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Abstract

Video deblurring remains a challenging task due to the

complexity of spatially and temporally varying blur. Most of

the existing works depend on implicit or explicit alignment

for temporal information fusion, which either increases the

computational cost or results in suboptimal performance

due to misalignment. In this work, we investigate two

key factors responsible for deblurring quality: how to fuse

spatio-temporal information and from where to collect it.

We propose a factorized gated spatio-temporal attention

module to perform non-local operations across space and

time to fully utilize the available information without de-

pending on alignment. First, we perform spatial aggre-

gation followed by a temporal aggregation step. Next, we

adaptively distribute the global spatio-temporal informa-

tion to each pixel. It shows superior performance com-

pared to existing non-local fusion techniques while being

considerably more efficient. To complement the attention

module, we propose a reinforcement learning-based frame-

work for selecting keyframes from the neighborhood with

the most complementary and useful information. Moreover,

our adaptive approach can increase or decrease the frame

usage at inference time, depending on the user’s need. Ex-

tensive experiments on multiple datasets demonstrate the

superiority of our method.

1. Introduction

Video deblurring, as a primary problem in the vision and

graphics communities, strives to predict latent frames from

a blurred sequence. The camera shake and high-speed mo-

tion in dynamic scenes often generate unwanted blur and

produce blurry videos. Such videos not only deteriorate the

visual quality but also hinder some high-level vision tasks

such as tracking [13, 18], video stabilization [17], etc. As

more videos are taken using hand-held and onboard video

capturing devices, this problem has received great attention

in the last decade. The blur in videos is usually a conse-

quence of several interwoven factors like camera shake, ob-

ject motion, depth variations, etc.

Unlike single-image deblurring, video deblurring meth-

ods can utilize additional information that exists across

neighboring frames. Early methods relied on motion com-

pensation of the input frames, either explicitly [24, 16, 12]

or implicitly [37, 36], to aggregate information at a partic-

ular location from adjacent frames. [24, 12, 3] first com-

pute optical flow between a reference frame and neighbor-

ing frames and then use the aligned observations to deblur

the reference frame. [32] utilizes deformable convolution to

align feature maps using learnable offsets. Although these

alignment methods are intended for increasing the temporal

coherence, they have several disadvantages: 1) they intro-

duce extra parameters, calculations and training difficulty,

and 2) incorrect alignment may lead to undesired artifacts.

Implicit handling of motion using recurrent networks or 3D

convolution has its own drawbacks. 3D convolution [35]

is computationally heavy and introduces a large number of

parameters. For recurrent architectures, the assumption that

all previous frames will be automatically aligned and fused

in the hidden state remains a problem for frames with large

displacement. It is not very easy to extract only the rele-

vant information from a single combined state. Also, due to

recurrent connections it is not feasible to process multiple

frames in parallel.

In this work, we address two critical aspects of video

deblurring: how to gather spatio-temporal information ef-

fectively and from where to gather this information. The

key intuition is that a blurred region in the current frame

would probably have complementary information in a dis-

tant frame. Finding the spatio-temporal relation is critical

while fusing information as not all parts of the neighbor-

ing frames are equally informative for restoring the current

frame due to varying factors such as occlusions, motion,

etc. Fusion of incorrect information adversely affects re-

construction performance. We explore the need for non-

local operations for spatio-temporal fusion. A non-local

self-attention module aims at computing the correlations

between all possible pixels within and across frames, which

directly resonates with the current goal of spatio-temporal

fusion. By nature, such a block does not require any align-

ment steps. [30] introduced self-attention based transformer
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network for natural language processing, [33] showed a

similar non-local approach for classification and recogni-

tion. However, extending such approaches to generation

tasks is non-trivial. Despite its exceptional non-local pro-

cessing capabilities, even simpler spatial self-attention can

be hard to implement due to its large memory requirement

for the image domain. For spatio-temporal operation in

videos, it will become significantly more expensive. [33]

downsamples the input by a large scale factor, even to 7× 7
feature maps. But, for generation tasks, where every pixel

accuracy matters, such downsampling will be harmful. For

general video deblurring, the input size can be arbitrary and

quite large.

