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Abstract

It is widely accepted that reasoning about object shape is

important for object recognition. However, the most power-

ful object recognition methods today do not explicitly make

use of object shape during learning. In this work, motivated

by recent developments in low-shot learning, findings in de-

velopmental psychology, and the increased use of synthetic

data in computer vision research, we investigate how rea-

soning about 3D shape can be used to improve low-shot

learning methods’ generalization performance. We pro-

pose a new way to improve existing low-shot learning ap-

proaches by learning a discriminative embedding space us-

ing 3D object shape, and using this embedding by learning

how to map images into it. Our new approach improves the

performance of image-only low-shot learning approaches

on multiple datasets. We also introduce Toys4K, a 3D object

dataset with the largest number of object categories cur-

rently available, which supports low-shot learning. 1

1. Introduction

Understanding the role of 3D object shape in categoriz-

ing objects from images is a classical topic in computer

vision [29, 9, 51], and the early history of object recog-

nition was dominated by considerations of object shape.

For example, David Marr’s influential theory [27] posits

that image-based recognition should be formulated as a se-

quence of information extraction steps culminating in a 3D

representation to be used for recognition. The difficulty

of reliably extracting 3D shape from images, combined

with the availability of large-scale image datasets [6, 22],

motivated the modern development of purely appearance-

based approaches to recognition and categorization. This

has culminated in current approaches such as CNNs that

learn feature representations directly from images. More-

over, a study by Geirhos et al. [14] of the inductive biases

of CNNs trained on ImageNet suggests that categorization

performance is driven primarily by a bias towards image

1The code and data for this paper are available at our project page

https://rehg-lab.github.io/publication-pages/lowshot-shapebias/

texture rather than object shape.2

However, studies of infant learning [24, 7, 23, 15] sug-

gest that shape does play a significant role in the ability

to rapidly learn object categories from a small number of

examples, a task which is analogous to few-shot learning.

Both young children and adults who are forced to catego-

rize novel objects based on a few examples display a shape

bias, meaning that shape cues seem to play a dominant role

in comparison to color and texture when inferring category

membership. These studies beg the question of whether in-

formation about 3D object shape could be useful in learn-

ing to perform few-shot categorization from images. While

prior work has demonstrated effective approaches to object

categorization using 3D shapes as input [34, 36, 55, 56, 4],

and there is a large literature on few-shot learning from im-

ages alone [44, 53, 18, 38, 59, 49, 11], the question of how

shape cues could be used to learn effective representations

for image-based low-shot categorization has not been inves-

tigated previously.

The goal of this paper is to explore the incorporation of

a shape bias in SOTA approaches to few-shot object catego-

rization and thereby investigate the utility of shape informa-

tion in category learning. We leverage the recent availability

of datasets of 3D object models with category labels, such

as ModelNet40 [56] and ShapeNet [2]. By sampling surface

point clouds and rendering images of these models, we can

construct datasets that combine 3D shape and image cues.

Unfortunately, however, ShapeNet and ModelNet contain a

relatively small number of object categories (55 and 40 re-

spectively), making it difficult to test categorization at a suf-

ficient scale. To resolve this limitation, we introduce a new

3D object dataset, Toys4K consisting of 4,179 3D objects

from 105 object categories, designed to contain categories

of objects that are commonly encountered by infants and

children during their development.

We report on two sets of investigations. First, we ex-

amine the relative effectiveness of purely image-based and

purely shape-based approaches to few-shot categorization.

2This study does not speak to the possibility of whether shape could be

used more effectively, and it is unclear how much of the bias stems from

the composition of the ImageNet dataset itself.
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1. Learn a discriminative shape embedding space
from point clouds on data from base classes

2. Extract object shape embeddings 

with the trained point cloud encoder

Untrained image encoder randomly maps 

images into the shape embedding space
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shape embeddings 
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Maintain pairwise 
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Figure 1. To perform low-shot learning with shape-bias, we train a embedding space defined by a point cloud encoder fp trained with cross-

entropy. Shape based embedding spaces are more discriminative than image-based ones (see Tbl. 1). We extract object shape embeddings,

and train an image encoder fi to map images into the shape space. If trained successfully, fi will have the discriminative properties of fp.

We demonstrate that purely shape-based few-shot learning

outperforms image-based approaches, and establish an em-

pirical upper bound on the effectiveness of a shape bias.

