
BCNet: Searching for Network Width with Bilaterally Coupled Network

Xiu Su1, Shan You2,3*, Fei Wang2, Chen Qian2, Changshui Zhang3, Chang Xu1∗

1School of Computer Science, Faculty of Engineering, The University of Sydney, Australia
2SenseTime Research

3Department of Automation, Tsinghua University,

Institute for Artificial Intelligence, Tsinghua University (THUAI),

Beijing National Research Center for Information Science and Technology (BNRist)

xisu5992@uni.sydney.edu.au, {youshan,wangfei,qianchen}@sensetime.com

zcs@mail.tsinghua.edu.cn, c.xu@sydney.edu.au

Abstract

Searching for a more compact network width recently

serves as an effective way of channel pruning for the de-

ployment of convolutional neural networks (CNNs) under

hardware constraints. To fulfill the searching, a one-shot

supernet is usually leveraged to efficiently evaluate the per-

formance w.r.t. different network widths. However, current

methods mainly follow a unilaterally augmented (UA) prin-

ciple for the evaluation of each width, which induces the

training unfairness of channels in supernet. In this pa-

per, we introduce a new supernet called Bilaterally Cou-

pled Network (BCNet) to address this issue. In BCNet,

each channel is fairly trained and responsible for the same

amount of network widths, thus each network width can be

evaluated more accurately. Besides, we leverage a stochas-

tic complementary strategy for training the BCNet, and pro-

pose a prior initial population sampling method to boost the

performance of the evolutionary search. Extensive experi-

ments on benchmark CIFAR-10 and ImageNet datasets in-

dicate that our method can achieve state-of-the-art or com-

peting performance over other baseline methods. Moreover,

our method turns out to further boost the performance of

NAS models by refining their network widths. For example,

with the same FLOPs budget, our obtained EfficientNet-B0

achieves 77.36% Top-1 accuracy on ImageNet dataset, sur-

passing the performance of original setting by 0.48%.

1. Introduction

For practical deployment of convolutional neural net-

works (CNNs), it is important to consider different hard-

ware budgets [12, 10, 11, 30], to name a few, floating point

operations (FLOPs), latency, memory footprint and energy

*Corresponding authors.

consumption. One way to simultaneously accommodate all

these budgets is to prune the redundant channels of a model,

so that a compact network width can be obtained. Typi-

cal channel pruning usually leverages a pre-trained network

and implement the pruning in an end-to-end [21, 24, 32] or

layer-by-layer [16, 36] manner. After pruning, the struc-

ture of the pre-trained model remains unchanged, so that

the pruned network is friendly to off-the-shelf deep learn-

ing frameworks and can be further boosted by other tech-

niques, such as quantization [12] and knowledge distillation

[17, 41, 22].

Recently, [26] found the core of channel pruning is to

learn a more compact network width instead of the re-

tained weights. Other literature also uses number of chan-

nels/filters to indicate the network width. Thus follow-up

work resorts to neural architecture search (NAS) [38, 40,

39, 1] or other automl techniques for directly searching for

an optimal network width, such as MetaPruning [25], Au-

toSlim [43] and TAS [6]. In their methods, a one-shot super-

net is usually leveraged for evaluation of different widths.

Concretely, for the width c at a certain layer, we need to as-

sign c channels (filters) in the layer and all layers follow the

same way. Then all these assigned channels in the supernet

specify a sub-network with the supernet. As a result, the

performance of a network width refers to the accuracy of

the specified sub-network with shared weights of supernet.

For fair evaluation of different network widths, during the

training of supernet, all network widths will be evenly sam-

pled from the supernet and get optimized accordingly. For

brevity, we use the name of layer width to indicate the width

for a certain layer, while network width represents the set of

widths for all layers.

In this way, how to specify the sub-network(s) for

each network width matters for the performance evalua-

tion. However, current methods [25, 43, 6] mainly follow a

2175

unilaterally augmented (UA) principle for the evaluation of

network widths in supernet. Suppose we count channels in

a layer from the left to the right as Figure 1. To evaluate the

width c, UA principle simply assigns the leftmost c chan-

nels to specify a sub-network for evaluation. In this way,

channels within smaller width will also be used for evalua-

tion of larger widths. Since we uniformly sample all widths

during training the supernet, channels close to left side will

be used more times than those close to the right side in the

evaluation of widths as in Figure 1(a). For example, the

leftmost channel will be used 6 times for evaluation while

the rightmost channel is only used once. This causes train-

ing unfairness among the channels and their corresponding

kernels. Left channels will be trained more than right ones.

Nevertheless, this training unfairness will affect the accu-

racy of evaluation, and thus hampers the ability of supernet

to rank over all network widths.

In this paper, we introduce a new supernet called Bi-

laterally Coupled Network (BCNet) to address the training

and evaluation unfairness within UA principle. In BCNet,

each channel is fairly trained and responsible for the same

amount of widths. Specifically, both in training and evalua-

tion, each width is determined symmetrically by the average

performance of bilateral (i.e., both left and right) channels.

As shown in Figure 1(b), suppose a layer has 6 channels,

then each channel of BCNet evenly corresponds to 7 layer

widths from the left or right side. In this way, all channels

will be trained equally; all widths are bilaterally coupled in

BCNet and will be evaluated more fairly.

To encourage a rigorous training fairness over channels,

we adopt a complementary training strategy for training

BCNet as in Figure 2. As for the subsequent searching,

since the evolutionary algorithm is empirically fairly sensi-

tive to the initial population, we also propose a prior sam-

pling method, which enables to generate a good and steady

initial population instead of random initialization. Exten-

sive experiments on the benchmark CIFAR-10 and Ima-

geNet datasets show that our method outperforms the state-

of-the-art methods under various FLOPs budget. For ex-

ample, our searched EfficientNet-B0 achieves 74.9% Top-1

accuracy on ImageNet dataset with 192M FLOPs (2 × ac-

celeration).