In this paper, we present a factorized spatio-temporal

self-attention mechanism that contains the essential prop-

erties of non-local processing in spatio-temporal domain

while being much more efficient. We formulate the entire

non-local operation as the composition of three lightweight

operators: spatial aggregation, temporal aggregation, and

pixelwise adaptive distribution. It requires significantly less

memory (almost 90% for 5 × 128 × 128 patch) compared

to existing non-local blocks for the same spatio-temporal

size while providing superior performance. Further, we in-

corporate feature-gating to put more focus on aggregating

sharp features from the neighborhood. We discuss the de-

tails in Section 3 and advantages over existing video deblur-

ring methods in Section 2.

Next, to complement the spatio-temporal attention mod-

ule, we delve deeper into a rather unexplored area of video

restoration - finding the temporal locations to fuse informa-

tion from. Earlier works use the immediate neighborhood

of the current frame (for example, ±2 frames) or sequential

frame processing for recurrent methods. These approaches

assume that the immediate vicinity will contain all the re-

quired information for restoring the current one. Applying

a fixed neighborhood to all frames is a sub-optimal design

choice. Each frame to be deblurred has a distinct appear-

ance, and different parts of the frame can have complemen-

tary information beyond the typical fixed temporal window.

As shown in the example in Fig. 1, the (t + 7)th frame is

the most useful one for deblurring the text whereas (t+6)th

frame contains sharper features of the person. Therefore,

we could focus on these frames while skipping the unneces-

sary ones. Albeit being intuitive, the simple solution of ex-

tending the neighborhood size in existing works will hardly

solve the problem. On the one hand, it will significantly in-

crease the amount of computations, and on the other, distant

frames will create more issues due to misalignment and fu-

sion of wrong information. Also, depending on the severity

of the blur in the current frame, we would ideally want to

look into a varying number of frames for efficient utilization

of the available computing resources.

In contrast to the commonly used one-size-fits-all

t t+6 t+7

Figure 1. Varying amount of blur across frames.

scheme, we would like to make these decisions individu-

ally per input frame. Based on this intuition, we present a

new perspective for video deblurring by deciding on-the-fly

which frames from the neighborhood to use on a per-frame

basis. Empirically, we set a maximum temporal window,

beyond which we observe that the scene content changes

significantly to be of any use. We train a lightweight rein-

forcement learning agent (referred to as the frame selection

network) to pick a certain number of keyframes within this

large window. We design a novel reward function that al-

lows the agent to look for more frames for severely blurred

frames and skip unnecessary processing for easier ones.

Further, to adapt to different applications, we design the

frame selection network to take input from the user at infer-

ence time and increase or decrease the number of neighbor-

ing frames usage adaptively while providing the best possi-

ble restoration performance.

To summarize, our contributions are

• We introduce a factorized spatio-temporal attention as

an effective non-local information fusion tool for video

deblurring task.

• To the best of our knowledge, our work is the first to

present an approach for finding the key-frames with

the most relevant information for video deblurring. It

significantly boosts the restoration performance when

coupled with the proposed attention module.

• Extensive experiments and analysis are presented on

several video deblurring benchmarks to show state-of-

the-art accuracy and interpretability achieved by our

architecture.

1.1. Language

2. Related Works

Early video or multiframe deblurring methods [4, 17]

usually assume that there exist sharp contents and inter-

polate them to help the restoration of latent frames. The

main success of these methods is due to the use of sharp

contents from adjacent frames. Recently, several end-to-

end CNN methods [24, 11, 26, 25] have been proposed for

image or video deblurring. [35] employ 3D convolutions

to help latent frame restoration. [10] treat optical flow as

a line-shaped approximation of blur kernels, which opti-

mize optical flow and blur kernels iteratively. [11] develop a
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spatial-temporal recurrent network with a dynamic tempo-

