolic ar-

chitecture to a ResNet-based CNN model [12], which we

denote as CNN. For creating explanations of the CNN, we

used the Grad-CAM method of Selvaraju et al. [46], a back-

propagation based explanation method that visualizes the

gradients of the last hidden layer of the network’s encoder,

and represents a trade-off between high visual representa-

tion and spatial information.

Due to the modular structure of our Neuro-Symbolic

concept learner, Clever-Hans behavior can be due to errors

within its sub-modules. As previous work [43, 47, 50, 44]

has already shown how to revise visual explanations, we did

not focus on revising the visual explanations of the concept

learner for our experiments. Instead, we assumed the con-

cept embedding module to produce near-perfect predictions

and visual explanations and focused on revising the higher-

level explanations of the reasoning module. Therefore, we

employed a Slot-Attention module pre-trained supervisedly

on the original CLEVR data set [28].

Preprocessing. We used the same pre-processing steps

as the authors of the Slot-Attention module [28].

Training Settings. We trained the two models using

two settings: A standard classification setting using the

cross-entropy loss (Default) and the XIL setting where the

explanatory loss term (Eq. 1) was appended to the cross-

entropy term. The exact loss terms used will be discussed

in the corresponding subsections.

User Feedback. As in [50, 47, 44], we simulated the

user feedback. The exact details for each experiment can be

found in the corresponding subsections.
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Figure 5: Example explanations (from test set) of differ-

ent model and training settings on CLEVR-Hans3. Red

crosses denote false, green checks correct predictions.

Evaluation. Apart from qualitatively investigating the

explanations of the models, we used the classification ac-

curacy on the validation and test set as an indication of a

model’s ability to make predictions based on correct rea-

sons. If the accuracy is high on the confounded validation

set but low on the non-confounded test set, it is fair to as-

sume that the model focuses on the confounding factors of

the data set to achieve a high validation accuracy.

6.1. Visual XIL fails on CLEVR­Hans

We first demonstrate the results of training a standard

CNN for classification.

CNN produces Clever-Hans moment. As Tab. 2 in-

dicates, the default CNN is prone to focusing on the con-

founding factors of the data sets. It reaches near perfect

classification accuracies in the confounded validation sets

but much lower accuracy in the non-confounded test sets.

Interestingly, the main difficulty of the standard CNN for

CLEVR-Hans3 appears to lie in the gray color confounder

of class 1, whereas the confounding material of class 2 does

not appear to be a difficulty for the model (cf. Appendix).

Examples of visual explanations of the default CNN for

CLEVR-Hans3 images are presented in Fig. 5. Note these

explanations appear rather unspecific and ambiguous, and

it is not clear whether the model has learned the two object

class rules of CLEVR-Hans3.

Revising Visual Explanations via XIL. We next apply

XIL to the CNN model to improve its explanations. As

in [47, 44] we set r(Av, êv) to the mean squared error be-

tween user annotation and model explanation. We simulate

a user by providing ground-truth segmentation masks for

each class relevant object in the train set. In this way, we

could improve the model’s explanations to focus more on

the relevant objects of the scene.

An example of the revised visual explanations of the

CNN with XIL can be found in Fig. 5 again visualized

via Grad-CAMs. Compared to the not revised model, one

can now clearly detect which objects are relevant for the

model’s prediction. However, the model’s learned concept

Model
Validation

(confounded)

Test

(non-confounded)

CLEVR-Hans3

CNN (Default) 99.55± 0.10 70.34± 0.30

CNN (XIL) 99.69± 0.08 70.77± 0.37

NeSy (Default) 98.55± 0.27 ◦ 81.71± 3.09

NeSy XIL 100.00± 0.00 • 91.31± 3.13

CLEVR-Hans7

CNN (Default) 96.09± 0.19 84.50± 1.04

CNN (XIL) 96.08± 0.25 89.26± 0.29

NeSy (Default) 96.88± 0.16 ◦ 90.97± 0.91

NeSy XIL 98.76± 0.17 • 94.96± 0.49

CLEVR-Hans3 – Global Correction Rule (¬Gray)

Model
Test

(class 1)

Test

(all classes)

NeSy (Default) 52.98± 9.60 81.71± 3.09

NeSy XIL 83.59± 8.44 83.26± 6.46

Table 2: Balanced accuracies on Clevr-Hans3 and Clevr-

Hans7. The best (“•”) and runner-up (“◦”) results are bold.

