
AutoFlow: Learning a Better Training Set for Optical Flow

Deqing Sun, Daniel Vlasic, Charles Herrmann, Varun Jampani, Michael Krainin, Huiwen Chang,

Ramin Zabih, William T. Freeman, and Ce Liu

Google Research

Model (𝜃) Target data

Model (𝜃) Target data

Typical pipelineStatic FlyingChairs

AutoFlow (𝜆)
AutoFlow pipeline

Figure 1: Left: Pipelines for optical flow. A typical pipeline pre-trains models on static datasets, e.g., FlyingChairs, and

then evaluates the performance on a target dataset, e.g., Sintel. AutoFlow learns pre-training data which is optimized on

a target dataset. Right: Accuracy w.r.t. number of pre-training examples on Sintel.final. Four AutoFlow pre-training

examples with augmentation achieve lower errors than 22,872 FlyingChairs pre-training examples with augmentation. The

gap between PWC-Net and RAFT becomes small when pre-trained on enough AutoFlow examples.

Abstract

Synthetic datasets play a critical role in pre-training

CNN models for optical flow, but they are painstaking to

generate and hard to adapt to new applications. To au-

tomate the process, we present AutoFlow, a simple and

effective method to render training data for optical flow

that optimizes the performance of a model on a target

dataset. AutoFlow takes a layered approach to render syn-

thetic data, where the motion, shape, and appearance of

each layer are controlled by learnable hyperparameters.

Experimental results show that AutoFlow achieves state-of-

the-art accuracy in pre-training both PWC-Net and RAFT.

Our code and data are available at autoflow-google.

github.io.

1. Introduction

Datasets have been a driving force for the develop-

ment of AI algorithms. Convolutional neural networks

(CNNs) [26] were proposed in the 1990’s but were not

widely adopted for vision tasks until the early 2010’s, with

the advent of AlexNet [24]. One key ingredient for deep

CNN models was the large amount of manually labeled im-

ages, e.g., from ImageNet [41]. The performance gain by

AlexNet over shallow models stimulated a paradigm shift in

high-level vision tasks. Since then, new models have been

invented in rapid succession, even achieving “superhuman”

performance on image classification tasks [14, 15].

Manual labeling, however, cannot provide reliable

ground truth for a variety of low-level vision tasks like op-

tical flow and stereo. Since these labels are either difficult

or impossible to obtain, synthetic data play a key role in en-

abling deep models to perform well on such tasks. For ex-

ample, all top-performing CNN models for optical flow are

pre-trained on two large synthetic datasets, FlyingChairs [8]

and FlyingThings3D [32], before being fine-tuned on lim-

ited target datasets, e.g., Sintel [3] and KITTI [12].

However, the success of FlyingChairs raises some in-

teresting questions. For example, how realistic should

the rendering be? Several new datasets have been devel-

oped to be more realistic than FlyingChairs, such as vir-

tual KITTI [11], VIPER [38], and REFRESH [30], but none

of them have proven more effective than FlyingChairs and

FlyingThings3D at pre-training models. In fact, a compre-

hensive study has revealed that “realism is overrated” [32].

There are some hypotheses for why FlyingChairs works,

e.g., that it has been designed to match the motion statis-

tics of Sintel, or that it has many thin structures and fine

motion details. However, it still remains unclear what set of

10093



principles makes an effective optical flow dataset.

To address these questions, we argue that we should

make explicit the objective function for rendering training

data. We formulate the generation of training data as a

joint optimization problem, which couples rendering the

data with training the model. This generation process de-

pends on a set of hyperparameters being optimized. The

hyperparameters are evaluated by the performance of the

trained model on a target dataset, as shown in Fig. 1.

To understand what matters, we ask: how simple can the

rendering be? Thus, we start from an even simpler ren-

dering pipeline than FlyingChairs, a 2D layered approach

that requires neither manual labeling nor 3D models. The

motion and shape of each layer are randomly generated ac-

cording to hyperparameters, as shown in Fig. 2. We can

then learn the rendering hyperparameters to optimize the

performance of a model on a target dataset.