Second, we develop a novel approach for training an im-

age embedding representation for low-shot categorization

which incorporates an explicit shape bias, which we out-

line in Figure 1. We benchmark this approach on a repre-

sentative set of SOTA few-shot learning architectures and

demonstrate that the incorporation of shape bias results in

increased generalization accuracy over image-based train-

ing alone. In summary, this paper makes the following con-

tributions:

• A new approach to add explicit shape-bias to exist-

ing low-shot image classification methods, utilizing

3D object shape to learn similarity relationships be-

tween objects, which leads to improved low-shot per-

formance.

• The first evidence that shape information can enable

image-based low-shot classifiers to generalize with

higher accuracy to novel object categories.

• Toys4K - new 3D object dataset containing approxi-

mately twice the number of object categories as previ-

ous datasets which can be used for low-shot learning.

2. Related Work

Object Recognition from Synthetic Data

A large body of work focuses on appearance [46, 28,

35, 10, 17], point cloud [34, 55, 36, 4] and voxel [56, 35]

based recognition of synthetic object data with category tax-

onomies based on object shape such as ModelNet40 [56].

The trade-offs between learning using point clouds, depth

maps, voxels, or images have been studied by [46, 35] but

their study focuses on standard supervised classification and

does not extend to low-shot classification of novel object

categories or on combining shape and appearance informa-

tion during learning.

Low-Shot Learning

Low-shot learning algorithms can be categorized into two

broad sets. Optimization-based algorithms such as MAML

[11, 12], LEO [38], and Reptile [30], which during the base-

classes training stage, attempt to learn a representation that

can quickly be adapted using small amounts of informa-

tion with gradient-based learning in the low-shot learning

stage. Metric learning-based methods such as Prototypical

[44], Matching [53], and Relation [47] networks, as well as

the more recent SimpleShot [54], FEAT [59], and RFS [49]

aim to use the base class data to learn a similarity metric

that will also be discriminative for novel classes during the

low-shot phase. Despite their simplicity, metric-based ap-

proaches have superior performance on low-shot learning

benchmarks [54, 59]. Our approach of adding shape bias

belongs to the latter category, and compared to both is the

first approach to combine both appearance and shape infor-

mation for low-shot learning.

3D Object Shape Datasets

Other related works focus on building datasets of 3D object

models for recognition, single image object shape recon-

struction and shape segmentation [42, 48, 60, 21, 56, 2, 45].

The most widely used 3D shape datasets with category la-

bels are ModelNet40 [56] with 12K object instances of

40 categories with no object surface material properties,

ShapeNetCore.v2 [2] with 52K objects of 55 object cate-

gories with basic surface texture properties (basic shading

and UV mapping, but no physically based materials). The

ShapeNetSem split of ShapeNet consists of over 100 cate-

gories but is unsuitable for recognition since individual ob-

ject instances are assigned to multiple categories. Datasets

such as ABC [21] and Thingi10k [60] claim higher mesh

quality than previous datasets but lack object category an-

notation, making them more suitable for low-level tasks like

surface normal estimation and category agnostic shape re-

construction. The ModelNet40 and ShapeNet datasets were

scraped from online repositories and have categories largely

based on the data that was available in these repositories. In

contrast, our new Toys4K is curated specifically for testing

the generalization ability of learned representations to new
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classes. Compared to the aforementioned datasets, Toys4K

consists of highly diverse object instances within a category

(evident in Figure 3, detailed composition is included in the

supplement) and has the highest number of individual ob-

ject categories despite its smaller total size.

Multi-modal Learning

Aligning representations from different data modalities has

been extensively studied in vision and language works on

zero-shot learning [57, 19, 39, 13]. More recently, Schwartz

et al. [41] and Xing et al. [58] improve low shot image

classification performance on standard low-shot datasets by

combining the representation learned through the appear-

ance modality (images) with language model word vector

embeddings. In comparison, we combine appearance (im-

ages) and shape (point clouds) to learn a representation for

low shot object recognition that is biased to object shape

and leads to better low-shot generalization. It is important

to note that these works use multi-modal information for

the low-shot queries at test time, whereas our approach only

uses multi-modal information for the low-shot support set.

Another category of multi-modal learning works focuses

on learning joint embedding spaces of 3D meshes and im-

ages for image-based 3D shape retrieval [25, 26]. While

these works focus on retrieval for the same object categories

at training and testing time, our work focuses on combining

appearance and shape information for low-shot generaliza-

tion to novel object categories.

3. Using Shape for Low-Shot Classification

In principle, 3D shape is an attractive representation for

object recognition [27, 31, 26, 25] due to its invariance

to the effects of viewpoint, illumination, and background,

which can be challenging for appearance-based approaches.

While appearance-based methods may be able to model

these sources of variation given sufficient training images,

there is always a question of how well such models can gen-

eralize to novel categories and objects [14].

