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Abstract

Emerging interests have been brought to recognize

previously unseen objects given very few training exam-

ples, known as few-shot object detection (FSOD). Recent

researches demonstrate that good feature embedding is

the key to reach favorable few-shot learning performance.

We observe object proposals with different Intersection-of-

Union (IoU) scores are analogous to the intra-image aug-

mentation used in contrastive visual representation learn-

ing. And we exploit this analogy and incorporate super-

vised contrastive learning to achieve more robust objects

representations in FSOD. We present Few-Shot object de-

tection via Contrastive proposals Encoding (FSCE), a sim-

ple yet effective approach to learning contrastive-aware ob-

ject proposal encodings that facilitate the classification of

detected objects. We notice the degradation of average pre-

cision (AP) for rare objects mainly comes from misclassify-

ing novel instances as confusable classes. And we ease the

misclassification issues by promoting instance level intra-

class compactness and inter-class variance via our con-

trastive proposal encoding loss (CPE loss). Our design

outperforms current state-of-the-art works in any shot and

all data splits, with up to +8.8% on standard benchmark

PASCAL VOC and +2.7% on challenging COCO bench-

mark. Code is available at: https://github.com/

MegviiDetection/FSCE.

1. Introduction

Development of modern convolutional neural networks

(CNNs) [1, 2, 3] give rise to great advances in general object

detection [4, 5, 6]. Deep detectors demand a large amount

of annotated training data to saturate its performance [7, 8].

In few-shot learning scenarios, deep detectors suffer sev-

erer over-fitting and the gap between few-shot detection and

general object detection is larger than the corresponding gap

∗Corresponding author: libanghuai@megvii.com

Figure 1. Conceptualization of our contrastive object proposals en-

coding. We introduce a score function which measures the seman-

tic similarity between region proposals. Positive proposals (x+)

refer to region proposals from the same category or the same ob-

ject. Negative proposals (x−) refer to proposals from different

categories. We encourage the object encodings to have the prop-

erty that score(f(x), f(x+)) >> score(f(x), f(x−)), such that

our contrastively learned object proposals have smaller intra-class

variance and larger inter-class difference

in few-shot image classification [9, 10, 11]. On the contrary,

a child can rapidly comprehend new visual concepts and

recognize objects from a newly learned category given very

few examples. Closing such gap is therefore an important

step towards more successful machine perception [12].

Precedented by few-shot image classification, earlier at-

tempts in few-shot object detection utilize meta-learning

strategy [13, 14, 15]. Meta-learners are trained with an

episode of individual tasks, meta-task samples from com-

mon objects (base class) to pair with rare objects (novel

class) to simulate few-shot detection tasks. Recently, the

two-stage fine-tune based approach (TFA) reveals more po-

tential in improving few-shot detection. Baseline TFA [16]

simply freeze all base class trained parameters and fine-tune
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Figure 2. We find in fine-tuning based few-shot object detector, classification is more error-prone than localization. In the fine-tuning

stage, RPN is able to make good enough foreground proposals for novel instances, hence novel objects are often accurately localized but

mis-classified as confusable base classes. Here shows 20 top-scoring RPN proposals and example detection results from PASCAL VOC

Split 1, wherein bird, sofa and cow are novel categories. The left panel shows the pair-wise cosine similarity between the class prototypes

learned in the bounding box classifier. For example, the similarity between bus and bird is -0.10, but the similarity between cow and horse

is 0.39. Our goal is to decrease the instance-level similarity between similar objects that are from different categories.

only box classifier and box regressor with novel data, yet

outperforms previous meta-learners. MPSR [17] improves

upon TFA by alleviating the scale bias inherent to few-shot

dataset, but their positive refinement branch demands man-

ual selection, which is somewhat less neat. In this work,

we observe and address the essential weakness of the fine-

tuning based approach – constantly mislabeling novel in-

stances as confusable categories, and improve the few-shot

detection performance to the new state-of-the-art (SOTA).