This simple rendering pipeline is surprisingly effective

at generating training datasets for optical flow. Trained on

its rendered data from scratch, both the recent RAFT model

and the widely-used PWC-Net model obtain consistent im-

provements in accuracy on Sintel and KITTI over the same

models trained on FlyingChairs (Fig. 1 and Table 1). Fur-

ther, using 4 AutoFlow examples with augmentation results

in lower errors on Sintel.final for RAFT than using 22,872

FlyingChairs examples with augmentation. More interest-

ingly, the gap between PWC-Net and RAFT becomes small

when trained on enough AutoFlow examples.

An analysis of the rendered data also suggests some in-

teresting properties. For example, the motion statistics of

the AutoFlow dataset and its augmented version do not re-

semble those of Sintel (Fig. 8) and underrepresent small

motions. Though at first glance this distribution may seem

abnormal, there may be a simple, intuitive explanation: tiny

motion matters little in the overall error.

To summarize, our contributions are the following.

• We have introduced, to our knowledge, the first learn-

ing approach to render training data for optical flow.

• AutoFlow compares favorably against FlyingChairs

and FlyingThings3D in pre-training RAFT.

• AutoFlow also leads to a significant performance gain

for PWC-Net, even competitive against RAFT.

• We present a detailed analysis of what features are im-

portant to dataset generation for optical flow.

2. Related Work

Datasets for high-level computer vision Manually la-

beled datasets, such as ImageNet [41], PASCAL [10], MS-

COCO [27], and CityScapes [5], have been widely adopted

for high-level vision tasks. However, manual labeling is

Model Dataset Sintel.clean Sintel.final KITTI

PWC-Net

FlyingChairs 3.27 4.42 11.43

Chairs→Things 2.39 3.90 9.81

AutoFlow 2.17 2.91 5.76

RAFT

FlyingChairs 2.27 3.76 7.63

Chairs→Things 1.68 2.80 5.92

AutoFlow 1.95 2.57 4.23

Table 1: AEPE results for pre-training. AutoFlow can

better train RAFT and PWC-Net from scratch than the

widely-used FlyingChairs dataset and perform competi-

tively against the FlyingChairs!FlyingThings3D schedule.

hard to scale, and quite a few synthetic datasets have been

developed [39, 9, 11, 22]. Meta-Sim [22] learns to mini-

mize the distribution gap between the rendered and target

datasets and can also optimize task performance. However,

Meta-Sim can model only limited scenes because it relies

on obtaining valid scene structures from a grammar.

RenderGAN [42] learns to augment the dataset for hand-

writing classification. Differentiable rendering [29, 37] en-

ables gradients to be passed to rendering parameters, which,

however, do not directly relate to the scene distribution hy-

perparameters. Yang and Deng [50] proposed a “hybrid gra-

dient” approach to make use of analytical gradients when-

ever available. These methods focus on the generation of a

single image and cannot directly apply to the generation of

optical flow.

Datasets for optical flow Similar to other vision tasks,

datasets have been the driving force behind the development

of optical flow. However, unlike high-level vision tasks,

it is only possible to obtain ground truth under controlled

lab environments [1] or rigid scenes/objects [12, 23]. Early

work relied on synthetic datasets for evaluation, such as the

well-known “Yosemite” sequence [2]. MPI-Sintel [3], one

of the leading benchmark datasets for optical flow, was ren-

dered using the Blender engine. Roth and Black [40] used

real depth data to render synthetic data, which is limited

to static scenes. KITTI [12] was created using LIDAR for

static scenes and later extended to rigidly moving cars [33]

for autonomous driving applications.

Dosovitskiy et al. [8] created a synthetic dataset, Fly-

ingChairs. Mayer et al. [32] further introduced a large

dataset for optical flow and related tasks, FlyingThings3D.

Ilg et al. [18] found that sequentially training on Fly-

ingChairs and then on FlyingThings3D obtains the best

results; this has since become standard practice in the

field. Efforts to improve these two datasets include the

autonomous driving scenario [11], more realistic render-

ing [38], realistic backgrounds from SLAM [30], and hu-

man datasets [36]. However, none have proven more

effective than FlyingChairs and FlyingThings3D for pre-

training.