Despite its potential advantages, no previous work on

low-shot learning has utilized 3D shape, for at least two

reasons: 1) It is unclear how to leverage 3D shape in im-

proving image-based low shot learning;3 2) There is a lack

of 3D shape datasets that contain a sufficient number of ob-

ject categories to support effective experimentation. This is

due to the additional data requirements of few-shot learning:

The training/validation/testing split is over different classes

and not data points of the same class [37, 53] in order to

effectively test generalization to unseen classes.

To explain this issue more formally, let Dtrain denote

the base classes, and Dval and Dtest denote the validation

and testing sets, respectively, where these sets comprise a

3Our focus is on few-shot methods in which the queries are images,

with no 3D shape information available, as this is the most general and

useful paradigm.

disjoint partition of the total available classes. The base

classes must be sufficiently large and diverse to learn an ef-

fective feature representation in the training phase, and the

Dval set must similarly support the accurate assessment of

low-shot generalization ability during hyperparameter tun-

ing (i.e. model selection while training on the base classes).

The Dtest set is used to generate labeled low-shot training

examples (supports), and unlabelled low-shot testing exam-

ples (queries), which are used to evaluate the generaliza-

tion performance of the model at testing time, which we

refer to as the low-shot phase. As a result of these con-

straints, the standard 3D shape datasets ModelNet40 [56]

and ShapeNet55 [2] can only support 10-way and 20-way

testing, respectively. If the number of testing classes is in-

sufficient, the estimation of the generalization performance

of the method may be inaccurate.

In this section, we describe our two primary contribu-

tions which address the limitations described above. In

§ 3.1 we present our novel method for introducing shape

bias in learning a low-shot image representation. In § 3.2,

we introduce a novel 3D object category dataset, Toys4K,

consisting of 4,179 object instances organized into 105 cat-

egories, with an average of 35 objects (3D meshes) per cate-

gory. Toys4K supports up to 50-way classification, expand-

ing well beyond ModelNet40 and ShapeNet55 (see Fig. 4).

3.1. LowShot Learning with Shape Bias

We begin by describing the problem formulation: We

assume that shape data in the form of 3D point clouds is

available for each RGB image in a dataset. We achieve this

by rendering RGB images from the 3D models. 3D shape

information is used directly during training and validation,

in order to construct a representation with an explicit shape

bias. In addition, during the low-shot phase, episodes are

generated so that point clouds are available for the support

objects, but not for the query objects. This assumption al-

lows for both appearance and shape information to be used

in building class prototypes, but inference is done using im-

ages only. The distinction between image only low-shot

learning and our new setting is illustrated in Figure 2.

In this work, we adopt a low-shot learning approach

based on a metric embedding space. In this approach, Dtrain

is used to learn a function fi that maps the input data into

an embedding space where object instances of the same cat-

egory are close and instances of different categories are far

apart, according to some distance metric. This mapping can

be fixed after being learned from Dtrain or fine-tuned further,

depending upon the algorithm design. During the low-shot

phase, the supports and queries are mapped into the embed-

ding space (see Figure 2), and the queries are classified ac-

cording to a nearest neighbor or nearest class prototype (e.g.

support centroid) rule. Metric-based low-shot learning has

high accuracy [54] and is significantly more computation-
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(a) image-based low-shot episode (b) shape-biased low-shot episode

low-shot image support set

image query set

low-shot shape support setlow-shot image support set

image query set

Figure 2. (a) The standard setting: Prototypes are formed from images. (b) Our novel

shape-biased setting: Image and shape embeddings are averaged. In both cases, the

image-only queries qi can be classified by identifying the closest prototype pj . The

training process for the mapping functions fi and fp is illustrated in Figure 1.

5-way 10-way

1-shot 5-shot 1-shot 5-shot

Image 58.99 74.29 45.82 62.73

Point Cloud 66.02 83.61 54.44 75.26

Img + Ptcld

Oracle
68.04 82.07 57.03 73.11

Table 1. On ModelNet40-LS, low-shot gener-

alization is higher for point-cloud based learn-

ing than image based learning, justifying our

approach in combining the modalities. Ora-

cle model has access to both image and point

cloud information. See text for details.

ally efficient than approaches that fine-tune on the low-shot

supports. We first demonstrate that shape-based low-shot

learning allows for better generalization than image-based

low-shot learning, and then show how a shape-based em-

bedding with high generalization ability can be used to im-

prove image-based low-shot classification.

Shape-based low-shot learning outperforms image-

based low-shot learning

We perform a simple empirical study to determine

whether shape has an advantage for low-shot generalization.