2. Related Work

Channel pruning is an effective method to compress and

accelerate an over-parameterized convolutional neural net-

work, and thus enables the pruned network to accommo-

date various hardware computational budgets. Extensive

studies are illustrated in the comprehensive survey [33].

Here, we summarize the typical approaches of channel

pruning [21, 24, 16, 35] and network width search methods

[25, 43, 6].

Channel pruning. Channel pruning is an prevalent

method which aims to reduce redundant channels of an

heavy model, and generally implemented by selecting sig-

nificant channels [24, 16] or adding additional data-driven

sparsity [21, 44, 37]. For example, CP [16] propose to con-

struct a group Lasso to select unimportant channels. Slim-

ming [24] impose a l1 regularization on the scaling factors.

DCP [44] propose to construct an additional discrimination-

aware losses. Despite the achievements, these methods rely

heavily on manually assigned pruning ratios or hyperparam-

eter coefficients, which is complicated, time consuming and

hardly to find Oracle solutions.

Network width search. Inspired by the development of

NAS [1, 8, 20], network width search methods [25, 43, 6,

9, 14, 31] generally take a carefully designed one-shot su-

pernet to rank the relative performance of different widths.

For example, TAS [6] aims to search the optimal network

width via a learnable continuous parameter distribution.

MetaPruning [25] proposes to directly generate representa-

tive weights for different widths. AutoSlim [43] proposes to

leverage a slimmable network to approximate the accuracy

of different network widths. However, all these methods

follow UA principle in assigning channels, which affects the

fairness in evaluation. To accurately rank the performance

of network widths, our proposed BCNet aims to assign the

same opportunity for channels during training, thus ensures

the evaluation fairness in searching optimal widths.

3. Channel Pruning as Network Width Search

Formally, suppose the target network to be pruned N
has L layers, and each layer has li channels. Then chan-

nel pruning aims to identify redundant channels (indexed

by Ii
pruned) layer-wisely, i.e.,

Ii
pruned ⊂ [1 : li], (1)

where [1 : li] is an index set for all integers in the range of 1
to li for i-th layer. However, [26] empirically finds that the

absolute set of pruned channels Ii
pruned and their weights

are not really necessary for the performance of pruned net-

work, but the obtained width ci actually matters, i.e.,

ci = li − |Ii
pruned|. (2)

In this way, it is intuitive to directly search for the optimal

network width to meet the given budgets.

Denote an arbritary network width as c =
(c1, c2, ..., cL) ∈ C =

⊗L

i=1[1 : li], where
⊗

is the

Cartesian product. Then the size of search space C amounts

to |C| =
∏L

i=1 li. However, this search space is fairly huge,

e.g., 1025 for L = 25 layers and li = 10 channels. To

reduce the search space, current methods tend to search

on a group level instead of channel-wise level. In specific,

all channels at a layer is partitioned evenly into K groups,

then we only need to consider K cases; there are just

2176

Figure 1. Comparison of unilaterally augmented (UA) principle and our proposed bilaterally coupled (BC) principle in supernet. In BC

principle, each network width is indicated by two (left and right) paths, so that all channels get the same cardinality for evaluation different

widths. However, in UA principle each width goes through one path, and training unfairness over channels and evaluation bias exist. Under

uniform sampling strategy, for each channel the expectation of the times being evaluated is theoretically equal to the times being trained,

since we simply sample each path and train it. For simplicity, we use cardinality to refer to the number of times that a channel is used for

evaluation over all widths.

(li/K) · [1 : K] layer widths for i-th layer. Therefore, the

search space C is shrunk into CK with size |CK | = KL. In

the following, we use both C and CK seamlessly.

During searching, the target network is usually leveraged

as a supernet N , and different network widths c can be di-

rectly evaluated by sharing the same weights with the super-

net. Then the width searching can be divided into two steps,

i.e., supernet training, and searching with supernet. Usu-

ally, the original training dataset is split into two datasets,

i.e., training dataset Dtr and validation dataset Dval. The

weights W of the target supernet N is trained by uniformly

sampling a width c and optimizing its corresponding sub-

network with weights with weights wc ⊂ W ,

W ∗ = argmin
wc⊂W

E
c∈U(C)

[[Ltr(wc;N , c,Dtr)]] , (3)

where Ltrain is the training loss function, U(C) is a uniform

distribution of network widths, and E [[·]] is the expectation

of random variables. Then the optimal network width c
∗

corresponds to the one with best performance on validation

dataset, e.g. classification accuracy,

c
∗ =argmax

c∈C

Accuracy(c,w∗
c
;W ∗,N ,Dval),

s.t. FLOPs(c) ≤ Fb,
(4)

where Fb is a specified budget of FLOPs. Here we con-

sider FLOPs rather than latency as the hardware constraint

since we are not targeting any specific hardware device like

EfficientNet [34] and other pruning baselines [44, 6, 14].

The searching of Eq.(4) can be fulfilled efficiently by vari-

ous algorithms, such as random or evolutionary search [25].

Afterwards, the performance of the searched optimal width

c
∗ is analyzed by training from scratch.