ral blending layer, where they concatenated feature of the

current frame and the previous frame and pass through a

recurrent network. [37] fed the previous deblurred frame

along with the current blurry frame through their network

in a progressive manner and modeled frame alignment and

non-uniform blur removal as element-wise filter adaptive

convolution processes. [32] develop pyramid, cascading,

and deformable convolution to achieve better alignment per-

formance. They have used a simpler temporal and spatial at-

tention strategies. First, they align the neighboring frames,

and then at each pixel location, they aggregate the informa-

tion using convolution. For spatial attention, they have used

simple mask multiplication. In comparison, we resort to

more effective non-local processing [1, 33] using the pro-

posed gated spatio-temporal attention module where each

pixel in the current frame can gather complementary infor-

mation from all other pixels in all the frames. [21] pro-

posed a cascaded deblurring approach while utilizing tem-

poral sharpness prior. Most of these works depend on either

explicit or implicit alignment process. None of the previous

deep learning-based works explored the usefulness of find-

ing the most complementary frames from the neighborhood

to the best of our knowledge. Our work focuses on these

two key factors: a) Which frames are most helpful b) How

to fuse relevant information from those frames effectively.

3. Method

An overview of our network is shown in Fig. 2. We use

an encoder-decoder architecture comprising of densely con-

nected modules as the backbone of our restoration network.

At the encoder, we use spatio-temporal self-attention blocks

to fuse features of the current frame and the selected neigh-

boring frames. The neighboring frames are stacked along

the batch dimension and passed through initial levels of the

encoder for feature extraction. Similarly, in decoder, we

use skip connection to fuse the neighboring frames features

with the decoder features of the current frame. The attention

module (Fig. 3) is used inside a residual block, which con-

sists of convolutional layers, Batch-Norm, and ReLU lay-

ers. We use a stack of few lightweight convolutional layers,

a fully connected layer followed by sigmoid as the frame-

selection network (FSN). For deblurring a particular frame,

we concatenate all the neighboring frames within a tem-

poral window and pass through the lightweight FSN. The

FSN decides which frames contain the most useful infor-

mation. Only those frames, along with the reference frame,

are then fed to the restoration network. Note that the FSN

is very lightweight in nature. It introduces only 0.2 M extra

parameters while significantly improving the performance.

More analysis is given in the experimental section, and the

layerwise description of the architecture is provided in the

supplementary document. Next, we describe each building

block of our proposed video deblurring network and explain

how they come together to solve the task at hand.

3.1. Gated Spatio­Temporal Attention:

Non-local means [1] is a classical filtering algorithm that

allows distant pixels to contribute to the filtered response at

a location based on patch appearance similarity. This non-

local filtering idea was later developed into block-matching

algorithm, which was used with neural networks for im-

age denoising [14]. A similar technique was shown to be

successful in the natural language processing domain [30].

The main building block of [30] is a self-attention module

that computes the response at a position in a sequence (e.g.,

a sentence) by attending to all positions and taking their

weighted average in an embedding space. [33] proposed a

generic non-local operation in deep neural networks to cal-

culate the relation between all possible positions. Given an

input feature map of size T × H × W (omitting the chan-

nel dimension for brevity), the goal of non-local block is to

compute the relation THW×THW . But, the tensor of size

THW×THW is huge for videos and to reduce the compu-

tational overhead, [33] typically used T = 4, H = W = 7.

Further, [33] resort to sub-sampling trick or reduced num-

ber of channels for some cases.

For a restoration task like video deblurring, large down-

sampling will deteriorate pixel-level accuracy. Some works

like [23] use non-local operations in small blocks inside an

image, which hinders its expressibility. Instead, we propose

a factorized spatio-temporal self-attention module, which

has two significant advantages: 1) it can gather global infor-

mation for each pixel without requiring any explicit down-

sampling, 2) owing to its design, this module does not need

any alignment operation to be performed. Our design is in-

tuitively motivated by examining the flow of information in

[9, 2, 15] etc, which deploy a squeeze-based aggregation

operation in their approach. We gather global information

from spatial and temporal domain by performing squeezing

operation, and then adaptively distribute it to each pixel of

the current frame. We construct three lightweight opera-

tions, including spatial squeezing, temporal squeezing, and

pixelwise adaptive distribution.

