
AutoFlow: Learning a Better Training Set for Optical Flow

Deqing Sun, Daniel Vlasic, Charles Herrmann, Varun Jampani, Michael Krainin, Huiwen Chang,

Ramin Zabih, William T. Freeman, and Ce Liu

Google Research

Model (𝜃) Target data

Model (𝜃) Target data

Typical pipelineStatic FlyingChairs

AutoFlow (𝜆)
AutoFlow pipeline

Figure 1: Left: Pipelines for optical flow. A typical pipeline pre-trains models on static datasets, e.g., FlyingChairs, and

then evaluates the performance on a target dataset, e.g., Sintel. AutoFlow learns pre-training data which is optimized on

a target dataset. Right: Accuracy w.r.t. number of pre-training examples on Sintel.final. Four AutoFlow pre-training

examples with augmentation achieve lower errors than 22,872 FlyingChairs pre-training examples with augmentation. The

gap between PWC-Net and RAFT becomes small when pre-trained on enough AutoFlow examples.

Abstract

Synthetic datasets play a critical role in pre-training

CNN models for optical flow, but they are painstaking to

generate and hard to adapt to new applications. To au-

tomate the process, we present AutoFlow, a simple and

effective method to render training data for optical flow

that optimizes the performance of a model on a target

dataset. AutoFlow takes a layered approach to render syn-

thetic data, where the motion, shape, and appearance of

each layer are controlled by learnable hyperparameters.

Experimental results show that AutoFlow achieves state-of-

the-art accuracy in pre-training both PWC-Net and RAFT.

Our code and data are available at autoflow-google.

github.io.

1. Introduction

Datasets have been a driving force for the develop-

ment of AI algorithms. Convolutional neural networks

(CNNs) [26] were proposed in the 1990’s but were not

widely adopted for vision tasks until the early 2010’s, with

the advent of AlexNet [24]. One key ingredient for deep

CNN models was the large amount of manually labeled im-

ages, e.g., from ImageNet [41]. The performance gain by

AlexNet over shallow models stimulated a paradigm shift in

high-level vision tasks. Since then, new models have been

invented in rapid succession, even achieving “superhuman”

performance on image classification tasks [14, 15].

Manual labeling, however, cannot provide reliable

ground truth for a variety of low-level vision tasks like op-

tical flow and stereo. Since these labels are either difficult

or impossible to obtain, synthetic data play a key role in en-

abling deep models to perform well on such tasks. For ex-

ample, all top-performing CNN models for optical flow are

pre-trained on two large synthetic datasets, FlyingChairs [8]

and FlyingThings3D [32], before being fine-tuned on lim-

ited target datasets, e.g., Sintel [3] and KITTI [12].

However, the success of FlyingChairs raises some in-

teresting questions. For example, how realistic should

the rendering be? Several new datasets have been devel-

oped to be more realistic than FlyingChairs, such as vir-

tual KITTI [11], VIPER [38], and REFRESH [30], but none

of them have proven more effective than FlyingChairs and

FlyingThings3D at pre-training models. In fact, a compre-

hensive study has revealed that “realism is overrated” [32].

There are some hypotheses for why FlyingChairs works,

e.g., that it has been designed to match the motion statis-

tics of Sintel, or that it has many thin structures and fine

motion details. However, it still remains unclear what set of

10093

principles makes an effective optical flow dataset.

To address these questions, we argue that we should

make explicit the objective function for rendering training

data. We formulate the generation of training data as a

joint optimization problem, which couples rendering the

data with training the model. This generation process de-

pends on a set of hyperparameters being optimized. The

hyperparameters are evaluated by the performance of the

trained model on a target dataset, as shown in Fig. 1.

To understand what matters, we ask: how simple can the

rendering be? Thus, we start from an even simpler ren-

dering pipeline than FlyingChairs, a 2D layered approach

that requires neither manual labeling nor 3D models. The

motion and shape of each layer are randomly generated ac-

cording to hyperparameters, as shown in Fig. 2. We can

then learn the rendering hyperparameters to optimize the

performance of a model on a target dataset.

This simple rendering pipeline is surprisingly effective

at generating training datasets for optical flow. Trained on

its rendered data from scratch, both the recent RAFT model

and the widely-used PWC-Net model obtain consistent im-

provements in accuracy on Sintel and KITTI over the same

models trained on FlyingChairs (Fig. 1 and Table 1). Fur-

ther, using 4 AutoFlow examples with augmentation results

in lower errors on Sintel.final for RAFT than using 22,872

FlyingChairs examples with augmentation. More interest-

ingly, the gap between PWC-Net and RAFT becomes small

when trained on enough AutoFlow examples.

An analysis of the rendered data also suggests some in-

teresting properties. For example, the motion statistics of

the AutoFlow dataset and its augmented version do not re-

semble those of Sintel (Fig. 8) and underrepresent small

motions. Though at first glance this distribution may seem

abnormal, there may be a simple, intuitive explanation: tiny

motion matters little in the overall error.

To summarize, our contributions are the following.

• We have introduced, to our knowledge, the first learn-

ing approach to render training data for optical flow.