4. BCNet: Bilaterally Coupled Network

4.1. BCNet as a new supernet

As illustrated previously, for evaluation of width c at cer-

tain layer, unilaterally augmented (UA) principle assigns

the leftmost c channels to indicate its performance as Figure

1(a). Hence all channels used for width c can be indexed by

a set IUA(c), i.e.,

IUA(c) = [1 : c]. (5)

However, UA principle imposes an unfairness in updating

channels (filters) for supernet. Channels with small index

will be assigned to both small and large widths. Since dif-

ferent widths are sampled uniformly during the training of

supernet, kernels for channels with smaller index thus get

more training accordingly. To quantify this training unfair-

ness, we can use the number of times that a channel is used

for the evaluation of all widths to reflect its training degree,

and we name it as cardinality. Suppose a layer has maxi-

mum l channels, then the cardinality for the c-th channel in

UA principle is

Card-UA(c) = l − c+ 1. (6)

In this way, the cardinality of all channels varies signifi-

cantly and thus they get trained much differently, which in-

troduces evaluation bias when we use the trained supernet

to rank the performance over all widths.

To alleviate the evaluation bias over widths, our pro-

posed BCNet serves as a new supernet which promote the

fairness w.r.t. channels. As shown in Figure 1(b), in BCNet

each width is simultaneously evaluated by the sub-networks

corresponding to left and right channels. left and right chan-

nels. It can be seen as two identical networks Nl and Nr

bilaterally coupled with each other, and use UA principle

for evaluation but in a reversed order of counting channels.

2177

Figure 2. Illustration of the complementary of a network width for both our bilaterally coupled (BC) principle and the baseline unilaterally

augmented (UA) principle. In BC principle, for any width c, all channels will be trained evenly (2 times) by training c and its complemen-

tary together. However, this fairness can not be ensured in UA principle, but gets worse; some channels will be trained 2 times while others

will be trained one or zero time.

In this way, all channels IBC(c) used for evaluating width

c in BCNet are indexed by

IBC(c) = Il
UA(c) ⊎ Ir

UA(c) (7)

= [1 : c] ⊎ [(l − c+ 1) : (l − c)], (8)

where ⊎ means the merge of two lists with repeatable el-

ements. In detail, left channels in Nl follow the same

setting with UA principle as Eq.(5), while for right chan-

nels in Nr, we count channels starting from right with

Ir
UA(c) = [(l − c + 1) : (l − c)]. As a result, the cardi-

nality of each channel within BC principle is the sum from

both two supernets Nl and Nr. In detail, since channels

count from the right side within Nr, the cardinality for the

c-th channel in left side corresponds to the cardinality of

l − c + 1-th channel in right side with Eq.(6). As a result,

the cardinality for the c-th channel in BC principle is

Card-BC(c) = Card-UA(c) + Card-UA(l + 1− c)

= (l − c+ 1) + (l + 1− l − 1 + c) = l + 1 (9)

Therefore, the cardinality for each channel will always

amounts to the same constant value (i.e., 7 in Figure 1(b))

of widths, and irrelevant with the index of channels with

BC principle, thus ensuring the fairness in terms of channel

(filter) level, which promotes to fairly rank network widths

with our BCNet.

4.2. Stochastic Complementary Training Strategy

To train the BCNet, we adopt stochastic training, i.e.,

uniformly sampling a network width c from the search

space CK , and training its corresponding channel (filters)

N (W, c) using training data Dtr afterwards. Note that a

single c has two paths in BCNet, during training, a train-

ing batch B ⊂ Dtr is supposed to forward simultaneously

through both N ∗
l (W) and N ∗

r (W). Then the training loss

is the averaged loss of both paths, i.e., for each batch B

Ltr(W, c;B) =
1

2
· (Ltr(Nl; c,B) + Ltr(Nr; c,B)) .

(10)

Despite with our BCNet, channels are trained more

evenly than other methods. However, it still can not ensure

a rigorous fairness over channels. For example, if a layer

has 3 channels and we sample 10 widths on this layer. Then

results can come to that the first channel is sampled 4 times

and the other two are sampled 3 times, respectively. The

first channel thus still gets more training than the others,

which ruins the training fairness.

To solve this issue, we propose to leverage a complemen-

tary training strategy, i.e., after sampling a network width c,

both c and its complementary c̄ get trained. For example,

suppose a width c = (3, 2, 4) with maximum 6 channels

per layer, then its complementary amounts to c̄ = (3, 4, 2)
as Figure 2. The training loss for the BCNet is thus

Ltr(W ;Dtr,N) = E
c∈U(C)

[[Ltr(W, c;Dtr) + Ltr(W, c̄;Dtr)]] .

(11)

In this way, when we sample a width c, we can always en-

sure all channels are evenly trained, and expect a more fair

comparison over all widths based on the trained BCNet.

Note that this complementary strategy only works for our

BCNet, and fails in the typical unilateral augmented (UA)

principle [43, 25, 6], which even worsens the bias as shown

in Figure 2(b).

4.3. Evolutionary Search with Prior Initial Popula
tion Sampling

After the BCNet N ∗ is trained with weights W ∗, we

can evaluate each width by examining its performance (e.g.,

classification accuracy) on the validation dataset Dval as

Eq.(4). Besides, similar to the training of BCNet, the per-

formance of a width c is indicated by the averaged accuracy

of its left and right paths. Moreover, to boost the search-

ing performance, we leverage the multi-objective NSGA-

II [4] algorithm for evolutionary search, and hard FLOPs

constraint can be thus well integrated. In generally, evolu-

tionary search is prone to the initial population before the

sequential mutation and crossover process. In this way, we

2178

Figure 3. Histogram of Top-1 accuracy of searched widths on BC-

Net by evolutionary searching method with our prior or random

initial population sampling w.r.t. ResNet50 (2G FLOPs) on Ima-

geNet dataset.

propose a Prior Initial Population Sampling method to al-

locate a promising initial population, which is expected to

contribute to the evolutionary searching performance.

Concretely, suppose the population size is P , and we

hope the sampled initial population have high performance

in order to generate competing generations during search.