Spatial Aggregation: For simplicity, we assume batch and

channel dimensions to be 1 in the following sections, but

it can have any standard values. Given an input tensor

x ∈ R
T×1×HW , we calculate a set of spatial attention maps

as

As = softmaxHW (fs(x)) (1)

where As ∈ R
T×M×HW , fs is convolutional operation,

softmaxHW is softmax along HW and M is the number of

attention maps per frame. Note that we transfer each frame

(T ) to batch dimension; so the attention map calculations

are performed for each frame separately. Thus, the atten-

tion maps corresponding to each frame are automatically
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Figure 2. An overview of our method.

aligned with their input frames. Intuitively, it generates M
number of spatial attention maps for each frame. Next, we

elementwise multiply each frame with each of these M at-

tention maps. Let, Am
s ∈ R

T×HW denote the mth attention

map. Non-local spatial feature is aggregated for each of the

frames using the mth attention map as

Gm
s = SHW (Am

s ⊙ x) (2)

where Gm
s ∈ R

T , m ∈ 1, ...,M and SHW represents the

squeeze operation [9] along HW .

Temporal Aggregation: Now, we calculate a set of tempo-

ral attention maps as

At = softmaxT (ft(x
′)) (3)

where At ∈ R
N×T , ft is 1D convolutional operator, x′ ∈

R
1×T is the spatially pooled version of the input feature

x, softmaxT is softmax operation along T . Given the set

of temporal attention maps At and the spatially aggregated

features Gs, we apply the N temporal attention maps on

each of the Gm
s : m ∈ 1, ...,M and aggregate temporal

information as

Gst = GsA
Tr
t (4)

where Gst ∈ R
MN , Gs ∈ R

M×T , Tr represents transpose

operation. Intuitively, each of these MN elements contains

global spatio-temporal information, which has been aggre-

gated using the factorized M spatial attention maps and N
temporal attention maps resulting in a total of MN possible

combinations.

Pixelwise Adaptive Distribution: After aggregating global

information, we adaptively distribute it to each pixel. We

generate a pixelwise attention map Ap as

Ap = softmax1(fp(x
R)) (5)

where Ap ∈ R
MN×HW , fp is 2D convolutional operation,

xR ∈ R
1×HW is the feature map of the current frame. Each

pixel will adaptively selectly a particular combination of to-

tal MN spatio-temporal attention map using Ap. A similar

intuition can be found in [15], which finds a compact basis

set for iterative expectation-maximization approach. Now,

we distribute the global information to each pixel as

yR = GstAp (6)

where yR ∈ R
1×HW is the output feature map correspond-

ing to the current frame. For C input channels, yR will

expand to (C × HW ) tensor. We eliminated the need for

a huge THW × THW matrix through this factorized pro-

cessing, and all these tensor operations can be efficiently

implemented in modern deep learning libraries, making it

both fast and memory efficient.

Gating Operation: Owing to the nature of non-local op-

erations, the attention module will allow each pixel to look

for similar information present across the spatio-temporal

neighborhood. To encourage the gathering of sharper infor-

mation for aiding the restoration of blurry reference frame,

we use a blur-mask to explicitly give more weightage to

similar and sharp features while performing the squeezing

operation. A similar observation was mentioned recently

in [21], where the pixel intensities were compared among

neighboring frames to decide if the pixel is sharp. But, this

approach will fail if the nature of blur is similar in consec-

utive frames. Also, [21] resorts to simple concatenation of

the mask before feeding to convolutional layers. Instead,

we use a single convolutional layer followed by a sigmoid

to predict the blur mask Q as

Q = sigmoidfconv(x) (7)
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Value 1 represents a blurry pixel and 0 otherwise. Next, we

explicitly use this as a gating function to give more weigh-

tage to sharper features while performing spatial aggrega-

tion. Eq. 2 can be modified as

Gm
s = SHW (Am

s ⊙ x⊙ (1−Q)) (8)

We force Q to match the ground-truth mask. Akin to [22,

31], we took the difference between the blurry and sharp

frames and then applied thresholding to get the ground-truth

blur mask.