• AutoFlow compares favorably against FlyingChairs

and FlyingThings3D in pre-training RAFT.

• AutoFlow also leads to a significant performance gain

for PWC-Net, even competitive against RAFT.

• We present a detailed analysis of what features are im-

portant to dataset generation for optical flow.

2. Related Work

Datasets for high-level computer vision Manually la-

beled datasets, such as ImageNet [41], PASCAL [10], MS-

COCO [27], and CityScapes [5], have been widely adopted

for high-level vision tasks. However, manual labeling is

Model Dataset Sintel.clean Sintel.final KITTI

PWC-Net

FlyingChairs 3.27 4.42 11.43

Chairs→Things 2.39 3.90 9.81

AutoFlow 2.17 2.91 5.76

RAFT

FlyingChairs 2.27 3.76 7.63

Chairs→Things 1.68 2.80 5.92

AutoFlow 1.95 2.57 4.23

Table 1: AEPE results for pre-training. AutoFlow can

better train RAFT and PWC-Net from scratch than the

widely-used FlyingChairs dataset and perform competi-

tively against the FlyingChairs!FlyingThings3D schedule.

hard to scale, and quite a few synthetic datasets have been

developed [39, 9, 11, 22]. Meta-Sim [22] learns to mini-

mize the distribution gap between the rendered and target

datasets and can also optimize task performance. However,

Meta-Sim can model only limited scenes because it relies

on obtaining valid scene structures from a grammar.

RenderGAN [42] learns to augment the dataset for hand-

writing classification. Differentiable rendering [29, 37] en-

ables gradients to be passed to rendering parameters, which,

however, do not directly relate to the scene distribution hy-

perparameters. Yang and Deng [50] proposed a “hybrid gra-

dient” approach to make use of analytical gradients when-

ever available. These methods focus on the generation of a

single image and cannot directly apply to the generation of

optical flow.

Datasets for optical flow Similar to other vision tasks,

datasets have been the driving force behind the development

of optical flow. However, unlike high-level vision tasks,

it is only possible to obtain ground truth under controlled

lab environments [1] or rigid scenes/objects [12, 23]. Early

work relied on synthetic datasets for evaluation, such as the

well-known “Yosemite” sequence [2]. MPI-Sintel [3], one

of the leading benchmark datasets for optical flow, was ren-

dered using the Blender engine. Roth and Black [40] used

real depth data to render synthetic data, which is limited

to static scenes. KITTI [12] was created using LIDAR for

static scenes and later extended to rigidly moving cars [33]

for autonomous driving applications.

Dosovitskiy et al. [8] created a synthetic dataset, Fly-

ingChairs. Mayer et al. [32] further introduced a large

dataset for optical flow and related tasks, FlyingThings3D.

Ilg et al. [18] found that sequentially training on Fly-

ingChairs and then on FlyingThings3D obtains the best

results; this has since become standard practice in the

field. Efforts to improve these two datasets include the

autonomous driving scenario [11], more realistic render-

ing [38], realistic backgrounds from SLAM [30], and hu-

man datasets [36]. However, none have proven more

effective than FlyingChairs and FlyingThings3D for pre-

training.

10094

Mayer et al. [31] performed a comprehensive study of

synthetic datasets for optical flow and disparity estima-

tion. They developed each synthetic dataset heuristically,

with no regard for target dataset performance. Our ren-

dering pipeline is largely inspired by their 2D rendering

techniques. But instead of designing each dataset by hand,

we learn these parameters via jointly solving rendering and

training to optimize the performance on a target dataset.

CNN models for optical flow The seminal FlowNet pa-

per [8] pioneered the CNN-based approach for optical

flow. Its follow-up, FlowNet2 [18], significantly improved

FlowNet’s performance by stacking several sub-networks

into one large model. Spy-Net [35], PWC-Net [45],

and LiteFlowNet [16] were designed using several well-

established principles for optical flow. For the first time,

PWC-Net obtained more accurate results on the Sintel and

KITTI benchmarks than traditional approaches. Quite a

few new network architectures were proposed based on the

PWC-Net framework [17, 51, 20, 52]. Recently, Teed and

Deng [48] introduced the RAFT architecture, which used

a recurrent architecture to obtain a significant performance

gain over its predecessors on Sintel and KITTI.

The advances in these network architectures have signif-

icantly improved their performance on benchmark datasets.

However, all these models follow nearly the same train-

ing procedures, i.e., pre-training on FlyingChairs and Fly-

ingThings3D and then fine-tuning on limited training data

on the target domain. In this paper, we focus on dataset

generation and show that it is possible to achieve accu-

racy similar to or better than that of FlyingChairs and Fly-

ingThings3D in pre-training by learning to render training

data. We learn the rendering hyperparameters for the recent

RAFT model and find that they also apply to PWC-Net.

Evaluating CNN models for optical flow The improve-

ment in accuracy comes from innovations on both the

model architecture and the training procedures. Previous

work [46] shows that changes in training procedure result

in significant performance boosts for FlowNetC and PWC-

Net. Here we find that changing the datasets and incorporat-

ing recent practices in training significantly improves PWC-

Net and narrows down its performance gap from RAFT.