Object detection involves localization and classification of

appeared objects. In few-shot detection, one might nat-

urally conjecture the localization of novel objects is go-

ing to under-perform its base categories counterpart, with

the concern that rare objects would be deemed as back-

ground [14, 13, 18]. However, based on our experiments

with Faster R-CNN [4], the commonly adopted detector in

few-shot detection, class-agonistic region proposal network

(RPN) is able to make foreground proposals for novel in-

stances, and the final box regressor can localize novel in-

stances quite accurately. In comparison, as demonstrated

in Figure 2, misclassifying detected novel instances as con-

fusable base classes is indeed the main source of error. We

visualize the pairwise cosine similarity between class proto-

types [19, 20, 21] of a Faster R-CNN box classifier trained

with PASCAL VOC [22, 23]. The cosine similarity between

prototypes from resembled categories can be 0.39, whereas

the similarity between objects and background is on aver-

age −0.21. In few-shot setting, the similarity between clus-

ter centers can go as high as 0.59, e.g., between sheep and

cow, bicycle and motorbike, making classification for sim-

ilar objects error-prone. We make a calculation upon base-

line TFA, manually correcting misclassified yet accurately

localized box predictions can increase novel class average

precision (nAP) by over 20 points.

A common approach to learn well-separated decision

boundary is to use a large margin classifier [24], but with

our trials, category-level positive-margin based classifiers

does not work in this data-hunger setting [20, 25]. To

learn instance-level discriminative feature representations,

contrastive learning [26, 27] has demonstrated its effective-

ness in tasks including recognition [28], identification [29]

and the recent successful self-supervised models [30, 31,

32, 33]. In supervised contrastive learning for image clas-

sification [34], intra-image augmentations of images from

the same class are used to enrich the positive example pairs.

We think region proposals with different Intersection-over-

Union (IoU) for an object are naturally analogous to the

intra-image augmentation cropping, as illustrated in Fig-

ure 1. Therefore in this work, we explore to extend the

supervised batch contrastive approach [34] to few-shot ob-

ject detection. We believe the contrastively learned object

representations aware of the intra-class compactness and the

inter-class difference can ease the misclassification of un-

seen objects as similar categories.

We present Few-Shot object detection via Contrastive pro-

posals Encoding (FSCE), a simple yet effective fine-tune

based approach for few-shot object detection. When trans-

fer the base detector to few-shot novel data, we augment the

primary Region-of-Interest (RoI) head with a contrastive

branch, the contrastive branch measures the similarity be-

tween object proposal encodings. A supervised contrastive

objective with specific considerations for detection will be

optimized to reduce the variance of object proposal em-

beddings from the same category, while pushing different-

category instances away from each other. The proposed
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contrastive objective, contrastive proposal encoding (CPE)

loss, is employed to the original classification and localiza-

tion objective in a multi-task fashion. The end-to-end train-

ing of our proposed method is identical to vanilla Faster

R-CNN.

To our best knowledge, we are the first to bring contrastive

learning into few-shot object detection. Our simple design

sets the new state-of-the-art in any shot (1, 2, 3, 5, 10,

and 30), with up to +8.8% on the standard PASCAL VOC

benchmark and +2.7% on the challenging COCO bench-

mark.

2. Related Work

Few-shot learning. Few-shot learning aims to recog-

nize new concepts given limited labeled examples. Meta-

learning approaches aim at training a meta-model on

episodes of individual tasks such that it can adapt to new

tasks with few samples [35, 11, 36, 10, 37, 38, 39], known

as “learning-to-learn”. Deep metric-learning based ap-

proaches emphasize learning good feature representation

embeddings that facilitate downstream tasks. The most in-

tuitive metrics including cosine similarity [20, 40, 41, 21],

euclidean distance to class center [19], and graph dis-

tances [42]. Interestingly, hallucinator-based methods solve

the data deficiency via learning to generate fake-data [9].

Existing few-shot learners are mostly developed in the con-

text of classification. In comparison, few-shot detection is

more challenging as it involves both classification and lo-

calization, yet under-researched.

Few-shot object detection. There are two lines of work ad-

dressing the challenging few-shot object detection (FSOD)

problem. First, meta-learning based approaches devise a

stage-wise and periodic meta-training paradigm to train a

meta-learner to help knowledge transfer from base classes.