Note that during training of BCNet, we have also sampled

various widths, whose quality can be reflected by the train-

ing loss. In this way, we can record the top m (e.g., m =
100) widths {c(i)}mi=1 with smallest training loss {ℓ(i)}mi=1

as priors for good network widths. However, even the group

size for every layer is set to 10, the search space of Mo-

bileNetV2 is as large as 1025, which is too large to search

good widths within limited training epochs. Thus we aim

to learn layer-wise discrete sampling distributions P(l, ci)
to perform stochastic sampling a width c = (c1, ., cl, ., cL),
where P(l, ci) indicates the probability of sampling width

cl at l-th layer subject to
∑

i P(l, ci) = 1.

Note that these m prior network widths actually can re-

flect the preference over some widths for each layer. For

example, if at a layer l, a width cl exists in these m prior

widths with smaller training loss, then the sampling proba-

bility P(l, ci) should be large as well. In this way, we can

measure the potential error E(l, ci) of sampling cl width at

l-th layer by recording the averaged training loss of all m
widths going through it,i.e.,

E(l, ci) =
1

∑m

j=1 1{c
(j)
l = i}

·
m∑

j=1

ℓ(j) ·1{c
(j)
l = i}, (12)

where 1{·} is the indicator function. Then the objective is

to sample with minimum expected potential errors, i.e.,

min
P

∑

l

∑

i

P(l, ci) · E(l, ci), s.t.
∑

i

P(l, ci) = 1,

P(l, ci) ≥ 0, ∀ l = 1, ..., L.
(13)

In addition, we also need to deal with the hard FLOPs

constraint in the initial population. Since the FLOPs of

a layer depends on the channels of its input and output,

we can limit the expected FLOPs of the sampled network

width, i.e.,

∑

l

∑

(i,j)

P(l, ci) · F (l, ci, cj) · P(l + 1, cj) ≤ Fb, (14)

where F (l, ci, cj) is the FLOPs of l-th layer with ci in-

put channels and cj output channels, which can be pre-

calculated and stored in a looking-up table. Then Eq.(14)

is integrated as an additional constraint for the problem

Eq.(13). The overall problem is a QCQP (Quadratically

constrainted quadratic programming), which can be ef-

ficiently solved by many off-the-shelf solvers, such as

CVXPY [5], GH [28]. As Figure 3 shows, our pro-

posed sampling method can significantly boost evolution-

ary search by providing better initial populations. On aver-

age, the performance of our searched widths are much bet-

ter than those obtained by random initial population, which

proves the effectiveness of our proposed sampling method.

5. Experimental Results

In this section, we conduct extensive experiments on the

ImageNet and CIFAR-10 datasets to validate the effective-

ness of our algorithm. For all structures, we search on the

reduced space CK with default K = 20. Note that most

pruning methods do not report their results by incorporat-

ing the knowledge distillation (KD) [17, 7] improvement in

retraining except for MobileNetV2. Thus in our method,

except for MobileNetV2, we also do not include KD in fi-

nal retraining. Detailed experimental settings are elaborated

in supplementary materials.

Comparison methods. We include multiple competing

pruning, network width search methods and NAS models

for comparison, such as DMCP [9], TAS [6], AutoSlim

[43], MetaPruning [25], AMC [14], DCP [44], LEGR [3],

CP [16], AutoPruner [27], SSS [21], EfficientNet-B0 [34]

and ProxylessNAS [1]. Moreover, we also consider two

vanilla baselines. Uniform: we shrink the width of each

layer with a fixed factor to meet FLOPs budget. Random:

we randomly sample 20 networks under FLOPs constraint,

and train them by 50 epochs, then we continue training the

one with the highest performance and report its final result.

5.1. Results on ImageNet Dataset

ImageNet dataset contains 1.28M training images and

50K validation images from 1K classes. In specific, we re-

port the accuracy on the validation dataset as [24, 43], and

the original model takes as the supernet while for the 1.0×
FLOPs of all models, the supernet refers to a 1.5× FLOPs

of original model by uniform width scaling. To verify the

performance on both heavy and light models, we search

on the ResNet50 and MobileNetV2 with different FLOPs

2179

Table 1. Performance comparison of ResNet50 and MobileNetV2 on ImageNet. Methods with ”*” denotes that the results are reported

with knowledge distillation.
ResNet50 MobileNetV2

FLOPs level Methods FLOPs Parameters Top-1 Top-5 FLOPs level Methods FLOPs Parameters Top-1 Top-5

3G

AutoSlim* [43] 3.0G 23.1M 76.0% -

305M (1.5×)