Self-supervised and semi-supervised learning of opti-

cal flow Significant progress has been made on self-

supervised optical flow [21, 28]. However, state-of-the-art,

self-supervised methods still lag behind supervised ones,

e.g., models pre-trained on FlyingChairs and FlyingTh-

ings [48, 51] are more accurate on Sintel than models [21,

28] trained on Sintel image pairs using self-supervised loss.

Learning to learn A recent trend in neural network re-

search is learning to learn, which aims at automating the

manual process of network design or hyperparameter selec-

tion. Existing methods mainly focus on learning hyperpa-

rameters for the architecture [54], loss function, optimiza-

tion, and augmentation [4, 6]. In contrast, we focus on

learning to render synthetic training data for optical flow.

3. Generating training data

We take a layered approach [49, 44] to rendering im-

age pairs and their optical flow, as shown in Fig. 2. For

the first frame, we randomly sample K images I
k
1

from an

image dataset and order them by depth, with the first layer

being the background. Next, we sample an alpha mask M
k
1

(section 3.1) and an optical flow field W
k (section 3.2) for

each layer according to the rendering hyperparameters (sec-

tion 3.5). The optical flow field is used to warp the image

and the mask into the second frame:

I
k

2
= f(Ik

1
,Wk) 1 k K, (1)

M
k

2
= f(Mk

1
,Wk) 1 k K,

where f represents the forward warping function according

to the flow field.

We composite the images and the flow with back-to-front

alpha blending, starting with the background layer:

I
k = M

k
� I

k +
�

1�M
k
�

� I
k−1, (2)

W
k = M̄

k
�W

k +
�

1� M̄
k
�

�W
k−1,

where M̄ is the alpha mask binarized around its middle

value, and � denotes the element-wise product and broad-

casts to the channel dimension. We slightly abuse the nota-

tion, using the same symbols for images and masks before

and after composition, as well as dropping subscripts.

Finally, we apply certain visual effects (section 3.3) to

the images to cover some natural variations in videos. Fig-

ure 6 shows examples of complete images and their flows.

3.1. Object Masks

The background layer has a fully opaque mask. For each

foreground layer, we test two ways of generating the mask:

random polygons and manual segmentation.

Random polygons For each foreground layer, we gener-

ate a random polygon [31] to serve as its alpha mask. Each

polygon has a random number of sides, with vertices ran-

domly sampled in angle and radius around a center. Each

polygon can also have a hole, which itself is a smaller ran-

dom polygon. Further, we can control polygon smoothness

through subdivision. Finally, the mask can be blurred with

a Gaussian filter in order to feather its boundary (this is ap-

plied to both polygon and manual object masks). Examples

of random polygon masks are shown in Fig. 3.

10095

Random

flow

Random

image

Forward

warped

image

Background Foreground 1 Foreground 2 Composited

w/ visual effects

Figure 2: Rendering pipeline for AutoFlow uses a layered

approach. Each layer is created from a random image and

mask (top row), its flow field is randomly generated (mid-

dle row), and the layer is accordingly warped (bottom row).

All layers are alpha-composited back-to-front and undergo

visual effects such as motion blur and fog (right column).

Figure 3: Foreground object masks are random polygons

that can have holes, smoothed edges, and blurred bound-

aries. Mask values have been inverted for visualization.

Manual segmentation To make foreground objects more

semantically congruent, we use the images and manual la-

bels from OpenImages [25]. The location and size of each

foreground object within the image are randomly sampled.

3.2. Motion Model

The motion of each layer is a combination of rigid trans-

formation (scale, rotation, translation), perspective distor-

tion, and a bilinear grid warp. A bilinear grid warp of size

n is a set of flow vectors defined on the vertices of a n ⇥ n

grid, then bilinearly interpolated in the interior of the grid

(the grid being uniformly distributed over the image) [47].

This allows for more complex forward flow with a fast an-

alytic solution for forward image warping (we invert the

bilinear interpolating function within each grid cell, which

boils down to solving a quadratic equation). In fact, all of

our base motions can be modeled with a bilinear grid warp:

rigid transform can be expressed by rigidly moving the cor-

ners of a grid, and perspective distortion by independently

moving the corners of a 2⇥ 2 grid.

For the foreground layers, we employ all modalities of

motion (rigid + grid), while for the background we only ap-

ply moderate perspective distortion. Figure 4 demonstrates

our motion modalities on a sample foreground object.

Figure 4: Base motions a foreground object (left) can un-

dergo (left-to-right): rigid transformation, perspective dis-

tortion, and bilinear grid warp.

Figure 5: Visual effects improve performance on realistic

datasets. Top row shows an object motion-blurred due to

diagonal movement using Gaussian (middle) or box (right)

filters. Bottom row shows a random semi-transparent fog

overlaid on top of an image.

3.3. Visual Effects

To generalize better to more realistic video data, we sim-

ulate common visual effects including motion blur and fog

(Fig. 5). These effects only modify the image data and have

no influence over the ground truth flow.

Motion blur We approximate the motion blur of each

layer by applying a filter to both the image and the mask.

Standard deviations of the filter are computed by taking a

proportion of the average absolute flow in each dimension

over all the pixels within the mask. We apply the same mo-

tion blur filter to both the first and second images.