10094



Mayer et al. [31] performed a comprehensive study of

synthetic datasets for optical flow and disparity estima-

tion. They developed each synthetic dataset heuristically,

with no regard for target dataset performance. Our ren-

dering pipeline is largely inspired by their 2D rendering

techniques. But instead of designing each dataset by hand,

we learn these parameters via jointly solving rendering and

training to optimize the performance on a target dataset.

CNN models for optical flow The seminal FlowNet pa-

per [8] pioneered the CNN-based approach for optical

flow. Its follow-up, FlowNet2 [18], significantly improved

FlowNet’s performance by stacking several sub-networks

into one large model. Spy-Net [35], PWC-Net [45],

and LiteFlowNet [16] were designed using several well-

established principles for optical flow. For the first time,

PWC-Net obtained more accurate results on the Sintel and

KITTI benchmarks than traditional approaches. Quite a

few new network architectures were proposed based on the

PWC-Net framework [17, 51, 20, 52]. Recently, Teed and

Deng [48] introduced the RAFT architecture, which used

a recurrent architecture to obtain a significant performance

gain over its predecessors on Sintel and KITTI.

The advances in these network architectures have signif-

icantly improved their performance on benchmark datasets.

However, all these models follow nearly the same train-

ing procedures, i.e., pre-training on FlyingChairs and Fly-

ingThings3D and then fine-tuning on limited training data

on the target domain. In this paper, we focus on dataset

generation and show that it is possible to achieve accu-

racy similar to or better than that of FlyingChairs and Fly-

ingThings3D in pre-training by learning to render training

data. We learn the rendering hyperparameters for the recent

RAFT model and find that they also apply to PWC-Net.

Evaluating CNN models for optical flow The improve-

ment in accuracy comes from innovations on both the

model architecture and the training procedures. Previous

work [46] shows that changes in training procedure result

in significant performance boosts for FlowNetC and PWC-

Net. Here we find that changing the datasets and incorporat-

ing recent practices in training significantly improves PWC-

Net and narrows down its performance gap from RAFT.

Self-supervised and semi-supervised learning of opti-

cal flow Significant progress has been made on self-

supervised optical flow [21, 28]. However, state-of-the-art,

self-supervised methods still lag behind supervised ones,

e.g., models pre-trained on FlyingChairs and FlyingTh-

ings [48, 51] are more accurate on Sintel than models [21,

28] trained on Sintel image pairs using self-supervised loss.

Learning to learn A recent trend in neural network re-

search is learning to learn, which aims at automating the

manual process of network design or hyperparameter selec-

tion. Existing methods mainly focus on learning hyperpa-

rameters for the architecture [54], loss function, optimiza-

tion, and augmentation [4, 6]. In contrast, we focus on

learning to render synthetic training data for optical flow.

3. Generating training data

We take a layered approach [49, 44] to rendering im-

age pairs and their optical flow, as shown in Fig. 2. For

the first frame, we randomly sample K images I
k
1

from an

image dataset and order them by depth, with the first layer

being the background. Next, we sample an alpha mask M
k
1

(section 3.1) and an optical flow field W
k (section 3.2) for

each layer according to the rendering hyperparameters (sec-

tion 3.5). The optical flow field is used to warp the image

and the mask into the second frame:

I
k

2
= f(Ik

1
,Wk) 1  k  K, (1)

M
k

2
= f(Mk

1
,Wk) 1  k  K,

where f represents the forward warping function according

to the flow field.

We composite the images and the flow with back-to-front

alpha blending, starting with the background layer:

I
k = M

k
� I

k +
�

1�M
k
�

� I
k−1, (2)

W
k = M̄

k
�W

k +
�

1� M̄
k
�

�W
k−1,

where M̄ is the alpha mask binarized around its middle

value, and � denotes the element-wise product and broad-

casts to the channel dimension. We slightly abuse the nota-

tion, using the same symbols for images and masks before

and after composition, as well as dropping subscripts.

Finally, we apply certain visual effects (section 3.3) to

the images to cover some natural variations in videos. Fig-

ure 6 shows examples of complete images and their flows.

3.1. Object Masks

The background layer has a fully opaque mask. For each

foreground layer, we test two ways of generating the mask:

random polygons and manual segmentation.