We train two embedding spaces, one using image data and

one using point cloud data. For each type of data, we fol-

low the SimpleShot [54] approach, meaning that we train a

classifier using cross-entropy on Dtrain and use the learned

feature space (output of the last pooling layer) to perform

nearest centroid-based low-shot classification in normalized

Euclidean space. We use a ResNet18 [16] for image learn-

ing and a DGCNN [55] for point cloud learning on the

ModelNet40-LS dataset (see § 4).

We present the results in Tbl. 1, and as might be ex-

pected, see significantly higher low-shot performance for

the point cloud model relative to the image model. This

quantifies the improvement in generalization to novel cate-

gories as as result of using a 3D shape-based representation

and suggests that 3D shape can yield a more discriminative

embedding space. The question then is how can this benefit

be retained when testing the model on image data alone?

Combining Appearance and Shape

Figure 1 illustrates our approach to using the 3D shape

information available at training time in order to learn how

to embed the image-only queries. First, we train a low-shot

point-cloud based classifier on the set of base-classes Dtrain,

resulting in an a highly discriminative embedding space for

both seen and novel categories. We then extract point cloud

embeddings for each object in the training set and train a

CNN to map images into the shape embedding space.

Let D be a dataset of paired object point clouds op
and images oi, partitioned into Dtrain, Dval, and Dtest. Let

fp(x) : N ×R
3 → R

d denote the trained function for map-

ping point clouds of size N into an embedding space of

dimension d. This embedding space is optimized to yield

favorable metric properties for low shot classification, us-

ing the labelled point cloud data in Dtrain. Our goal is then

to learn a second mapping, fi(x) : R
H×W×3 → R

d, where

H,W are the image height and width, from images into the

shape embedding space defined by fp(x). We denote point

cloud embeddings as fp(op) = φp and image embeddings

as fi(oi) = φi.

We train a model that learns the mapping from images

to shape embeddings by minimizing two loss functions (see

part 3 of Figure 1). For a mini-batch B ⊂ Dtrain the first

loss minimizes the squared Euclidean distance (which we

denote as d(x, y)) between the learned point cloud embed-

dings, and the image based embeddings

L1 =
∑

(oi,op)∈B

d
(

φi, φp
)

.

The second loss constrains the pairwise distances be-

tween the image embeddings of different object instances

to be the same as the pairwise distances of the learned

shape embeddings. Let I denote the set of all (k, l) =
(

(oki , o
k
p), (o

l
i, o

l
p)
)

object instance data pairs in a mini-

batch. We define the second loss as

L2 =
∑

(k,l)∈I

(

d(φkp, φ
l
p)− d(φki , φ

l
i)
)2
.

During training, both losses are minimized with equal

weight. Validation for choosing fi is done by nearest cen-

troid classification on Dval. In Section 4 we show that min-

imizing only L1 results in convergence without learning to

match the distribution of the shape embedding well on the

training set, resulting in poor performance.

Inference: During the low-shot phase, as shown in Fig-

ure 2, class prototypes are built by averaging the shape φp
and image φi embeddings for each support object, whereas

only image information is used to map the query objects via
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Figure 3. Approximately one third of the objects in Toys4K, a new dataset of 3D assets for

low-shot object learning using object appearance and shape information.
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Figure 4. The high number of categories in

Toys makes low-shot learning on Toys4K a

challenging task.

Dataset Instances Categories

Toys4K 4,179 105

ModelNet40 [56] 12,311 40

ShapeNet [2] 52,000 55

Thingi10K [60] 10,000 N/A

ABC [21] 750K N/A

Table 2. Toys4K has the most categories of

any available dataset of 3D objects.

fi. The queries are classified based on the nearest centroid

to the query embedding. This inference procedure is used

for all algorithms in this paper that combine both image and

shape information, with the exception of FEAT [59], which

uses an additional set-to-set mapping.

It is important to understand how the shape-biased en-

coder performs when there is no explicit shape information

available in the low-shot phase, and what is the gain in ac-

curacy by making shape available for building class proto-

types. To this end, in § 4.3 we also evaluate the setting

where there are no point clouds available in the low-shot

phase.

Why is mapping images to shape embeddings difficult?

If the mapping fi(x) is learned exactly, it would map im-

ages to their corresponding point cloud embeddings so that

∀(oi, op) ∈ {Dtrain ∪ Dval ∪ Dtest}, ||φi − φp||2 = 0.

This is challenging, however, since fi can only be trained on

the base classes in Dtrain, requiring it to correctly extrapolate

to the metric properties of objects from novel classes.