Fog To simulate fog, we generate a white image with a

random semi-transparent alpha mask and overlay it on top

of the composited initial and final images. The fog does not

move between the images, nor does it affect the ground truth

flow. To compute the alpha mask, we generate several ran-

dom normal images of various resolutions, with their stan-

dard deviations being inversely proportional to their reso-

lutions. We then bicubically resample each to the desired

fog resolution and sum them up. Finally, we adjust the re-

sulting image so that its mean and standard deviation match

controllable hyperparameters.

10096

3.4. Data Augmentation

To increase the diversity of the training data, we apply

data augmentation [8, 45] to the rendered data. Inspired by

RandAugment [7], we randomly select several transforma-

tions among rotation, scale, squeeze, translation, and addi-

tive noise at each iteration. The number of transformations

and their strength levels are hyperparameters to learn.

3.5. Hyperparameters

During training, we tune a number of hyperparameters

that dictate data generation and augmentation, including the

shape, size, and position of masks, the complexity and mag-

nitude of motion, and the visual effects. Respective values

are uniformly sampled from the specified ranges, and the

ranges are hyperparameters to learn. Please refer to the sup-

plementary material for the detailed list of hyperparameters.

4. Learning to Render Training Data

Given a target dataset for optical flow, e.g., Sintel or

KITTI, we want to learn the hyperparameters to render

training data so that a CNN model trained on the rendered

data has optimal performance on the target dataset. Every

set of hyperparameters corresponds to a rendered training

dataset. In this section, we will first present the learning

objective and then the search algorithm.

4.1. Problem Formulation

Given the rendering pipeline for generating training data

and the range for the rendering hyperparameters Λ, our goal

is to search for the set of optimal hyperparameters λ that

optimizes a metric Ω on a model θ,

λ∗ = argmin
λ∈Λ

Ω (θ(λ)) . (3)

The model θ minimizes a loss function L on the rendered

datasets according to the set of hyperparameters λ

θ(λ) = argmin
θ

L
�

W(λ),φθ(I1
�

λ), I2(λ)
��

, (4)

where the model θ includes the parameters of a network φθ

that maps two input images to their optical flow. Be default,

we use the sequence loss function proposed by RAFT as the

loss function and the average end-point error (AEPE) as the

metric on the target datasets unless stated otherwise.

4.2. Hyperparameter Search Algorithm

To learn the hyperparameters for rendering the dataset,

we develop a hybrid algorithm based on the population-

based training (PBT) algorithm [19, 4] and the Covari-

ance Matrix Adaptation Evolution Strategy (CMA-ES) al-

gorithm [13]. Specifically, we classify the hyperparameters

into subgroups and use the CMA-ES algorithm to search

the selected subgroups of hyperparameters to optimize the

learning metric. CMA-ES maintains a sampling distribution

over the search space. It samples a few points, evaluates

them, and updates the distribution based on the ranking of

the points w.r.t. to the learning metric. The sampling distri-

bution is a multivariate Gaussian whose covariance matrix

is adapted over time. Our algorithm takes N iterations, with

each iteration training M in parallel. The time complexity

grows linearly w.r.t. the number of search iterations and the

number of training steps per search.

5. Experimental Results

Implementation details We randomly sample images

from different sequences of the Davis dataset [34] as ap-

pearances for each layer. Our baseline is a TensorFlow

implementation of RAFT [43], the performance of which

is similar to that of the official PyTorch implementation.

Throughout this section, we refer to our method or the data

it generates as AutoFlow. By default, we use the average

end-point error (AEPE) on the final pass of Sintel training

dataset (Sintel.final) as the learning metric because it is cur-

rently the most challenging dataset.

Empirically, it takes about 7 days to finish 8 searching it-

erations using 48 NVIDIA P100 GPUs, with each iteration

training 8 models in parallel. Hyperparameters about 5%

less accurate are often found within 2 days. Alternatively,

the time can also be reduced to less than 2 days by using

fewer training steps (40k) and then reusing the searched hy-

perparameters for the full 200k steps. That has roughly a

3% drop in accuracy on Sintel.

5.1. AutoFlow Versus the State of the Art

Pre-training results We pre-trained RAFT and PWC-Net

from scratch using different datasets. The hyperparameters

for AutoFlow have been learned for RAFT. As summarized

in Table 1, models trained from scratch using AutoFlow are

comparable to or more accurate than models trained on Fly-

ingChairs or FlyingChairs!FlyingThings3D. As shown in

Fig. 7, RAFT trained on AutoFlow can successfully recover

blurry objects under large motion in the final pass of Sin-

tel. Table 2 summarizes the errors for regions with different

motion magnitude. RAFT trained on AutoFlow performs

better than RAFT trained on FlyingChairs, especially in re-

gions with large motion. Using end-point error (epe) as the

learning metric results in better accuracy in regions with

large motion than using angular error (ae).

Generalization across datasets We further compared

with the recent DSMNet [53] method that aims at narrow-

ing down domain gaps. DSMNet reported an F-all score of

11.2% in non-occlusion regions on the KITTI 2015 training

set for a modified PWC-Net trained on FlyingThings3D and

Sintel. The F-all scores by RAFT and PWC-Net trained on

10097

Figure 6: Samples of AutoFlow. Top: first images; bottom: visualized flow field.