3.2. Frame­Selection Strategy:

We formulate key-frames selection as a decision mak-

ing problem which naturally fits into a reinforcement learn-

ing framework. We design two networks: a frame-selection

network (FSN) and an evaluation network (EN). FSN can

be viewed as a reinforcement learning agent that takes the

current frame, and its neighboring frames inside Tmax (the

maximum temporal window) as input and generates a set of

actions to decide which frames to watch. The agent’s goal is

to derive an effective frame selection strategy that achieves

maximum restoration accuracy while using as few frames

as possible. EN is used for training the FSN and not used

at inference time. The final restoration performance for the

current frame, along with the evaluation network’s output,

steers the frame selection network to pick only the frames

which contain the most complementary information.

We model this problem as a multi-agent reinforcement

learning problem. The number of agents is Tmax, where

each agent takes a decision for the corresponding frame.

Recently, [7] used a multi-agent framework, where they

have used a separate pixelwise reward for each agent. For

our scenario, we will have a single external reward, which is

the final restoration accuracy for the current frame. [5, 27]

also adopted final accuracy as their reward. Although this

global reward can be used to train our multi-agent frame-

work, it will be difficult to converge to the optimal policy.

Instead, following [6], we exploit EN to give different re-

wards to different agents depending on how useful their ac-

tion was. EN is trained to predict the expected reward from

the current frame selection made by FSN. The whole pro-

cess is described in detail next.

State Variable: The state variable s acts as the input to

FSN. It has two parts. First, we generate xcat, which rep-

resents concatenation of all the frames in the temporal win-

dow Tmax and pass it through a few convolutional layers.

Then, we apply pooling along the spatial and channel di-

mensions to get a T dimensional vector pcat. We have an-

other user-defined variable u, which is encoded in the state

to let the agent know the maximum number of neighbor-

ing frames it is expected to pick. The final state variable is

s = [pcat;u].
Action Space: The frame-Selection Network accepts the

state variable (s) and maps it into a policy that provides

the probability of different actions to be exercised for all

the agents. For our case, the action space is binary with

two actions: 1: Pick. 0: Skip. A few possible alternatives

can be to use a single agent that outputs probabilities for

all possible 2Tmax set of actions or to divide this problem

into Tmax independent sub-problems and train Tmax sep-

arate networks. Both of these options are computationally

sub-optimal. To handle this, we employ a shared network

among all the Tmax agents, and we can parallelize the com-

putation on a GPU, which makes it efficient.

Frame Selection Network (FSN): The FSN is made of a

fully connected layer which is parameterized by θfs, fol-

lowed by a sigmoid. It produces the policy πa(·|s; θfs),
which gives the probability distribution of the actions to

be taken i.e. which frames to pick. The actions are sam-

pled from πa during training. During the inference, we

use maximum aposteriori estimation to choose the actions

a = argmaxa∈0,1(πa(·|s; θfs)) ∈ R
Tmax . Note that, for

some situation if Tmax is variable, the fully connected layer

can be replaced with a 1D convolutional layer to handle in-

puts of arbitrary length.

Reward Function: The reward function reflects how good

are the actions taken by FSN in picking neighboring frames.

We introduce a reward function that not only helps increase

the restoration quality but encourages skipping redundant

frames. Our reward function can be described as

r = α1 ·
RS

P
+ α2 · FS (9)

where RS, FS, P are restoration score, frame score, and

penalty, respectively. The first term is the ratio of improve-

ment in PSNR value (RS) to the number of frames fused (P).