We perform a simple test to validate the feasibility of

mapping images to shape embeddings in general and estab-

lish an empirical upper bound. We perform this by sim-

ply minimizing the L2 distance between the images and

their corresponding shape embeddings on combined data

from base classes, validation and test classes (Dtrain =
{Dtrain ∪ Dval ∪ Dtest}). This model is referred to as Im-

age + Point Cloud Oracle in Table 1 and provides empirical

evidence that it is possible to learn how to map images into

a shape embedding space with high accuracy when all of the

data is available. This model’s performance closely matches

that of the shape-only model, and significantly outperforms

the image-based approach, providing further evidence that

extrapolating the metric properties of the shape-embedding

space to novel categories is the key challenge in learning to

map images to shape embeddings.

3.2. Toys4K Dataset

An object dataset with a high number of diverse cat-

egories and high-quality 3D meshes is essential to study

whether leveraging 3D object shape can enable improved

low-shot generalization. We satisfy this requirement with

our new Toys4K dataset. While it is possible to use existing

datasets such as ModelNet40 and ShapeNet (which we in-

clude in our experiments), the limited number of categories

is an obstacle to few-shot learning. For example, apply-

ing standard training/validation/test ratios (e.g. from mini-

ImageNet [53]) to the 40 categories in ModelNet40 results

in a 20-10-10 split, which limits the possibilities for many-

way testing. A comparison of Toys4K to prior datasets is

available in Table 2. In Figure 4 we demonstrate that many-

way low-shot classification on Toys4K is a challenging task

in comparison to ModelNet40 and ShapeNet.

Toys4K consists of 4,179 object instances in 105 cate-

gories, with an average of 35 object instances per category

with no less than 15 instances per category, allowing for 5

support 10 query low-shot episodes to be formed. Fig. 3

provides an example of the quality and variety of the mod-

els. Further details on the dataset composition are avail-

able in the supplement. Toys4K was collected by select-

ing freely-available objects from Blendswap [1], Sketch-

fab [43], Poly [32] and Turbosquid [50] under Creative

Commons and royalty-free licenses. Our list of object cate-

gories was developed in collaboration with experts in devel-

opmental psychology to include categories of objects avail-

able and relevant to children in their infancy. We manu-

ally selected each object and manually aligned the objects

within each category to a canonical coordinate system that

is consistent across all instances in that category.
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4. Experiments

In this section, we perform an empirical evaluation of

the benefit of explicit shape bias on multiple datasets and

image-only low-shot learning algorithms.

4.1. Datasets

In addition to our new dataset, Toys4K, we use the 3D

object category datasets ModelNet40 [56], ShapeNet [2].

For descriptions of the datasets please refer to § 2. We

render images using the Cycles ray tracing renderer in

Blender [33] using uniform lighting on white backgrounds.

For all datasets, camera pose is randomly sampled for 25

views of each object with azimuth ψ ∈ [0, 360] and eleva-

tion θ ∈ [−50, 50] degrees. Object surface point clouds are

sampled from the 3D object meshes.

Toys4K is our new low-shot learning dataset is described

in detail in § 3.2. We use a split of 40, 10, 55 for base,

low-shot validation, and testing classes, respectively. For

Toys and all other datasets, the split is designed such that

the categories with most classes are in the training set, and

the validation and testing classes are randomly chosen from

the remainder of the data.

ModelNet40-LS is the existing ModelNet40 [56]

dataset, with a 20, 10, 10 split for base, low-shot validation

and testing classes respectively.

ShapeNet-LS is the existing ShapeNetCore.v2 [56]

dataset, with a 25, 10, 20 split for base, low-shot valida-

tion and testing classes respectively, using a reduced subset

of object samples per category to reduce training time due

to the high data imbalance.

4.2. Baselines

Regarding low-shot learning, we compare with the clas-

sical low-shot learning method Prototypical Networks [44],

and the state-of-the-art algorithms FEAT [59], RFS [49],

and SimpleShot [54]. With respect to learning joint em-

beddings, we compare with a simple triplet loss-based ap-

proach that learns joint embeddings of images and point

clouds. All baselines use a standard ResNet18 [16] as a

backbone for image encoding and a DGCNN [55] to en-

code point clouds. In the supplement we perform an abla-

tion study over different point cloud architectures including

PointNet [34] and PointNet++ [36]. Our low-shot learning

baseline implementations were all validated by re-creating

the results from the original papers.4

SimpleShot [54] is a simple low-shot learning baseline

algorithm that outperforms many recent methods. It makes

use of an embedding space learned by a CNN by training

on the base training classes for a standard classification task

using cross-entropy loss. Validation and testing are done

using a nearest neighbor classifier in the learned embedding

4Experiment implementation details included in the supplement

space, with feature normalization and training set mean sub-

traction resulting in improved performance.