GT range < 1 [1,10] (10,20] (20,30] > 30

AEPE

Chairs 0.43 0.89 3.13 5.63 19.61

AutoFlow-epe 0.35 0.65 1.87 3.36 15.08

AutoFlow-ae 0.31 0.63 1.86 3.24 16.00

AAE

Chairs 10.86 6.94 6.63 9.61 13.37

AutoFlow-epe 10.88 5.41 4.95 6.19 10.35

AutoFlow-ae 9.77 5.11 4.85 5.96 10.68

Table 2: Results in different motion ranges. RAFT

trained by AutoFlow tends to perform better for medium

to large motion than RAFT trained by FlyingChairs. Using

end-point error (epe) as the learning metric results in more

accurate large motion than using angular error (ae).

AutoFlow that has been optimized for Sintel.final are 8.7%

and 11.0%, respectively, suggesting that AutoFlow general-

izes well across datasets.

Improving PWC-Net We modified the pre-training pro-

cedure of PWC-Net [45] using the one-cycle learning rate

schedule and gradient clipping from RAFT [48], as sum-

marized in Table 3. Applying gradient clipping not only

improves accuracy but also makes training more stable: two

out of eight runs diverged without gradient clipping.

Learning rate Gradient clipping
Sintel

KITTI
clean final

Piecewise 7 2.64 3.44 7.26

Piecewise 3 2.40 3.11 6.26

One-cycle 3 2.17 2.91 5.76

Table 3: Improvements on pre-training PWC-Net. Both

one-cycle learning rate schedule and gradient clipping help.

Fine-tuning results We followed the TF-RAFT proce-

dure to fine-tune the model pre-trained by AutoFlow and

denoted the method as RAFT-A. We applied the same fine-

Method Dataset schedule S.clean S.final KITTI

FlowNet2 C→T→S 3.96 6.02 11.48%∗

PWC-Net C→T→S 3.86 5.13 9.60%∗

VCN C→T→SKHTC 2.81 4.40 6.30%∗

RAFT [48] C→T→SKHT/K 1.94 3.18 5.10%∗

TF-RAFT [43] C→T→SKHTV 1.84 3.32 5.56%

RAFT-A A→SKHTV 2.01 3.14 4.78%

Table 4: Results on public benchmarks (AEPE for Sintel

and Fl-all for KITTI). A, C, H, K, S, and T stand for Auto-

Flow, FlyingChairs, HD1K, KITTI, Sintel, and FlyingTh-

ings3D, respectively. ∗indicates where weights for KITTI

differ from those for Sintel.

tuned model to Sintel and KITTI, as summarized in Table 4.

RAFT-A is more accurate than TF-RAFT on the more chal-

lenging Sintel.final and KITTI benchmarks, demonstrating

the benefits of pre-training on AutoFlow.

5.2. Ablation Study

To further analyze AutoFlow, we performed a series of

ablation studies designed to determine how different design

choices affect performance. Since it is computationally ex-

pensive to learn all the hyperparameters for each setup, we

fixed the learned hyperparameters unless explicitly speci-

fied. For each experiment, we ran 8 independent trials, and

Table 5 summarizes the most accurate one for each setup.

Motion blur and fog Removing the motion blur effect

leads to a significant drop in performance on the final pass

of Sintel and KITTI, despite the rough approximation used

for simulating the motion blur. Gaussian and box filters

have similar results. Removing the fog effect also results

in a moderate performance drop in the final pass of Sintel

and KITTI. Neither motion blur nor fog effects have a sig-

nificant effect on the clean pass of Sintel.

10098

Frame 29 of final Ambush 4 Ground truth AutoFlow FlyingChairs

Frame 000094 of KITTI training Ground truth AutoFlow FlyingChairs

Frame 000104 of KITTI training Ground truth AutoFlow FlyingChairs

Figure 7: Visual comparison. Row 1: RAFT trained on AutoFlow works better for frames with strong motion blur. Row 2:

RAFT trained on AutoFlow can capture the car structure. Row 3: low levels of light cause both methods to struggle.

Appearance We tested three different image sources for

the appearance image of each layer: Davis, OpenIm-

ages [25], and Sintel (c.f . Table 5). Neither OpenImages

nor Sintel achieves better results than Davis. By default,

we downsample Davis images to 1280⇥720 (720p) reso-

lution as appearance images for each layer. Downsampling

to 960⇥540 (540p) has similar results while 1920⇥1080
(1080p) has degraded performance, likely because the hy-

perparameters have been learned for the 720p resolution.

Foreground object masks We tested three versions of

masks for the foreground objects: random polygons with

sharp edges, random polygons with smooth edges (de-

fault), and instance segmentation from the OpenImage [25]

dataset. Polygons with smooth edges perform consistently

better than those with sharp edges. We also experimented

with instance segmentation from the OpenImage dataset

due to its diverse set of segmentation masks, but there we

only observed a small improvement on Sintel.clean.