It encourages the agent to skip frames if it does not improve

the restoration. FS is the regularizing term that controls the

maximum number of frames that can be watched. FS is 1 if

the number of picked frames is less than the maximum (u)

and 0 otherwise. This term forces the agent to be aware of

7806



the information u present in the state variable and adjust its

behavior accordingly.

Evaluation Network (EN): We use the EN to assess the

actions taken by FSN. EN has a fully connected layer fg ,

which is parameterized by θg . It takes the state variable

s and the set of actions a as input and produces an out-

put fg([s,a]; θg) = V̂ which is known as the value func-

tion [28]. The job of EN is to approximate the value func-

tion, i.e., expected reward from the current state (Es,ar).

The actual reward, acquired from empirical rollouts, is then

compared to the value predicted by EN and used to update

frame-selection network parameters in the direction of per-

formance improvement.

Reinforcement learning Loss: Reinforcement loss also

has two parts. The evaluation network is trained with the

following regression loss

LG(θg) =
1

2
||V̂ − r||2 (10)

Now, we formulate a separate reward for each agent. One

naive solution is to run the restoration network repeatedly

after changing a particular action. For example, lets say the

ith agent has produced output 1 (pick the ith frame). We

change this action to 0 (remove the frame), perform deblur-

ring, and calculate the new reward. Now, the difference be-

tween the new reward and the old reward can be treated as

how important the ith frame was (consequently, how cor-

rect the original decision was). But doing this for all the

agents for each frame is practically infeasible due to an ex-

cessive amount of training computation. Instead, we exploit

the EN to generate separate rewards, learned directly from

the agents’ experiences instead of relying on extra simula-

tions.

The intuition is that EN can be used to reason about

the effect of changing an action. EN is trained to pre-

dict the expected reward given the state and the actions

taken, so we can change a particular action ai and feed it

to EN to get the expected reward without actually perform-

ing the operation. Then, we compute an advantage function

that compares the value function for a particular action ai
where i ∈ 1, 2, ..., Tmax, to a counterfactual baseline that

marginalises out ai while keeping the other agents’ actions

fixed

W i(s,a)) = V (s,a)−
∑

a′

i

(π(ai|s)V̂ (s, (a−i; a′i)) (11)

The policy gradient for the FSN can be expressed as

∇ = Eπ

[

∑

i

∇Θ log π(ai|s)W
i(s,a))

]

(12)

For a detailed analysis of the policy gradient technique we

encourage the reader to refer to [28].

Training Strategies: Generally, for training an RL agent,

we need a stable environment that can provide reasonable

rewards. Thus, we first pre-train our restoration network

without the RL agent with a fixed neighborhood of ±2.

Then, we introduce the RL agent and train it to pick a max-

imum of 5 frames from the large neighborhood (Tmax =
±12) adaptively. We compare this model with earlier works

for a fair comparison. Further, we tune the parameter u in

the state variable, which allows our network to take input

from the user at inference time and dynamically change the

number of frame usage for a video. More analysis is pro-

vided in Sec. 5.

4. Experimental Results

Implementation Details: We compare our model with

existing works on DVD [24] and GOPRO dataset [19] under

the standard training and testing settings of previous state-

of-the-art methods [21, 20]. The size of training patch is

256× 256 with minibatch size of 8. We use the ADAM op-

timizer learning rate of 1e−4, which decreases to half after

every 200 epochs. We implement our algorithm based on

the PyTorch on an Ubuntu 16 system, Intel Xeon E5 CPU,

and an NVIDIA Titan Xp GPU.

Quantitative Comparisons: To evaluate the perfor-

mance of the proposed algorithm, we compare it against

the following state-of-the-art algorithms: Tao et al. [29], Su

et al. [24], Wieschollek et al. [34], Kim et al. [11], Nah

et al. [20], EDVR [32], STFAN [37] and TSP [21]. Ta-

bles 1 and 2 show the quantitative results, where the pro-

posed algorithm performs favorably against the state-of-the-

art methods in terms of PSNR and SSIM.