RFS [49] is another simple low-shot learning algorithm

that is competitive with many recent approaches. Train-

ing the embedding space is done using cross-entropy on the

training set, but at testing time, a simple logistic regression

classifier is learned for each low-shot episode. In the origi-

nal work, the authors show that training a set of embedding

models with distillation slightly improves performance. We

omit this for a fair comparison with all metric-based works

since this addition would likely lead to performance im-

provements across the board.

Prototypical Networks [44] is a standard metric-based

low shot learning approach, which uses the base class set to

create low-shot episodes and learn a feature space that em-

beds object instances close or far based on visual similarity.

FEAT [59] builds on Prototypical Networks by learning

an additional set-to-set function implemented as a Trans-

former [52] on top of a cross-entropy pre-trained embed-

ding space to refine the class prototypes used for low-shot

classification. FEAT achieves state of the art performance

for inductive low-shot learning. Note that FEAT requires

separate retraining for each n-way m-shot configuration 5.

Triplet We use a simple triplet loss-based approach as

a baseline algorithm with access to both image and shape

information during training, similar to prior approaches in

shape retrieval [25]. A joint embedding is learned by us-

ing triplet loss [3, 40], creating positive pairs between im-

age and point cloud features of same objects, and negative

pairs between image and shape features from different ob-

ject instances. Empirically we found that this performs bet-

ter than using category labels. Inference is done by nearest

centroid classification, building class prototypes that con-

tain both appearance and shape information by averaging

the individual support features.

4.3. Explicit ShapeBias Improves ImageBased
Generalization

We evaluate our method of adding shape bias to low-shot

learning algorithms with state of the art low-shot image-

only classification algorithms and show that shape bias im-

proves performance in a low data regime. We present re-

sults on multiple datasets in Tables 3, 4, and 5 where we

refer to models as Shape Bias (w/pc) if the shape-biased

image encoder uses point cloud information to build pro-

totypes (see Fig 2(b)) and (wo/pc) if there are no point

clouds used to build prototypes for both validation and test-

ing (see Fig 2(a)). Our approach of introducing shape bias,

when trained with L1 and L2 losses improves the perfor-

mance of image-only low-shot recognition algorithms in the

5Since none of the datasets have more than 10 classes for validation,

the 20 and 30-way evaluations are done using a model trained for 10-way

classification.
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Episode Setup → 1-shot 5-way 5-shot 5-way 1-shot 10-way 5-shot 10-way

RFS [49] 56.67 ±0.30 72.64 ±0.26 43.79 ±0.16 60.61 ±0.11

ProtoNet [44] 50.11 ±0.31 64.44 ±0.24 36.44 ±0.17 46.70 ±0.26

Triplet 52.53 ±0.66 63.07 ±0.59 37.24 ±0.37 49.79 ±0.26

SimpleShot [54] 58.99 ±0.29 74.29 ±0.24 45.82 ±0.17 62.73 ±0.11

Shape Bias (w/ pc) - SimpleShot - L1 only 59.81 ±0.31 71.61 ±0.26 47.89 ±0.15 59.48 ±0.11

Shape Bias (w/o pc) - SimpleShot 60.23 ±0.30 75.59 ±0.24 47.92 ±0.15 64.88 ±0.11

Shape Bias (w/ pc) - SimpleShot 61.91 ±0.31 75.39 ±0.24 49.84 ±0.16 64.21 ±0.11

FEAT [59] 58.30 ±0.29 71.54 ±0.23 45.41 ±0.16 60.44 ±0.11

Shape Bias (w/o pc) - FEAT 60.19 ±0.31 74.66 ±0.25 48.6 ±0.16 64.08 ±0.11

Shape Bias (w pc) - FEAT 62.84 ±0.30 74.84 ±0.24 51.49 ±0.15 63.80 ±0.11

Table 3. Results on image-only and shape-biased low-shot recognition on ModelNet40-LS. Parenthesis show confidence intervals based

on 5K low shot episodes. Bold indicates best performance between a low-shot learning approach with and without shape bias; underline

indicates best overall. Adding shape bias improves performance in the 1-shot learning setting and has competitive performance otherwise.