AutoSlim* [43] 305M 5.7M 74.2% -

MetaPruning [25] 3.0G - 76.2% - Uniform 305M 3.6M 72.7% 90.7%

LEGR [3] 3.0G - 76.2% - Random 305M - 71.8% 90.2%

Uniform 3.0G 19.1M 75.9% 93.0% BCNet 305M 4.8M 73.9% 91.5%

Random 3.0G - 75.2% 92.5% BCNet* 305M 4.8M 74.7% 92.2%

BCNet 3.0G 22.6M 77.3% 93.7%

200M

Uniform 217M 2.7M 71.6% 89.9%

SSS [21] 2.8G - 74.2% 91.9% Random 217M - 71.1% 89.6%

2G

GBN [42] 2.4G 31.83M 76.2% 92.8% BCNet 217M 3.0M 72.5% 90.6%

SFP [13] 2.4G - 74.6% 92.1% BCNet* 217M 3.0M 73.5% 91.3%

LEGR [3] 2.4G - 75.7% 92.7% MetaPruning [25] 217M - 71.2% -

FPGM [15] 2.4G - 75.6% 92.6% LEGR [3] 210M - 71.4% -

TAS* [6] 2.3G - 76.2% 93.1% AMC [14] 211M 2.3M 70.8% -

DMCP [9] 2.2G - 76.2% - AutoSlim* [43] 207M 4.1M 73.0% -

MetaPruning [25] 2.0G - 75.4% - Uniform 207M 2.7M 71.2% 89.6%

AutoSlim* [43] 2.0G 20.6M 75.6% - Random 207M - 70.5% 89.2%

Uniform 2.0G 13.3M 75.1% 92.7% BCNet 207M 3.1M 72.3% 90.4%

Random 2.0G - 74.6% 92.2% BCNet* 207M 3.1M 73.4% 91.2%

BCNet 2.0G 18.4M 76.9% 93.3%

100M

MetaPruning [25] 105M - 65.0% -

1G

AutoPruner [27] 1.4G - 73.1% 91.3% Uniform 105M 1.5M 65.1% 89.6%

MetaPruning [25] 1.0G - 73.4% - Random 105M - 63.9% 89.2%

AutoSlim* [43] 1.0G 13.3M 74.0% - BCNet 105M 2.3M 68.0% 89.1%

Uniform 1.0G 6.9M 73.1% 91.8% BCNet* 105M 2.3M 69.0% 89.9%

Random 1.0G - 72.2% 91.4% MuffNet [2] 50M - 50.3% -

BCNet 1.0G 12M 75.2% 92.6% MetaPruning [25] 43M - 58.3% -

AutoSlim* [43] 570M 7.4M 72.2% - Uniform 50M 0.9M 59.7% 82.0%

Uniform 570M 6.9M 71.6% 90.6% Random 50M - 57.4% 81.2%

Random 570M - 69.4% 90.3% BCNet 50M 1.6M 62.7% 83.7%

BCNet 570M 12.0M 73.2% 91.1% BCNet* 50M 1.6M 63.8% 84.6%

Table 2. Searching results of EfficientNet-B0 and ProxylessNAS

on ImageNet dataset.
EfficientNet-B0

Groups Methods Param Top-1 Top-5

385M

Uniform 5.3M 76.88% 92.64%

Random 5.1M 76.37% 92.25%

BCNet 6.9M 77.36% 93.17%

192M

Uniform 2.7M 74.26% 92.24%

Random 2.9M 73.82% 91.86%

BCNet 3.8M 74.92% 92.06%

ProxylessNAS

Groups Methods Param Top-1 Top-5

320M

Uniform 4.1M 74.62% 91.78%

Random 4.3M 74.16% 91.23%

BCNet 5.4M 75.07% 91.97%

160M

Uniform 2.2M 71.16% 89.49%

Random 2.5M 70.89% 89.12%

BCNet 2.9M 71.87% 89.96%

budgets. In our experiment, the original ResNet50 (Mo-

bileNetV2) has 25.5M (3.5M) parameters and 4.1G (300M)

FLOPs with 77.5% (72.6%) Top-1 accuracy, respectively.

As shown in Table 1, our BCNet achieves the high-

est accuracy on ResNet50 and MobileNetV2 w.r.t. differ-

ent FLOPs, which indicates the superiority of our BCNet

to other pruning methods. For example, our 3G FLOPs

ResNet50 decreases only 0.2% Top-1 accuracy compared

to the original model, which exceeds AutoSlim [43] and

MetaPruning [25] by 1.3% and 1.1%. While for Mo-

bileNetV2, our 207M MobileNetV2 exceeds the state-of-

the-art AutoSlim, MetaPruning by 0.4%, 1.1%, respec-

tively. In addition, our BCNet even surpasses other algo-

rithms more on tiny MobileNetV2 (105M) with 68% Top-1

accuracy and exceeds MetaPruning by 3.0%.

To further demonstrate the effectiveness of our BC-

Net on highly efficient models, we conduct searching on

the NAS-based models EfficientNet-B0 and ProxylessNAS.

The original EfficientNet-B0 (ProxylessNAS) has 5.3M

(4.1M) parameters and 385M (320M) FLOPs with 76.88%

(74.62%) Top-1 accuracy, respectively. As shown in Table

2, although the increase of performance is not as signicant

as in Table 1, our method can still boost the NAS-based

models by more than 0.4% on Top-1 accuracy.

5.2. Results on CIFAR10 Dataset

We also examine the performance of MobileNetV2 and

VGGNet on the moderate CIFAR-10 dataset, which has

50K training and 10K testing images with size 32×32 of 10

categories. Our original VGGNet (MobileNetV2) has 20M

(2.2M) parameters and 399M (297M) FLOPs with accuracy

of 93.99% (94.81%).

As shown in Table 3, our BCNet still enjoys great advan-

tages in various FLOPs levels. For instance, our 200M Mo-

bileNetV2 can achieve 95.44% accuracy, which even out-

performs the original model by 0.63%. Moreover, even with

super tiny size (28M), our BCNet can still have 94.02% ac-

curacy, which surpasses the state-of-the-art AutoSlim[43]

by 2.0%. As for VGGNet, our BCNet is capable of out-

performing those competing channel pruning methods DCP

[44] and Slimming [24] by 0.20% and 0.56% with 2× ac-

celeration rate.