Random polygons For each foreground layer, we gener-

ate a random polygon [31] to serve as its alpha mask. Each

polygon has a random number of sides, with vertices ran-

domly sampled in angle and radius around a center. Each

polygon can also have a hole, which itself is a smaller ran-

dom polygon. Further, we can control polygon smoothness

through subdivision. Finally, the mask can be blurred with

a Gaussian filter in order to feather its boundary (this is ap-

plied to both polygon and manual object masks). Examples

of random polygon masks are shown in Fig. 3.

10095



Random 

flow

Random 

image

Forward 

warped

image

Background Foreground 1 Foreground 2 Composited

w/ visual effects

Figure 2: Rendering pipeline for AutoFlow uses a layered

approach. Each layer is created from a random image and

mask (top row), its flow field is randomly generated (mid-

dle row), and the layer is accordingly warped (bottom row).

All layers are alpha-composited back-to-front and undergo

visual effects such as motion blur and fog (right column).

Figure 3: Foreground object masks are random polygons

that can have holes, smoothed edges, and blurred bound-

aries. Mask values have been inverted for visualization.

Manual segmentation To make foreground objects more

semantically congruent, we use the images and manual la-

bels from OpenImages [25]. The location and size of each

foreground object within the image are randomly sampled.

3.2. Motion Model

The motion of each layer is a combination of rigid trans-

formation (scale, rotation, translation), perspective distor-

tion, and a bilinear grid warp. A bilinear grid warp of size

n is a set of flow vectors defined on the vertices of a n ⇥ n

grid, then bilinearly interpolated in the interior of the grid

(the grid being uniformly distributed over the image) [47].

This allows for more complex forward flow with a fast an-

alytic solution for forward image warping (we invert the

bilinear interpolating function within each grid cell, which

boils down to solving a quadratic equation). In fact, all of

our base motions can be modeled with a bilinear grid warp:

rigid transform can be expressed by rigidly moving the cor-

ners of a grid, and perspective distortion by independently

moving the corners of a 2⇥ 2 grid.

For the foreground layers, we employ all modalities of

motion (rigid + grid), while for the background we only ap-

ply moderate perspective distortion. Figure 4 demonstrates

our motion modalities on a sample foreground object.

Figure 4: Base motions a foreground object (left) can un-

dergo (left-to-right): rigid transformation, perspective dis-

tortion, and bilinear grid warp.

Figure 5: Visual effects improve performance on realistic

datasets. Top row shows an object motion-blurred due to

diagonal movement using Gaussian (middle) or box (right)

filters. Bottom row shows a random semi-transparent fog

overlaid on top of an image.

3.3. Visual Effects

To generalize better to more realistic video data, we sim-

ulate common visual effects including motion blur and fog

(Fig. 5). These effects only modify the image data and have

no influence over the ground truth flow.

Motion blur We approximate the motion blur of each

layer by applying a filter to both the image and the mask.

Standard deviations of the filter are computed by taking a

proportion of the average absolute flow in each dimension

over all the pixels within the mask. We apply the same mo-

tion blur filter to both the first and second images.

Fog To simulate fog, we generate a white image with a

random semi-transparent alpha mask and overlay it on top

of the composited initial and final images. The fog does not

move between the images, nor does it affect the ground truth

flow. To compute the alpha mask, we generate several ran-

dom normal images of various resolutions, with their stan-

dard deviations being inversely proportional to their reso-

lutions. We then bicubically resample each to the desired

fog resolution and sum them up. Finally, we adjust the re-

sulting image so that its mean and standard deviation match

controllable hyperparameters.

10096



3.4. Data Augmentation

To increase the diversity of the training data, we apply

data augmentation [8, 45] to the rendered data. Inspired by

RandAugment [7], we randomly select several transforma-

tions among rotation, scale, squeeze, translation, and addi-

tive noise at each iteration. The number of transformations

and their strength levels are hyperparameters to learn.

3.5. Hyperparameters

During training, we tune a number of hyperparameters

that dictate data generation and augmentation, including the

shape, size, and position of masks, the complexity and mag-

nitude of motion, and the visual effects. Respective values

are uniformly sampled from the specified ranges, and the

ranges are hyperparameters to learn. Please refer to the sup-

plementary material for the detailed list of hyperparameters.