Episode Setup → 1-shot 5-way 5-shot 5-way 1-shot 10-way 5-shot 10-way 1-shot 20-way 5-shot 20-way 1-shot 30-way 5-shot 30-way

RFS [49] 67.10 ±0.71 81.76 ±0.54 52.94 ±0.51 71.30 ±0.45 40.97 ±0.32 59.53 ±0.30 34.34 ±0.26 53.46 ±0.24

ProtoNet [44] 62.48 ±0.34 79.69 ±0.25 48.27 ±0.24 68.03 ±0.21 36.38 ±0.15 56.25 ±0.15 30.62 ±0.11 49.58 ±0.11

Triplet 63.87 ±0.34 73.95 ±0.62 48.78 ±0.54 60.44 ±0.48 36.34 ±0.35 47.28 ±0.32 30.09 ±0.25 40.08 ±0.24

SimpleShot [54] 68.87 ±0.32 83.69 ±0.23 55.22 ±0.24 73.58 ±0.19 43.05 ±0.16 62.64 ±0.14 36.78 ±0.12 56.22 ±0.12

Shape Bias (w/o pc) - SimpleShot 68.74 ±0.34 82.57 ±0.25 56.12 ±0.25 72.80 ±0.25 44.83 ±0.17 62.41 ±0.14 38.94 ±0.13 56.38 ±0.11

Shape Bias (w/ pc) - SimpleShot 70.96 ±0.33 81.33 ±0.24 58.47 ±0.25 70.81 ±0.20 46.96 ±0.17 60.3 ±0.14 40.59 ±0.14 54.00 ±0.11

FEAT [59] 70.66 ±0.33 84.13 ±0.23 57.15 ±0.24 74.29 ±0.19 44.84 ±0.16 63.65 ±0.14 38.43 ±0.12 57.42 ±0.11

Shape Bias (w/o pc) - FEAT 69.21 ±0.32 82.56 ±0.25 56.76 ±0.24 72.95 ±0.20 45.15 ±0.16 62.58 ±0.15 39.24 ±0.12 56.60 ±0.11

Shape Bias (w/ pc) - FEAT 71.58 ±0.34 81.45 ±0.25 59.09 ±0.25 71.00 ±0.20 47.45 ±0.17 59.98 ±0.15 41.38 ±0.12 53.64 ±0.11

Table 4. Results on image-only and shape-biased low-shot recognition on Toys4K. Parenthesis show 95% confidence intervals based on 5K

low shot episodes. Bold indicates best performance for a low-shot approach with and without shape bias; underline indicates best overall.

Adding shape-bias improves 1-shot performance when the number of low-shot ways is higher.

Figure 5. Examining the distribution of interclass distances in the

mappings learned by minimizing either L1 or L1 + L2 relative to

the reference point cloud embedding shows that adding L2 in a

better approximation of the shape embedding space on both novel

categories and categories seen during training.

low-data, one-shot learning regime for the SimpleShot and

FEAT algorithms by up to 6%-points. For the (w/o pc) mod-

els that do not have any explicit shape information in the

low-shot phase, we see a smaller one-shot improvement,

but good five-shot performance. This indicates that shape

bias is useful without any explicit shape information in the

low-shot phase, and suggests possible future improvements

by using strategies other than averaging to combine image

and shape information in the low-shot phase.

We add shape-bias to SimpleShot by directly using the

learned image to shape-mapping fi for nearest class mean

classification, whereas for FEAT we train the set-to-set

Transformer module on top of fi, fine-tuning the model

end-to-end as in the original FEAT design. The object

shape embeddings for the low-shot supports are fixed and

not trained further. Notice that as the total number of cat-

egories (the number of low-shot ways) increases, the im-

provement in one-shot performance increases. Further, our

approach of learning shape bias significantly outperforms

the triplet-loss based approach, indicating that first learning

an embedding space with point clouds only is a better strat-

egy than joint training with images and point clouds. All ex-

periments for SimpleShot are averaged over 5 runs and for

FEAT are averaged over 3 runs, indicating consistent per-

formance improvements. To ensure statistical significance,

for all experiments we perform 5K low-shot episodes and

report results with 95% confidence intervals.6

4.4. Analysis of Pairwise Loss

We perform an analysis to determine the benefit of in-

cluding the pairwise distance loss L2. In Figure 5, we plot

the pairwise interclass distances of object instances from

categories in the validation set for the learned mapping fi
trained either with one loss or both losses (blue and orange

respectively), along with the interclass distances in the point

cloud embedding that fi is trained to learn. The greater the

overall interclass distance, the better, and ideally the pair-

wise distance distributions are the same between the learned

mapping and the point cloud mapping. Just optimizing L1

results in learning a poor mapping on both the training set

6For further qualitative and quantitative analysis please refer to the sup-

plement.
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Episode Setup → 1-shot 5-way 5-shot 5-way 1-shot 10-way 5-shot 10-way 1-shot 20-way 5-shot 20-way