We compare the test accuracy in comparison to the valida-

tion accuracy as an indication of Clever-Hans moments.

seems to not agree with the correct class rule, cf. Fig. 4, and

thus, in this case, it is not able to predict the correct class.

Further, it is still ambiguous what concepts about those ob-

jects are relevant for the model. The accuracies in Tab. 2

lastly indicate that correcting the visual explanations im-

proved the overall test accuracy marginally, however com-

paring to the near-perfect validation accuracy, it is clear the

model still focuses on confounding factors.

6.2. Neuro­Symbolic XIL to the Rescue

Now, we are ready to investigate how Neuro-Symbolic

XIL improves upon visual XIL.

Receiving Explanations of Neuro-Symbolic model.

Training the Neuro-Symbolic model in the default cross-

entropy setting, we make two observations. Firstly, we can

observe an increased test accuracy compared to the previous

standard CNN settings. This is likely due to the class rules’

relevant features now being more evident for the model to

use than the standard CNN could possibly catch on to, e.g.

the object’s material. Secondly, even with a higher test ac-

curacy than the previous model could achieve, this accuracy

is still considerably below the again near perfect valida-

tion accuracy. This indicates that also the Neuro-Symbolic

model is not resilient against confounding factors.

Example explanations of the Neuro-Symbolic model can

be found in Fig. 5, with the symbolic explanation on the

right side and the corresponding attention-based visual ex-

planation left of this. The objects highlighted by the vi-

sual explanations depict those objects that are considered
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as most relevant according to the symbolic explanation (see

Eq. 5 for details). These visualizations support the observa-

tion that the model also focuses on confounding factors.

Revising Neuro-Symbolic Models via Interacting

with Their Explanations. We observe that the Clever-Hans

moment of the Neuro-Symbolic model in the previous ex-

periment was mainly due to errors of the reasoning module

as the visual explanation correctly depicts the objects that

were considered as relevant by the reasoning module. To

revise the model we therefore applied XIL to the symbolic

explanations via the previously used, mean-squared error

regularization term. We provided the true class rules as se-

mantic user feedback.

The resulting accuracies of the revised Neuro-Symbolic

model can be found in Tab. 2 and example explanations

in Fig. 5. We observe that false behaviors based on con-

founding factors could largely be corrected. The XIL

revised Neuro-Symbolic model produces test accuracies

much higher than was previously possible in all other set-

tings, including the XIL revised CNN. To test the influence

of possible Slot-Attention prediction errors we also tested

revising the reasoning module when given the ground-truth

symbolic representations. Indeed this way, the model could

reach a near-perfect test accuracy (cf. Appendix).

Quantitative Analysis of Symbolic Explanations. In

order to quantitatively evaluate the symbolic explanations

we compute the relative L1 error on the test set between

ground-truth explanations and model explanations. Briefly,

for CLEVR-Hans3 NeSy XIL resulted in a reduction in L1

error compared to NeSy (Default) of: 73% (total), 64%
(class 1), 76% (class 2) and 82% (class 3). For a detailed

discussion cf. Appendix.

Revision via General Feedback Rules. Using XIL for

revising a model’s explanations requires that a human user

interacts with the model on a sample-based level, i.e. the

user receives a model’s explanation for an individual sam-

ple and decides whether the explanation for this is accept-

able or a correction on the model’s explanation is necessary.

This can be very tedious if a correction is not generalizable

to multiple samples and must be created for each sample

individually.

Consider class 1 of CLEVR-Hans3, where the confound-

ing factor is the color gray of the large cube. Once gray has

been identified as an irrelevant factor for this, but also all

other classes, using NeSy XIL, a user can create a global

correction rule as in Fig. 3. In other words, irrespective

of the class label of a sample, the color gray should never

play a role for prediction.Tab. 2(bottom) shows the test ac-

curacies of our neuro-symbolic architecture for class 1 and,

separately, over all classes. We here compare the default

training mode vs. XIL with the single global correction

rule. For this experiment, our explanatory loss was the RRR

term [43], which has the advantage of handling negative

user feedback.

As one can see, applying the correction rule has sub-

stantial advantages for class 1 test accuracies and minor

advantages for the full test accuracy. These results high-

light the benefit of NeSy XIL for correcting possible Clever-

Hans moments via global correction rules, a previously non-

trivial feature.