Meta R-CNN [13] meta-learns channel-wise attention layer

for remodeling the RoI head. MetaDet [14] applies a weight

prediction meta-model to dynamically transfer category-

specific parameters from the base detector. FSIW [15] im-

proves upon Meta R-CNN and FSRW [43] by more com-

plex feature aggregation and meta-training on a balanced

dataset. With the balanced dataset introduced in TFA [16],

fine-tune based detectors are rowing over meta-learning

based methods in performance, MPSR [17] sets the current

state-of-the-art by mitigating the scale scarcity in few-shot

datasets, but its generalizability is limited because the pos-

itive refinement branch contains manual decisions. Rep-

Met [44] attaches an embedding sub-net in RoI head to

model a posterior class distribution. It utilizes advanced

tricks including OHEM [45] and SoftNMS [46] but fails

to catch up with current SOTA. We criticize complex al-

gorithms as they can easily overfit and exhibit poor test

results in FSOD. Instead, our insight here is that the de-

generation of average precision (AP) for novel categories

mainly comes from misclassifying novel instances as con-

fusable categories, and we resort to contrastive learning to

learn discriminative object proposal representations without

complexing the model.

Contrastive learning The recent success of self-supervised

models can be attributed to the renewed interest in explor-

ing contrastive learning. [47, 30, 48, 49, 32, 50, 33, 51].

Optimizing the contrastive objectives [48, 20, 21, 34] si-

multaneously maximize the agreement between similar in-

stances defined as positive pairs and encourage the differ-

ence among dissimilar instances or negative pairs. With

contrastive learning, the algorithm learns to build represen-

tations that do not concentrate on pixel-level details, but en-

coding high-level features effective enough to distinguish

different images [33, 32, 50, 51]. Supervised contrastive

learning [34] extends the batch contrastive approach to su-

pervised setting, but for image classification.

To our best knowledge, this work is the first to integrate

supervised contrastive learning [29, 34] into few-shot ob-

ject detection. The state-of-the-art few-shot detection per-

formance in any shot and all benchmarks demonstrate the

effectiveness of our proposed method.

3. Method

Our proposed method FSCE involves a simple two-stage

training. First, the standard Faster R-CNN detection model

is trained with abundant base-class data (Dtrain = Dbase).

Then, the base detector is transferred to novel data through

fine-tuning on a balanced dataset [8] with novel instances

and randomly sampled base instances (Dtrain = Dnovel ∪
Dbase). The backbone feature extractor is frozen during

fine-tuning while the RoI feature extractor is supervised by

a contrastive objective. We jointly optimize the contrastive

proposal encoding (CPE) loss we proposed with the orig-

inal classification and regression objectives in a multi-task

fashion. Overview of our method is shown in Figure 3.

3.1. Preliminary

Rethink the two-stage fine-tuning approach. Original

TFA [16] only fine-tunes the last two fc layers–box clas-

sifier and box regressor–with novel data, the rest structures

7354



Figure 3. Overview of our proposed FSCE. In our method, we jointly fine-tune the FPN pathway and RPN while fixing the backbone.

We find this is effective in coordinating backbone feature maps to activate on novel objects yet still avoid the risk of overfitting. To learn

contrastive object proposal encodings, we introduce a contrastive branch to guide the RoI features to learn contrastive-aware proposal

embeddings. We design a contrastive objective to maximize the within-category agreement and cross-category disagreement.

are frozen and taken as a fixed feature extractor. This could

be viewed as an approach to counter the over-fitting of lim-

ited novel data. However it is counter-intuitive that Feature

Pyramid Network (FPN [52]), RPN, especially the RoI fea-

ture extractor which contain semantic information learned

from base classes only, could be transferred directly to novel

classes without any form of training. In baseline TFA, un-

freezing RPN and RoI feature extractor leads to degraded

results for novel classes. However, we find this behavior is

reversible and can benefit novel detection results if trained

properly. We propose a stronger baseline which adapts

much better to novel data with jointly fine-tuned feature ex-

tractors and box predictors

Strong baseline. We establish our strong baseline from the

following observations. Initially, the detection performance

for novel classes decreases as more network components

are fine-tuned with novel shots. However, we notice a sig-

nificant gap in the key RPN and RoI statistics between the

data-abundant base training stage and the novel fine-tuning

stage. As shown in Figure 4, the number proposals from

positive anchors in novel fine-tuning is only 1

4
of its base

training counterpart and the number of foreground propos-

als decreases consequently. We observe, especially at the

beginning of fine-tuning, the positive anchors for novel ob-

jects receive comparatively low scores from RPN. Due to

the low objectness scores, less positive anchors can pass

non-max suppression (NMS) and become proposals that

provide actual learning opportunities in RoI head for novel

objects. Our insight is to rescue the low objectness posi-

tive anchors that are suppressed. Besides, re-balancing the

foreground proposals fraction is also critical to prevent the

diffusive yet easy backgrounds from dominating the gradi-

ent descent for novel instances in fine-tuning.