5.3. Ablation Studies

Effect of BCNet as a supernet. To validate the effec-

tiveness of our proposed supernet BCNet, we search the

ResNet50, MobileNetV2, EfficientNet-B0 and Proxyless-

2180

Table 3. Performance comparison of MobileNetV2 and VGGNet

on CIFAR-10.
MobileNetV2

Groups Methods FLOPs Params accuracy

200M

DCP [44] 218M - 94.69%

Uniform 200M 1.5M 94.57%

Random 200M - 94.20%

BCNet 200M 1.5M 95.44%

146M

MuffNet [2] 175M - 94.71%

Uniform 146M 1.1M 94.32%

Random 146M - 93.85%

BCNet 146M 1.2M 95.42%

44M

AutoSlim [43] 88M 1.5M 93.20%

AutoSlim [43] 59M 0.7M 93.00%

MuffNet [2] 45M - 93.12%

Uniform 44M 0.3M 92.88%

Random 44M - 92.31%

BCNet 44M 0.4M 94.42%

28M

AutoSlim [43] 28M 0.3M 92.00%

Uniform 28M 0.2M 92.37%

Random 28M - 91.69%

BCNet 28M 0.2M 94.02%

VGGNet

Groups Methods FLOPs Params accuracy

200M

Sliming [24] 199M 10.4M 93.80%

DCP [44] 199M 10.4M 94.16%

Uniform 199M 10.0M 93.45%

Random 199M - 93.02%

BCNet 197M 3.1M 94.36%

100M+

Uniform 185M 9.3M 93.30%

Random 185M - 92.71%

BCNet 185M 6.7M 94.14%

CP [16] 156M 7.7M 93.67%

Multi-loss [18] 140M 5.5M 94.05%

Uniform 138M 6.8M 93.14%

Random 138M - 92.17%

BCNet 138M 3.3M 94.09%

77M

CGNets [19] 91.8M - 92.88%

Uniform 77.0M 3.9M 92.38%

Random 77.0M - 91.72%

BCNet 77.0M 1.2M 93.53%

CGNet [19] 61.4M - 92.41%

NAS on ImageNet dataset with 2× acceleration. Our de-

fault baseline supernet is that adopted by AutoSlim [43],

which follows unilateral augmented principle to evaluate

a network width. As the results in Table 4 shows, under

the greedy search, only using our BCNet evaluation mech-

anism (second line) can enjoy a gain of 0.27% to 0.66%

Top-1 accuracy. When searching with evolutionary algo-

rithms, the gain still reaches at 0.28% to 0.35% Top-1 accu-

racy on various models. These exactly indicates using BC-

Net as supernet could boost the evaluation and searching

performance. As for the complementary training strategy,

we can see that it enables to boost our BCNet by improv-

ing the MobileNetV2 (ResNet50) from 69.92% (76.41%)

to 70.04% (76.56%) on Top-1 accuracy. Note that greedy

search without BCNet supernet amounts to AutoSlim, we

can further indicate the superiority of our method to Au-

toSlim with achieved Top-1 accuracy 70.20% (76.90%) vs

69.52% (75.94%) on MobileNetV2 (ResNet50).

Effect of search space. We adopt the grouped search

space CK to reduce its complexity. To investigate the effect

of search space, we searched VGGNet on CIFAR-10 dataset

and MobileNetV2 on ImageNet dataset with various group

size K. As in Figure 4(b), our method achieves the best per-

formance in most cases around our default value K = 20.

In addition, we noticed that when the group size K is small,

30 28 26 24 22 20 18 16 14 12 10 8 6 4

group size K

71.8

71.9

72

72.1

72.2

72.3

72.4

72.5

92.8

93

93.2

93.4

93.6

MobileNetV2 on ImageNet

VGGNet on CIFAR-10

Figure 4. Accuracy performance of the searched network with dif-

ferent group size K of the search space.

the performance of searched network will increase with K
growing larger. This is because group size K determines

the size of search space CK , and larger K induces larger

search space. In this way, the obtained network width will

be closer to the Oracle optimal width, with higher accuracy

achieved accordingly. In addition, the performance tends to

be stable when the group size lies in [14 : 22] but decreases

afterwards, which implies the searching space might be too

large for searching an optimal width.

5.4. Visualization and Interpretation of Results

For intuitively understanding, we visualize our searched

networks with various FLOPs in Figure 5. Moreover, for

clarity we show the retained ratio of layer widths compared

to that of the original models. Note that for MobileNetV2,

ResNet50, EfficientNet-B0 and ProxylessNAS with skip-

ping or depthwise layers, we merge these layers which are

required to have the same width. More visualization results

can refer to the supplementary materials.

From Figure 5, we can see that on the whole, with de-

creasing FLOPs, layer width nearer the input tends to be

reduced. However, the last layer is more likely to be re-

tained. This might result from that the last layer is more

sensitive to the classification performance, thus it is safely

kept when the FLOPs is reduced. In the sequel, we will

illustrate more elaborate observations w.r.t. each network,

and present some intuitions accordingly.

ResNet50 on ImageNet. We found that when the net-

work is pruned with a large FLOPs budget (e.g., 3G or 2G),

width of the first 1×1 convolutional layer (e.g., 2nd and

5th layer in Figure 5) of each block in ResNet50 is prefer-

entially reduced, which means 1×1 convolution may con-

tribute less to classification performance. However, when

FLOPs drops to a fairly small value (e.g., 570M), channel

number of 3×3 convolution (e.g., 3rd and 6th layer in Fig-

ure 5) will decrease dramatically while that of 1×1 con-

volution increases instead. This implies that the network

will be forced to use more 1×1 convolutions instead of 3×3

convolutions to extract information from feature maps. In

addition, this observation also indicates that evolutionary

algorithm is more effective than greedy search w.r.t. small

2181

Table 4. Performance of searched MobileNetV2 (150M FLOPs), ResNet50 (2G FLOPs), EfficientNet-B0 and ProxylessNAS on ImageNet

dataset with different supernet and searching methods.
evaluator searching models

BCNet complementary greedy evolutionary MobileNetV2 ResNet50 EfficientNet-B0 ProxylessNAS

supernet training search random prior Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