4. Learning to Render Training Data

Given a target dataset for optical flow, e.g., Sintel or

KITTI, we want to learn the hyperparameters to render

training data so that a CNN model trained on the rendered

data has optimal performance on the target dataset. Every

set of hyperparameters corresponds to a rendered training

dataset. In this section, we will first present the learning

objective and then the search algorithm.

4.1. Problem Formulation

Given the rendering pipeline for generating training data

and the range for the rendering hyperparameters Λ, our goal

is to search for the set of optimal hyperparameters λ that

optimizes a metric Ω on a model θ,

λ∗ = argmin
λ∈Λ

Ω (θ(λ)) . (3)

The model θ minimizes a loss function L on the rendered

datasets according to the set of hyperparameters λ

θ(λ) = argmin
θ

L
�

W(λ),φθ(I1
�

λ), I2(λ)
��

, (4)

where the model θ includes the parameters of a network φθ

that maps two input images to their optical flow. Be default,

we use the sequence loss function proposed by RAFT as the

loss function and the average end-point error (AEPE) as the

metric on the target datasets unless stated otherwise.

4.2. Hyperparameter Search Algorithm

To learn the hyperparameters for rendering the dataset,

we develop a hybrid algorithm based on the population-

based training (PBT) algorithm [19, 4] and the Covari-

ance Matrix Adaptation Evolution Strategy (CMA-ES) al-

gorithm [13]. Specifically, we classify the hyperparameters

into subgroups and use the CMA-ES algorithm to search

the selected subgroups of hyperparameters to optimize the

learning metric. CMA-ES maintains a sampling distribution

over the search space. It samples a few points, evaluates

them, and updates the distribution based on the ranking of

the points w.r.t. to the learning metric. The sampling distri-

bution is a multivariate Gaussian whose covariance matrix

is adapted over time. Our algorithm takes N iterations, with

each iteration training M in parallel. The time complexity

grows linearly w.r.t. the number of search iterations and the

number of training steps per search.

5. Experimental Results

Implementation details We randomly sample images

from different sequences of the Davis dataset [34] as ap-

pearances for each layer. Our baseline is a TensorFlow

implementation of RAFT [43], the performance of which

is similar to that of the official PyTorch implementation.

Throughout this section, we refer to our method or the data

it generates as AutoFlow. By default, we use the average

end-point error (AEPE) on the final pass of Sintel training

dataset (Sintel.final) as the learning metric because it is cur-

rently the most challenging dataset.

Empirically, it takes about 7 days to finish 8 searching it-

erations using 48 NVIDIA P100 GPUs, with each iteration

training 8 models in parallel. Hyperparameters about 5%

less accurate are often found within 2 days. Alternatively,

the time can also be reduced to less than 2 days by using

fewer training steps (40k) and then reusing the searched hy-

perparameters for the full 200k steps. That has roughly a

3% drop in accuracy on Sintel.

5.1. AutoFlow Versus the State of the Art

Pre-training results We pre-trained RAFT and PWC-Net

from scratch using different datasets. The hyperparameters

for AutoFlow have been learned for RAFT. As summarized

in Table 1, models trained from scratch using AutoFlow are

comparable to or more accurate than models trained on Fly-

ingChairs or FlyingChairs!FlyingThings3D. As shown in

Fig. 7, RAFT trained on AutoFlow can successfully recover

blurry objects under large motion in the final pass of Sin-

tel. Table 2 summarizes the errors for regions with different

motion magnitude. RAFT trained on AutoFlow performs

better than RAFT trained on FlyingChairs, especially in re-

gions with large motion. Using end-point error (epe) as the

learning metric results in better accuracy in regions with

large motion than using angular error (ae).

Generalization across datasets We further compared

with the recent DSMNet [53] method that aims at narrow-

ing down domain gaps. DSMNet reported an F-all score of

11.2% in non-occlusion regions on the KITTI 2015 training

set for a modified PWC-Net trained on FlyingThings3D and

Sintel. The F-all scores by RAFT and PWC-Net trained on

10097