Number of foreground objects The number of fore-

ground objects determines the complexity of a scene. Using

only a background layer, i.e., 0 foreground object, results

in large errors. Adding one foreground object significantly

improves the performance. Using three or four foreground

objects tends to work best, while more than four foreground

objects bring no further gain.

Motion model Removing the bilinear grid warping re-

sults in a performance degradation on both Sintel and

KITTI, suggesting that more complex and flexible motion

than parametric motion is critical.

Number of training steps We learned the hyperparame-

ters using 200k training steps for RAFT. With the same hy-

perparameters, running more iterations to train RAFT, such

as 800k, results in moderate gains on both Sintel and KITTI.

Target datasets AutoFlow directly optimizes the perfor-

mance on a target dataset. To test how well AutoFlow gen-

eralizes, we learned hyperparameters for Sintel.final and

KITTI separately and found that the generalization gap is

small. It is likely that the rendering pipeline and the small

number of hyperparameters act as a form of regularization,

which helps generalization.

Data augmentation RandAugment leads to moderate im-

provement over applying the same augmentation at every

training step, likely because RandAugment increases the di-

versity of training data. Turning off spatial augmentation

results in a moderate drop in accuracy on both KITTI and

Sintel. Turning off color augmentation results in severe per-

formance degradation on KITTI, likely because KITTI data

includes more lighting changes.

Motion statistics We compared the statistics of motion

magnitude for different datasets in Figure 8. The motion

statistics of AutoFlow differ from those of Sintel and Fly-

ingChairs. AutoFlow has little small motion, concentrates

mainly in the middle-range motion, and does not exhibit

an exponential falloff. We further analyzed the augmented

data, as it is used to train models. The augmented AutoFlow

also has little small motion and concentrates in the middle

to high-range motion, probably because tiny motion matters

little in the overall learning metric.

Number of pre-training examples With the hyperpa-

rameters learned, we can render different numbers of pre-

training examples, as shown in Fig. 1. The training of both

RAFT and PWC-Net converge using one pre-training ex-

ample with data augmentation, and more examples lead to

better results. Four AutoFlow examples result in lower er-

rors on Sintel.final for RAFT than 22,872 FlyingChairs ex-

amples. In this low-data regime, data augmentation plays

a key role. Without spatial augmentation, the AEPE by

10099

Experiment
Sintel

KITTI
clean final

Fog
On 2.08 2.75 4.66

Off 2.07 3.11 4.92

Motion blur

Box 2.08 2.75 4.66

Gaussian 2.17 2.75 4.71

Off 2.10 3.77 5.68

Appearance

Davis 2.08 2.75 4.66

OpenImages 2.20 2.85 4.83

Sintel-540p 2.17 2.88 4.75

Resolution

540p 2.06 2.88 4.87

720p 2.08 2.75 4.66

1080p 2.33 2.85 5.09

Object mask

Sharp 2.09 2.80 4.94

Smooth 2.08 2.75 4.66

Instance 1.99 2.78 4.85

0 5.32 5.74 9.02

1 2.38 3.07 5.22

Number of 2 2.17 2.93 4.99

foreground 3 2.11 2.76 4.64

objects 4 2.08 2.75 4.66

5 2.02 2.87 4.66

6 2.05 2.84 4.57

Grid warp
On 2.08 2.75 4.66

Off 2.30 2.92 5.26

Training steps

50k 2.42 3.27 5.81

200k 2.08 2.75 4.66

800k 1.95 2.57 4.23

Target dataset
Sintel.final 2.08 2.75 4.66

KITTI 2.09 2.82 4.33

Augmentation

All 2.22 2.87 4.87

RandAugment 2.08 2.75 4.66

No spatial 2.78 3.37 5.22

No color 2.24 2.92 14.06

Table 5: Ablation study. Baseline options are underlined.

RAFT trained on 4 AutoFlow examples drops from 3.57

to 7.66, more severe than the drop from 2.75 to 3.37 in Ta-

ble 5. Further, as shown in Fig. 9, although the statistics of

4 AutoFlow examples differ significantly from those of the

full AutoFlow, they are similar for augmented data.

Discussions While AutoFlow empirically works better

than FlyingChairs/FlyingThings3D, we should note that the

comparisons are not strictly fair because of differences in

implementations and hyperparameters. Although compar-

ing motion statistics reveals some interesting properties,

learning hyperparameters for a 3D rendering pipeline in the

same setup would help identify key design choices.

6. Conclusions

We have introduced AutoFlow, a simple and effective

method to learn pre-training data for optical flow. Auto-

Figure 8: Histogram of motion magnitude for different

datasets. The augmented AutoFlow concentrates more on

middle to large-range motion than Sintel, likely because the

small motion contributes little to the overall error.

Figure 9: Histogram of motion magnitude for AutoFlow.

While statistics differ between the 4-example AutoFlow and

full AutoFlow, they are close for the augmented data.

Flow uses 2D rendering but achieves results comparable

to or better than those obtained by FlyingChairs and Fly-

ingThings3D that have been generated using 3D models. In

particular, using as few as 4 AutoFlow examples with aug-

mentation results in more accurate results on Sintel.final for

RAFT than 22,872 FlyingChairs examples with augmenta-

tion. AutoFlow also significantly improves PWC-Net, even

on par with RAFT. We hope that our approach will provide

another option for pre-training optical flow and enable fur-

ther progress and innovation in this direction.