X 69.52% 88.91% 75.64% 92.90% 74.02% 91.58% 70.97% 89.43%

X X 69.87% 88.99% 76.30% 93.16% 74.39% 91.66% 71.24% 89.57%

X X X 69.91% 89.02% 76.42% 93.19% 74.51% 91.78% 71.33% 89.62%

X 69.64% 88.85% 76.12% 92.95% 74.35% 91.54% 71.13% 89.49%

X X 69.92% 88.91% 76.41% 93.12% 74.63% 91.93% 71.48% 89.69%

X X X 70.04% 89.02% 76.56% 93.21% 74.73% 91.85% 71.62% 89.73%

X X X 70.20% 89.10% 76.90% 93.30% 74.92% 92.06% 71.87% 89.96%

EfficientNet-B0 on ImageNet

5 10 15 20
0

0.5

1

1.5

385M

192M

MobileNetV2 on CIFAR-10

5 10 15 20 25
0

0.5

1

200M

44M

28M

MobileNetV2 on ImageNet

5 10 15 20 25
0

0.5

1

217M

105M

50M

ResNet50 on ImageNet

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
0

0.5

1

3G

1G

570M

Figure 5. Visualization of searched networks w.r.t. different FLOPs. The vertical axis means the ratio of retained channel number compared

to that of original networks at each layer.

FLOPs since evolutionary algorithm can always maintain

the original search space. Nevertheless, greedy algorithm

will greedily prune out more 1×1 convolutions at the begin-

ning, which can not be recovered for small FLOPs budget.

MobileNetV2 on ImageNet and CIFAR-10. Differ-

ent from ResNet50, widths of MobileNetV2 decrease more

evenly with the reduction of FLOPs. This may be due to

the limitation of depthwise convolutions, which requires the

output channel number of first 1×1 convolution and the

second 3×3 convolution to be the same in MobileNetV2

blocks. Compared from pruning on ImageNet, widths

closer to the input layer are more easily to be clipped

on CIFAR-10 dataset. This may be because the input of

CIFAR-10 is 32×32, which do not need as many widths

as ImageNet in the last layer. In addition, when FLOPs

is reduced to a fairly small value (e.g., 28M, 44M, and

50M for MobileNetV2), unlike pruning on ImageNet, the

width of the last layer of MobileNetV2 on CIFAR-10 de-

creases rapidly. The reason for this phenomenon may be

that MobileNetV2 on ImageNet is forced to classify 1000

categories, while it only needs to deal with 10-way classi-

fication on CIFAR-10. Then the width of the last layer on

ImageNet tends to be retained, but gets decreased rapidly

on CIFAR-10. More visualizations about MobileNetV2 are

analyzed in the supplementary material.

EfficientNet-B0 on ImageNet. EfficientNet-B0 shares

similar block structure with MobileNetV2. However, the

width of EfficientNet-B0 varies more evenly than Mo-

bileNetV2, which may be due to its width setting is more

better since it is determined by NAS. In detail, compared to

the original setting of EfficientNet-B0, for the searched 1×
FLOPs network, the channels of adjacent blocks show op-

posite fluctuations (e.g., channels of 1,3,5 blocks increase

while channels in 2,4,6 blocks decrease). This may mean

that the fluctuations of widths are conducive to the perfor-

mance of searched network structure.

6. Conclusion

In this paper, we introduce a new supernet called BC-

Net to address the training unfairness and corresponding

evaluation bias for searching optimal network width. In

our BCNet, each channel is fairly trained and responsi-

ble for the same amount of widths. Besides, we lever-

age a stochastic complementary strategy for the training

of BCNet, and propose a prior initial population sampling

method to boost the evolutionary search. Extensive experi-

ments have been implemented on benchmark ImageNet and

CIFAR-10 datasets to show the superiority of our proposed

method to other state-of-the-art channel pruning/network

width search methods.

Acknowledgments

This work is funded by the National Key Research and

Development Program of China (No. 2018AAA0100701)

and the NSFC 61876095. Chang Xu was supported in

part by the Australian Research Council under Projects

DE180101438 and DP210101859.

2182

References

[1] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. arXiv

preprint arXiv:1812.00332, 2018.

[2] Hesen Chen, Ming Lin, Xiuyu Sun, Qian Qi, Hao Li, and

Rong Jin. Muffnet: Multi-layer feature federation for mo-

bile deep learning. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision Workshops, pages 0–

0, 2019.

[3] Ting-Wu Chin, Ruizhou Ding, Cha Zhang, and Diana Mar-

culescu. Legr: Filter pruning via learned global ranking.

arXiv preprint arXiv:1904.12368, 2019.

[4] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT

Meyarivan. A fast and elitist multiobjective genetic algo-

rithm: Nsga-ii. IEEE transactions on evolutionary computa-

tion, 6(2):182–197, 2002.

[5] Steven Diamond and Stephen Boyd. Cvxpy: A python-

embedded modeling language for convex optimization. The

Journal of Machine Learning Research, 17(1):2909–2913,

2016.

[6] Xuanyi Dong and Yi Yang. Network pruning via trans-

formable architecture search. In Advances in Neural Infor-

mation Processing Systems, pages 759–770, 2019.

[7] Shangchen Du, Shan You, Xiaojie Li, Jianlong Wu, Fei

Wang, Chen Qian, and Changshui Zhang. Agree to dis-

agree: Adaptive ensemble knowledge distillation in gradient

space. Advances in Neural Information Processing Systems,

33, 2020.

[8] Jianyuan Guo, Kai Han, Yunhe Wang, Chao Zhang, Zhaohui

Yang, Han Wu, Xinghao Chen, and Chang Xu. Hit-detector:

Hierarchical trinity architecture search for object detection.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 11405–11414, 2020.

[9] Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie Yan.

Dmcp: Differentiable markov channel pruning for neural

networks. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 1539–

1547, 2020.

[10] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing

Xu, and Chang Xu. Ghostnet: More features from cheap

operations. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 1580–

1589, 2020.

[11] Kai Han, Yunhe Wang, Qiulin Zhang, Wei Zhang, Chun-

jing Xu, and Tong Zhang. Model rubik’s cube: Twisting

resolution, depth and width for tinynets. arXiv preprint

arXiv:2010.14819, 2020.