7. Conclusion

Neuro-Symbolic concept learners are capable of learning

visual concepts by jointly understanding vision and sym-

bolic language. However, although they combine system

1 and system 2 [15] characteristics, their complexity still

makes them difficult to trust in critical applications, es-

pecially, as we have shown, if the training conditions for

their system 1 component may differ from those in the test

condition. However, their system 2 component allows one

to identify when models are right for the wrong concep-

tual reasons. This allowed us to introduce the first Neuro-

Symbolic Explanatory Interactive Learning approach, reg-

ularizing a model by examining and selectively penalizing

its Neuro-Symbolic explanations. Our results on a newly

compiled confounded benchmark data set, called CLEVR-

Hans, demonstrated that semantic explanations, i.e., com-

positional explanations at a per-object, symbolic level, can

identify confounders that are not identifiable using “visual”

explanations only. More importantly, feedback on this se-

mantic level makes it possible to revise the model from fo-

cusing on these confounding factors.

Our results show that Neuro-Symbolic explanations and

interactions merit further investigation. Using a semantic

loss [56] would allow one to stay at the conceptual level di-

rectly. Furthermore, one should integrate a neural semantic

parsing system that helps to interactively learn a joint sym-

bolic language between the machine and the human user

through decomposition [16]. Lastly, language-guided XIL

[34] is an interesting approach for more natural supervision.

These approaches would help to move from XIL to conver-

sational XIL. Applying Neuro-Symbolic prior knowledge

to a model may provide additional benefits to a XIL setting.

Finally, it is very interesting to explore more expressive rea-

soning components and investigate how they help combat

even more complex Clever-Hans moments. Concerning our

data set, an interesting next step would be to create a con-

founded causal data set in the approach of [10].
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Binder, Grégoire Montavon, Wojciech Samek, and Klaus-

3627



Robert Müller. Unmasking clever hans predictors and as-

sessing what machines really learn. Nature communications,

10(1):1–8, 2019.

[24] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Se-

ungjin Choi, and Yee Whye Teh. Set transformer: A frame-

work for attention-based permutation-invariant neural net-

works. In International Conference on Machine Learning,

ICML, pages 3744–3753. PMLR, 2019.

[25] Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. Deep

learning for case-based reasoning through prototypes: A

neural network that explains its predictions. In Sheila A.

McIlraith and Kilian Q. Weinberger, editors, Proceedings

of the Thirty-Second AAAI Conference on Artificial Intelli-

gence, (AAAI), the 30th innovative Applications of Artificial

Intelligence (IAAI), and the 8th AAAI Symposium on Ed-

ucational Advances in Artificial Intelligence (EAAI), 2018,

pages 3530–3537. AAAI Press, 2018.

[26] Yitao Liang and Guy Van den Broeck. Learning logistic cir-

cuits. In The Thirty-Third AAAI Conference on Artificial In-

telligence, AAAI 2019, The Thirty-First Innovative Applica-

tions of Artificial Intelligence Conference, IAAI 2019, The

Ninth AAAI Symposium on Educational Advances in Artifi-

cial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, Jan-

uary 27 - February 1, 2019, pages 4277–4286. AAAI Press,

2019.

[27] Runtao Liu, Chenxi Liu, Yutong Bai, and Alan L. Yuille.

Clevr-ref+: Diagnosing visual reasoning with referring ex-

pressions. In IEEE Conference on Computer Vision and Pat-

tern Recognition, CVPR, pages 4185–4194. Computer Vi-

sion Foundation / IEEE, 2019.

[28] Francesco Locatello, Dirk Weissenborn, Thomas Un-

terthiner, Aravindh Mahendran, Georg Heigold, Jakob

Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-

centric learning with slot attention. In H. Larochelle, M.

Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,

Advances in Neural Information Processing Systems, vol-

ume 33, pages 11525–11538. Curran Associates, Inc., 2020.

[29] Wei-Yin Loh. Fifty years of classification and regression

trees. International Statistical Review, 82(3):329–348, 2014.

[30] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig,

Thomas Demeester, and Luc De Raedt. Deepproblog:

Neural probabilistic logic programming. In Samy Ben-

gio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,

Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances

in Neural Information Processing Systems 31: Annual Con-

ference on Neural Information Processing Systems 2018,

NeurIPS 2018, 3-8 December 2018, Montréal, Canada,
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[41] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin.