Quantitative Comparisons: Figs. 4 and 5 show some de-

blurred results from the testset of [24] and [19], respec-

tively. We observe that the results of prior works suffer from

incomplete deblurring or artifacts. In contrast, our network

is able to restore scene details more faithfully, which are

noticeable in the regions containing text, edges, etc.

On both the datasets, the proposed method achieves con-

sistently better PSNR, SSIM, and visual results.

Real Video: We further evaluate our algorithm on the real

video deblurring dataset by [4]. As shown in Fig. 6, our al-

gorithm generates much clearer frames with better-detailed

structures. For example, the text ’friendship’ on the two

books are much clearer.

5. Network Analysis

We perform the following experiments, as reported in

Table 3 on GOPRO dataset. Net1: Backbone encoder-

decoder architecture. Net2: Net1 + proposed spatio-

temporal attention without gating. Net3: Net1 + proposed

gated spatio-temporal attention. Net4: Net3 + proposed

frame selection network (FSN). Note that, for a fair com-
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Table 1. Quantitative evaluations on the DVD dataset [24] in terms of PSNR and SSIM. ∗ denotes the reported results from [21].

Methods Kim and Lee [10] Gong et al. [8] Tao et al. [29] Su et al. [24] Kim et al. [11] EDVR [32]∗ STFAN [37] TSP [21]∗ Ours

PSNRs 26.94 28.27 29.98 30.01 29.95 28.51 31.15 32.13 32.53

SSIMs 0.8158 0.8463 0.8842 0.8877 0.8692 0.8637 0.9049 0.9268 0.9468

Table 2. Quantitative evaluations on the GOPRO dataset [19] in terms of PSNR and SSIM. ∗ denotes the reported results from [20, 21].

Methods Tao et al. [29] Su et al. [24] Wieschollek et al. [34]∗ Kim et al. [11]∗ Nah et al. [20]∗ EDVR [32]∗ STFAN [37]∗ TSP [21] Ours

PSNRs 30.29 27.31 25.19 26.82 29.97 26.83 28.59 31.67 32.10

SSIMs 0.9014 0.8255 0.7794 0.8245 0.8947 0.8426 0.8608 0.9279 0.96

(a) Blurred frame (b) GT Frame (c) Tao et al. (d) Su et al. (e) EDVR (f) STFAN (g) TSP (h) Ours

Figure 4. Deblurred results on DVD dataset [24].

(a) Blurred frame (b) GT Frame (c) Tao et al. (d) Su et al. (e) EDVR (f) STFAN (g) TSP (h) Ours

Figure 5. Deblurred results on GOPRO dataset [19].

(a) Blurred frame (b) Kim and Lee (c) STFAN (d) EDVR (e) TSP (f) Ours

Figure 6. Deblurred results on a real video from [4].

Table 3. Network Analysis on GOPRO dataset. STA, GSTA, ±2,

FSN, NLNA represents spatio-temporal attention, gated spatio-

temporal attention, fixed neighborhood of ±2, using RL based

FSN to pick frames, non-local attention of [33], respectively.

STA GSTA ± 2 FSN NLN A PSNR

Net1 X 30.70

Net2 X X 31.40

Net3 X X 31.61

Net4 X X 32.10

Net5 X X 31.17

parison with our final model Net4, we have added the same

number of parameters in the baseline to compensate for the

few layers of FSN. Further, to verify the effectiveness of the

proposed attention module for video deblurring, we replace

our attention block with the one used in NLN [33] in Net5.

Net2 and Net3 achieve significant improvement over Net1

even when fixed neighboring frames are fused (±2).

It shows the efficacy of the proposed non-local spatio-

temporal attention module for video deblurring. We visual-

Table 4. Variation of #Frames at Inference. Rand() denotes pick-

ing random frames, FSN(#) denotes picking frames using FSN

where it is expected to pick a maximum of ‘#’ frames.