[12] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015.

[13] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi

Yang. Soft filter pruning for accelerating deep convolutional

neural networks. arXiv preprint arXiv:1808.06866, 2018.

[14] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and

Song Han. Amc: Automl for model compression and ac-

celeration on mobile devices. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 784–

800, 2018.

[15] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.

Filter pruning via geometric median for deep convolutional

neural networks acceleration. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4340–4349, 2019.

[16] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 1389–1397, 2017.

[17] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015.

[18] Yiming Hu, Siyang Sun, Jianquan Li, Jiagang Zhu, Xingang

Wang, and Qingyi Gu. Multi-loss-aware channel pruning of

deep networks. In 2019 IEEE International Conference on

Image Processing (ICIP), pages 889–893. IEEE, 2019.

[19] Weizhe Hua, Yuan Zhou, Christopher M De Sa, Zhiru Zhang,

and G Edward Suh. Channel gating neural networks. In

Advances in Neural Information Processing Systems, pages

1884–1894, 2019.

[20] Tao Huang, Shan You, Yibo Yang, Zhuozhuo Tu, Fei Wang,

Chen Qian, and Changshui Zhang. Explicitly learning topol-

ogy for differentiable neural architecture search. arXiv

preprint arXiv:2011.09300, 2020.

[21] Zehao Huang and Naiyan Wang. Data-driven sparse struc-

ture selection for deep neural networks. In Proceedings of

the European conference on computer vision (ECCV), pages

304–320, 2018.

[22] Shumin Kong, Tianyu Guo, Shan You, and Chang Xu.

Learning student networks with few data. In Proceedings of

the AAAI Conference on Artificial Intelligence, volume 34,

pages 4469–4476, 2020.

[23] Tsungyi Lin, Piotr Dollar, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. pages 936–944, 2017.

[24] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,

Shoumeng Yan, and Changshui Zhang. Learning efficient

convolutional networks through network slimming. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 2736–2744, 2017.

[25] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin

Yang, Kwang-Ting Cheng, and Jian Sun. Metapruning: Meta

learning for automatic neural network channel pruning. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 3296–3305, 2019.

[26] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and

Trevor Darrell. Rethinking the value of network pruning. In

7th International Conference on Learning Representations,

ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

[27] Jian-Hao Luo and Jianxin Wu. Autopruner: An end-to-end

trainable filter pruning method for efficient deep model in-

ference. arXiv preprint arXiv:1805.08941, 2018.

[28] Jaehyun Park and Stephen Boyd. General heuristics for non-

convex quadratically constrained quadratic programming.

arXiv preprint arXiv:1703.07870, 2017.

2183

[29] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: towards real-time object detection with region

proposal networks. 2015:91–99, 2015.

[30] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 4510–4520, 2018.

[31] Xiu Su, Shan You, Tao Huang, Fei Wang, Chen Qian, Chang-

shui Zhang, and Chang Xu. Locally free weight sharing

for network width search. arXiv preprint arXiv:2102.05258,

2021.

[32] Xiu Su, Shan You, Tao Huang, Hongyan Xu, Fei Wang,

Chen Qian, Changshui Zhang, and Chang Xu. Data agnos-

tic filter gating for efficient deep networks. arXiv preprint

arXiv:2010.15041, 2020.

[33] Vivienne Sze, Yu Hsin Chen, Tien Ju Yang, and Joel S. Emer.

Efficient processing of deep neural networks. Synthesis Lec-

tures on Computer Architecture, 15(2):1–341, 2020.

[34] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. pages

6105–6114, 2019.

[35] Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chun-

jing Xu, Chao Xu, and Chang Xu. Scop: Scientific con-

trol for reliable neural network pruning. arXiv preprint

arXiv:2010.10732, 2020.

[36] Yehui Tang, Shan You, Chang Xu, Jin Han, Chen Qian,

Boxin Shi, Chao Xu, and Changshui Zhang. Reborn filters:

Pruning convolutional neural networks with limited data. In

AAAI, pages 5972–5980, 2020.

[37] Yehui Tang, Shan You, Chang Xu, Boxin Shi, and Chao Xu.

Bringing giant neural networks down to earth with unlabeled

data. arXiv preprint arXiv:1907.06065, 2019.

[38] Yibo Yang, Hongyang Li, Shan You, Fei Wang, Chen Qian,

and Zhouchen Lin. Ista-nas: Efficient and consistent neu-

ral architecture search by sparse coding. arXiv preprint

arXiv:2010.06176, 2020.

[39] Yibo Yang, Shan You, Hongyang Li, Fei Wang, Chen Qian,

and Zhouchen Lin. Towards improving the consistency, ef-

ficiency, and flexibility of differentiable neural architecture

search. arXiv preprint arXiv:2101.11342, 2021.

[40] Shan You, Tao Huang, Mingmin Yang, Fei Wang, Chen

Qian, and Changshui Zhang. Greedynas: Towards fast

one-shot nas with greedy supernet. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 1999–2008, 2020.

[41] Shan You, Chang Xu, Chao Xu, and Dacheng Tao. Learning

from multiple teacher networks. In Proceedings of the 23rd

ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, pages 1285–1294, 2017.

[42] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping

Wang. Gate decorator: Global filter pruning method for

accelerating deep convolutional neural networks. In Ad-

vances in Neural Information Processing Systems, pages

2130–2141, 2019.

[43] Jiahui Yu and Thomas Huang. Autoslim: Towards one-

shot architecture search for channel numbers. arXiv preprint

arXiv:1903.11728, 8, 2019.

[44] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,

Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.

Discrimination-aware channel pruning for deep neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 875–886, 2018.

2184