Acknowledgements We would like to thank Shuyang Cheng,

Ekin Dogus Cubuk, Alex Dosovitskiy, Rico Jonschkowski, David

Kao, Ang Li, Aaron Sarna, Austin Stone, and Barret Zoph for

helpful discussions and support.

10100

References

[1] S Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black,

and R. Szeliski. A database and evaluation methodology for

optical flow. IJCV, 2011. 2

[2] J.L. Barron, D.J. Fleet, and S.S. Beauchemin. Performance

of optical flow techniques. IJCV, 1994. 2

[3] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A

naturalistic open source movie for optical flow evaluation.

In Proc. ECCV, 2012. 1, 2

[4] Shuyang Cheng, Zhaoqi Leng, Ekin Dogus Cubuk, Barret

Zoph, Chunyan Bai, Jiquan Ngiam, Yang Song, Benjamin

Caine, Vijay Vasudevan, Congcong Li, et al. Improving 3d

object detection through progressive population based aug-

mentation. In Proc. ECCV, 2020. 3, 5

[5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In Proc.

CVPR, 2016. 2

[6] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-

van, and Quoc V Le. Autoaugment: Learning augmentation

policies from data. arXiv preprint arXiv:1805.09501, 2018.

3

[7] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V

Le. Randaugment: Practical automated data augmenta-

tion with a reduced search space. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, pages 702–703, 2020. 5

[8] Alexey Dosovitskiy, Philipp Fischery, Eddy Ilg, Caner Hazir-

bas, Vladimir Golkov, Patrick van der Smagt, Daniel Cre-

mers, Thomas Brox, et al. FlowNet: Learning optical flow

with convolutional networks. In Proc. ICCV, 2015. 1, 2, 3, 5

[9] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio

Lopez, and Vladlen Koltun. Carla: An open urban driving

simulator. arXiv preprint arXiv:1711.03938, 2017. 2

[10] Mark Everingham, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The pascal visual object

classes (voc) challenge. IJCV, 88(2):303–338, 2010. 2

[11] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora

Vig. Virtual worlds as proxy for multi-object tracking anal-

ysis. In Proc. CVPR, pages 4340–4349, 2016. 1, 2

[12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? The KITTI vision benchmark

suite. In Proc. CVPR, pages 3354–3361. IEEE, 2012. 1, 2

[13] Nikolaus Hansen. The cma evolution strategy: A tutorial.

arXiv preprint arXiv:1604.00772, 2016. 5

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proc.

CVPR, 2016. 1

[15] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens

van der Maaten. Densely connected convolutional networks.

In Proc. CVPR, 2017. 1

[16] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. Lite-

flownet: A lightweight convolutional neural network for op-

tical flow estimation. In Proc. CVPR, 2018. 3

[17] Junhwa Hur and Stefan Roth. Iterative residual refinement

for joint optical flow and occlusion estimation. In Proc.

CVPR, pages 5754–5763, 2019. 3

[18] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,

Alexey Dosovitskiy, and Thomas Brox. FlowNet 2.0: Evolu-

tion of optical flow estimation with deep networks. In Proc.

CVPR, 2017. 2, 3

[19] Max Jaderberg, Valentin Dalibard, Simon Osindero, Woj-

ciech M Czarnecki, Jeff Donahue, Ali Razavi, Oriol Vinyals,

Tim Green, Iain Dunning, Karen Simonyan, et al. Pop-

ulation based training of neural networks. arXiv preprint

arXiv:1711.09846, 2017. 5

[20] Huaizu Jiang, Deqing Sun, Varun Jampani, Zhaoyang Lv,

Erik Learned-Miller, and Jan Kautz. Sense: A shared en-

coder network for scene-flow estimation. In Proc. ICCV,

2019. 3

[21] Rico Jonschkowski, Austin Stone, Jonathan T Barron, Ariel

Gordon, Kurt Konolige, and Anelia Angelova. What matters

in unsupervised optical flow. In Proc. ECCV, 2020. 3

[22] Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci,

Justin Yuan, Matt Rusiniak, David Acuna, Antonio Torralba,

and Sanja Fidler. Meta-sim: Learning to generate synthetic

datasets. In Proc. ICCV, pages 4551–4560, 2019. 2

[23] Daniel Kondermann, Rahul Nair, Katrin Honauer, Karsten

Krispin, Jonas Andrulis, Alexander Brock, Burkhard Gusse-

feld, Mohsen Rahimimoghaddam, Sabine Hofmann, Claus

Brenner, et al. The hci benchmark suite: Stereo and flow

ground truth with uncertainties for urban autonomous driv-

ing. In CVPR Workshops, pages 19–28, 2016. 2

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

ImageNet classification with deep convolutional neural net-

works. In Proc. NeurIPS, 2012. 1

[25] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Ui-

jlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan

Popov, Matteo Malloci, Alexander Kolesnikov, Tom Duerig,

and Vittorio Ferrari. The open images dataset v4: Unified

image classification, object detection, and visual relationship

detection at scale. IJCV, 2020. 4, 7

[26] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

1

[27] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

Proc. ECCV, pages 740–755. Springer, 2014. 2

[28] Pengpeng Liu, Michael Lyu, Irwin King, and Jia Xu. Self-

low: Self-supervised learning of optical flow. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2019. 3