± 2 Rand(5) FSN(3) FSN(5) FSN(7)

PSNR 31.61 31.65 31.87 32.10 32.19

ize the pairwise self-attention map for Net3 in Fig. 7 for an

intuitive understanding of the attention module. As we can

see, for different blurry regions, the network is able to look

for similar but sharper information in selected neighboring

frames, which justifies the effectiveness of the non-local at-

tention module coupled with the frame-selection network

for the video deblurring task. For instance, for the image

in the first row, we can observe the blurred region with

the cyclist is gathering sharper information from (t − 7)th

frame. On the other hand, the blurry tree region is gather-

ing sharper information from all possible spatial locations

in (t+8)th frame. Note that the proposed attention module

is able to successfully search for relevant information with-
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Reference Frame (t+8)th Frame(t-7)th FrameAtt. Map for (t-7)th frame Att. Map for (t+8)th frame

Reference Frame (t+6)th Frame(t-6)th FrameAtt. Map for (t-6)th frame Att. Map for (t+6)th frame

Reference Frame (t+3)th Frame(t-4)th FrameAtt. Map for (t-4)th frame Att. Map for (t+3)th frame

Figure 7. Visualization of selected neighboring frames and corresponding attention map.

Blurry frame Blur Mask (Q) Blurry frame Blur Mask (Q)

Figure 8. Blur Mask Visualization.

Table 5. Memory Requirement (in GB) of a single attention mod-

ules for batch size 1 and varying patch size. OOM denotes out-of-

memory on a single TitanX GPU.

Patch 16 32 64 128 256

Ours 0.82 0.88 0.94 1.3 1.9

[33] 0.89 1.2 4.1 OOM OOM

out the need of any alignment process. These relationship

maps are visualized without the guidance of the blur mask

based gating function to get a better intuition into the affin-

ity finding ability of the spatio-temporal attention module.

Further, we visualize the ability of the blur mask detector

module in Fig. 8 for a few frames. We can observe that for

a blurry frame (Fig. 8: left) it is able to detect the blurry re-

gions whereas for a relatively sharp frame (Fig. 8: right) it is

successfully identifying the absence of severe blur. The use

of blur-mask based gating operation ensures giving more

weightage to the regions with relevant information as well

as less degradation.

For Net5, we replace the attention module with NLN block

from [33]. As shown in Table 5, it requires huge down-

sampling to implement even a single block, and as a result,

losses most of the finer pixel details. Thus, the inclusion of

NLN block results in small improvement.

Analysis on the number of selected frames: Simply

stacking more neighboring frames in most of the existing

works can improve the performance marginally as misalign-

ment between distant frames will be counter productive. In

comparison, for our non-local information fusion technique

that does not depend on the alignment between frames, we

can effectively control the performance or the speed of the

network by varying the number of neighboring frames. But,

training the network with a fixed number of frames and sim-

ply changing it at inference time is suboptimal as the net-

work will not be suited to more/less neighboring frames.

Instead, after training the Net4 with a maximum of 5 neigh-

boring frames for a fair comparison with previous SOTA

methods, we further fine-tune it by varying the user-defined

variable u (which denotes the maximum number of neigh-

boring frames that the user wants to use) and adjusting the

reward (Eq. 9) accordingly. With this training strategy,

we can vary the network behavior dynamically at inference

time. In Table 4, we report the variation of PSNR for a vary-

ing number of frames. Also, we have observed that more

than 50% of the picked frames are in the temporal range of

±(5 − 10). This denotes that limiting the neighborhood to

a fixed ±1/± 2 is indeed suboptimal.

6. Conclusion

We have proposed an adaptive approach for video de-

blurring. We select the frames with the most complemen-

tary information from a large neighborhood and then fuse

it using a gated spatio-temporal attention module. The

proposed model performs favorably against state-of-the-art

methods while being efficient. Our approach also allows the

user to tune the behavior of the model at inference time to

focus on either performance or speed. Such a system can

be extended to existing video deblurring methods or other

video-processing tasks and will be explored in future.
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