RFS [49] 65.79 ±0.32 80.51 ±0.23 52.16 ±0.20 69.92 ±0.10 40.25 ±0.10 58.44 ±0.08

ProtoNet [44] 52.00 ±0.31 69.65 ±0.24 37.75 ±0.19 55.87 ±0.16 27.00 ±0.11 43.16 ±0.09

Triplet 61.07 ±0.34 71.43 ±0.28 46.89 ±0.22 58.37 ±0.18 35.09 ±0.12 46.20 ±0.08

SimpleShot [54] 66.73 ±0.32 80.93 ±0.22 53.37 ±0.21 70.32 ±0.16 41.09 ±0.12 59.09 ±0.08

Shape Bias (w/o pc) - SimpleShot 67.5 ±0.34 81.30 ±0.23 54.99 ±0.23 71.24 ±0.17 43.60 ±0.13 61.03 ±0.08

Shape Bias (w/ pc) - SimpleShot 69.72 ±0.32 80.93 ±0.24 57.49 ±0.21 70.75 ±0.16 46.24 ±0.12 60.21 ±0.08

FEAT [59] 67.81 ±0.32 80.25 ±0.23 54.35 ±0.22 70.18 ±0.16 42.12 ±0.12 59.01 ±0.08

Shape Bias (w/o pc)- FEAT 67.78 ±0.32 81.45 ±0.22 55.69 ±0.22 71.74 ±0.16 44.44 ±0.13 61.46 ±0.08

Shape Bias (w/ pc) - FEAT 70.24 ±0.32 80.95 ±0.22 58.45 ±0.22 70.95 ±0.16 47.03 ±0.13 60.43 ±0.08

Table 5. Results on image-only and shape-biased low-shot recognition on ShapeNet55-LS. Parenthesis show confidence intervals based on

5K low shot episodes. Bold indicates best performance between a low-shot approach with and without shape bias and underline indicates

best overall. Adding shape bias leads to consistent improvement for both FEAT and SimpleShot.

and the novel classes in the validation set, whereas adding

the pairwise term L2 leads to a better approximation of the

point cloud embedding. The utility of L2 is also shown in

Table 3, with the significant improvement over just L1 on

SimpleShot with shape bias.

4.5. Shape Bias and Failure Analysis

To better understand the distinctions between the purely

image-based low-shot classifier and the shape-biased low

shot classifier, we compute the Pearson correlation (p <

0.05) between the accuracy achieved on the same 5K low-

shot episodes for the point cloud model and the shape-

biased and image-only classifiers (Figure 6). The shape-

biased low-shot classifier correlates more strongly with the

point cloud model across multiple datasets. This is evidence

for a qualitative difference beyond classification accuracy

between the shape biased and purely image low-shot clas-

sifiers. This would not be possible if the image data was

such that it could not be classified differently as a result

of introducing shape bias. Furthermore, in Table 6 we see

that shape-biased SimpleShot misclassifies similarly to the

point cloud SimpleShot, and that there is significant room

for improvement by learning to map images into shape em-

beddings more accurately.

ModelNet ShapeNet Toys

5-way 38.73% 44.81% 57.59%

10-way 30.88% 38.17% 50.53%

Table 6. Percent of queries misclassified by shape-biased Sim-

pleShot but not misclassified by point cloud model (over 5K

episodes). This indicates there is significant room for improve-

ment by learning better maps from images to shape embeddings.

5. Discussion and Conclusion

This paper takes the first step in investigating the utility

of shape bias for low-shot object categorization. Through

extensive empirical analysis of our novel approach for

adding shape bias to image-only low-shot learning algo-

rithms, we demonstrate improved generalization. We also

introduce Toys4K, a diverse and challenging dataset for ob-

ject learning with the largest number of categories available
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Figure 6. Accuracy of point cloud SimpleShot model vs. shape

bias and image SimpleShot models over the same 5K episodes

shows higher correlation between the point cloud model and shape

bias model, indicating that the shape-biased model classifies more

similarly to the point cloud model than the image only model.

to date. While dependence of our findings on synthetic ob-

ject data limits our ability to draw conclusions about shape

bias under more general conditions, it is essential since it is

currently the only feasible way to obtain matched 2D and

3D data at a large enough scale. Moreover, synthetic data

has been widely adopted for other vision tasks [5, 8, 20].

Progress in few-shot learning is crucial in order to over-

come the need for large amounts of labeled training data.

This work constitutes a step in a new direction: the exploita-

tion of the natural biases of the visual world, such as object

shape, in the design of few-shot architectures. Building on

this approach by exploiting other sources of bias is a logical

and exciting direction for future work.
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