[29] Matthew M Loper and Michael J Black. Opendr: An ap-

proximate differentiable renderer. In Proc. ECCV. Springer,

2014. 2

[30] Zhaoyang Lv, Kihwan Kim, Alejandro Troccoli, Deqing

Sun, James Rehg, and Jan Kautz. Learning rigidity in dy-

namic scenes with a moving camera for 3d motion field esti-

mation. In Proc. ECCV, 2018. 1, 2

10101

[31] Nikolaus Mayer, Eddy Ilg, Philipp Fischer, Caner Hazir-

bas, Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox.

What makes good synthetic training data for learning dis-

parity and optical flow estimation? IJCV, 126(9):942–960,

2018. 3

[32] Nikolaus Mayer, Eddy Ilg, Philip Häusser, Philipp Fischer,

Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A

large dataset to train convolutional networks for disparity,

optical flow, and scene flow estimation. In Proc. CVPR,

2016. 1, 2

[33] Moritz Menze, Christian Heipke, and Andreas Geiger. Joint

3d estimation of vehicles and scene flow. In ISPRS Workshop

on Image Sequence Analysis (ISA), 2015. 2

[34] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M.

Gross, and A. Sorkine-Hornung. A benchmark dataset and

evaluation methodology for video object segmentation. In

Computer Vision and Pattern Recognition, 2016. 5

[35] Anurag Ranjan and Michael J Black. Optical flow estimation

using a spatial pyramid network. In Proc. CVPR, 2017. 3

[36] Anurag Ranjan, David T Hoffmann, Dimitrios Tzionas, Siyu

Tang, Javier Romero, and Michael J Black. Learning multi-

human optical flow. IJCV, pages 1–18, 2020. 2

[37] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-

lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia

Gkioxari. Accelerating 3d deep learning with pytorch3d.

arXiv preprint arXiv:2007.08501, 2020. 2

[38] Stephan R. Richter, Zeeshan Hayder, and Vladlen Koltun.

Playing for benchmarks. In IEEE International Conference

on Computer Vision, ICCV 2017, Venice, Italy, October 22-

29, 2017, pages 2232–2241, 2017. 1, 2

[39] German Ros, Laura Sellart, Joanna Materzynska, David

Vazquez, and Antonio M Lopez. The synthia dataset: A large

collection of synthetic images for semantic segmentation of

urban scenes. In Proc. CVPR, pages 3234–3243, 2016. 2

[40] Stefan Roth and Michael J Black. On the spatial statistics of

optical flow. IJCV, 74(1):33–50, 2007. 2

[41] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. IJCV, 115(3):211–252,

2015. 1, 2

[42] Leon Sixt, Benjamin Wild, and Tim Landgraf. Rendergan:

Generating realistic labeled data. Frontiers in Robotics and

AI, 5:66, 2018. 2

[43] Deqing Sun, Charles Herrmann, Varun Jampani, Michael

Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski,

Ramin Zabih, William T. Freeman, and Ce Liu. TF-RAFT:

A tensorflow implementation of raft. In ECCV Robust Vision

Challenge Workshop, 2020. 5, 6

[44] Deqing Sun, Erik B Sudderth, and Michael J Black. Layered

image motion with explicit occlusions, temporal consistency,

and depth ordering. In Proc. NeurIPS, pages 2226–2234,

2010. 3

[45] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.

PWC-Net: CNNs for optical flow using pyramid, warping,

and cost volume. In CVPR, June 2018. 3, 5, 6

[46] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.

Models matter, so does training: An empirical study of cnns

for optical flow estimation. IEEE TPAMI, 2019. 3

[47] Richard Szeliski. Computer vision: algorithms and applica-

tions. Springer Science & Business Media, 2010. 4

[48] Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field

transforms for optical flow. In Proc. ECCV, 2020. 3, 6

[49] J. Y. A. Wang and E. H. Adelson. Representing moving im-

ages with layers. IEEE Transactions on Image Processing,

3(5):625–638, Sept. 1994. 3

[50] Dawei Yang and Jia Deng. Learning to generate 3d training

data through hybrid gradient. In Proc. CVPR, 2020. 2

[51] Gengshan Yang and Deva Ramanan. Volumetric correspon-

dence networks for optical flow. In Advances in neural in-

formation processing systems, pages 794–805, 2019. 3

[52] Zhichao Yin, Trevor Darrell, and Fisher Yu. Hierarchical

discrete distribution decomposition for match density esti-

mation. In Proc. CVPR, pages 6044–6053, 2019. 3

[53] Feihu Zhang, Xiaojuan Qi, Ruigang Yang, Victor Prisacariu,

Benjamin Wah, and Philip Torr. Domain-invariant stereo

matching networks. In Proc. ECCV, 2020. 5

[54] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. In ICLR, 2017. 3

10102