”why should I trust you?”: Explaining the predictions of any

classifier. In Proceedings of the 22nd ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data

Mining, pages 1135–1144. ACM, 2016.

[42] Laura Rieger, Chandan Singh, W James Murdoch, and Bin

Yu. Interpretations are useful: penalizing explanations to

align neural networks with prior knowledge. In Proceedings

of International Conference on Machine Learning, ICML.

PMLR, 2020.

[43] Andrew Slavin Ross, Michael C. Hughes, and Finale Doshi-

Velez. Right for the right reasons: Training differentiable

models by constraining their explanations. In Proceedings

of International Joint Conference on Artificial Intelligence

IJCAI, pages 2662–2670, 2017.

3628



[44] Patrick Schramowski, Wolfgang Stammer, Stefano Teso,

Anna Brugger, Franziska Herbert, Xiaoting Shao, Hans-

Georg Luigs, Anne-Katrin Mahlein, and Kristian Kersting.

Making deep neural networks right for the right scientific

reasons by interacting with their explanations. Nature Ma-

chine Intelligence, 2(8):476–486, 2020.

[45] Karl Schulz, Leon Sixt, Federico Tombari, and Tim Land-

graf. Restricting the flow: Information bottlenecks for attri-

bution. In International Conference on Learning Represen-

tations, 2020.

[46] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek

Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Ba-

tra. Grad-cam: Visual explanations from deep networks via

gradient-based localization. In IEEE International Confer-

ence on Computer Vision, ICCV, pages 618–626. IEEE Com-

puter Society, 2017.

[47] Ramprasaath Ramasamy Selvaraju, Stefan Lee, Yilin Shen,

Hongxia Jin, Shalini Ghosh, Larry P. Heck, Dhruv Batra,

and Devi Parikh. Taking a HINT: leveraging explanations

to make vision and language models more grounded. In

2019 IEEE/CVF International Conference on Computer Vi-

sion, ICCV, pages 2591–2600. IEEE, 2019.

[48] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas,

and Martin Wattenberg. Smoothgrad: removing noise by

adding noise. arXiv preprint arXiv:1706.03825, 2017.

[49] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic

attribution for deep networks. In Proceedings of the 34th

International Conference on Machine Learning, ICML, vol-

ume 70, pages 3319–3328. PMLR, 2017.

[50] Stefano Teso and Kristian Kersting. Explanatory interactive

machine learning. In Proceedings of the 2019 AAAI/ACM

Conference on AI, Ethics, and Society AIES, pages 239–245,

2019.

[51] Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The

ham10000 dataset, a large collection of multi-source der-

matoscopic images of common pigmented skin lesions. Sci-

entific data, 5:180161, 2018.

[52] Ramakrishna Vedantam, Karan Desai, Stefan Lee, Marcus

Rohrbach, Dhruv Batra, and D. Parikh. Probabilistic neural-

symbolic models for interpretable visual question answer-

ing. In Proceedings of International Conference on Machine

Learning, ICML, 2019.

[53] Daniel S. Weld and Gagan Bansal. The challenge of crafting

intelligible intelligence. Commun. ACM, 62(6):70–79, 2019.

[54] Jialin Wu and Raymond J. Mooney. Self-critical reasoning

for robust visual question answering. In Advances in Neu-

ral Information Processing Systems 32: Annual Conference

on Neural Information Processing Systems, NeurIPS, pages

8601–8611, 2019.

[55] Ning Xie, Gabrielle Ras, Marcel van Gerven, and Derek Do-

ran. Explainable deep learning: A field guide for the uniniti-

ated. arXiv preprint arXiv:2004.14545, 2020.

[56] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and

Guy Van den Broeck. A semantic loss function for deep

learning with symbolic knowledge. In Proceedings of the

35th International Conference on Machine Learning, ICML,

volume 80 of Proceedings of Machine Learning Research,

pages 5498–5507. PMLR, 2018.

[57] Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Push-

meet Kohli, and Josh Tenenbaum. Neural-symbolic VQA:

disentangling reasoning from vision and language under-

standing. In Advances in Neural Information Processing Sys-

tems 31: Annual Conference on Neural Information Process-

ing Systems, NeurIPS, pages 1039–1050, 2018.

[58] Yan Zhang, Jonathon S. Hare, and Adam Prügel-Bennett.
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