Figure 4. Key detection statistics. Left shows the average number

of positive anchors per image in RPN in base training and novel

fine-tuning stage. Right shows the average number of foreground

proposals per image during fine-tuning. In the left, orange line

shows the original TFA setting, which use the same specs as base

training. In the right, the blue line shows double the number of

anchors kept after NMS in RPN, the gray line shows reducing RoI

head batch size by half.

Method
Fine-tune Refinement Novel AP50

FPN RPN ROI 3 10

TFA w/ cos [16] - - - 44.7 56.0

Strong baseline

(Ours)

✓ ✗ ✗ 45.3 57.1

✓ ✓ ✗ 47.2 59.8

✓ ✓ ✓ 49.7 61.4

Table 1. Novel detection performance of our strong baseline on

PASCAL VOC Novel Split 1.

We use unfrozen RPN and ROI with two modifications,

(1) double the maximum number of proposals kept after

NMS, this brings more foreground proposals for novel in-

stances, and (2) halving the number of sampled proposals in

RoI head used for loss computation, as in fine-tuning stage

the discarded half contains only backgrounds (standard RoI

batch size is 512, and the number of foreground propos-

als are far less than half of it). As shown in Table 1, our
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strong baseline boosts the baseline TFA by non-trivial mar-

gins. Moreover, the tunable RoI feature extractor opens up

room for realizing our proposed contrastive object proposal

encoding.

3.2. Contrastive object proposal encoding

In two-stage detection frameworks, RPN takes backbone

feature maps as inputs and generates region proposals, RoI

head then classifies each region proposal and regresses a

bounding box if it is predicted to contain an object. In Faster

R-CNN pipeline, RoI head feature extractor first pools the

region proposals to fixed size and then encodes them as vec-

tor embeddings x ∈ R
DR known as the RoI features. Typ-

ically DR = 1024 in Faster R-CNN w/ FPN. General de-

tectors fail to establish robust feature representations for re-

gion proposals from limited shots, resulting in mislabeling

localized objects and low average precision. The idea is to

learn more discriminative object proposal embeddings, but

according to our experiments, the category-level positive-

margin classifier [20, 25] does not work in this data-hungry

setting. In order to learn more robust object feature rep-

resentations from fewer shots, we propose to apply batch

contrastive learning [34] to explicitly model instance-level

intra-class similarity and inter-class distinction [29, 26] of

object proposal embeddings.

To incorporate contrastive representation learning into the

Faster R-CNN framework, we introduce a contrastive

branch to the primary RoI head, parallel to the classifica-

tion and regression branches. The RoI feature vector x con-

tains post-ReLU [53] activations thus is truncated at zero,

so the similarity between two proposals embeddings can not

be measured directly. Therefore, the contrastive branch ap-

plies a 1-layer multi-layer-perceptron (MLP) head with neg-

ligible cost to encode the RoI feature to contrastive feature

z ∈ R
DC , by default DC = 128. Subsequently, we mea-

sure similarity scores between object proposal representa-

tions on the MLP-head encoded RoI features and optimize

a contrastive objective to maximize the agreement between

object proposals from the same category and promote the

distinctiveness of proposals from different categories. The

proposed contrastive loss for object detection is described

in the next section.

We adopt a cosine similarity based bounding box classifier,

where the logit to predict i-th instance as j-th class is com-

puted by the scaled cosine similarity between the RoI fea-

ture xi and the class weight wj in the hypersphere,

logit{i,j} = α
x⊤
i wj

||xi|| · ||wj ||
(1)

α is a scaling factor to enlarge the gradient. We empirically

fix α = 20 in our experiments. The proposed contrastive

branch guides the RoI head to learn contrastive-aware ob-

ject proposal embeddings which ease the discrimination be-

tween different categories. In the cosine projected hyper-

sphere, our contrastive object proposal embeddings form

tighter clusters with enlarged distances between different

clusters, therefore increasing the generalizability of the de-

tection model in the few-shot setting.

3.3. Contrastive Proposal Encoding (CPE) Loss

Inspired by supervised contrastive objectives in classifi-

cation [34] and identification [29], our CPE loss is de-

fined as follows with considerations tailored for detec-

tion. Concretely, for a mini-batch of N RoI box features

{zi, ui, yi}
N
i=1

, where zi is contrastive head encoded RoI

feature for i-th region proposal, ui denotes its Intersection-

over-Union (IOU) score with matched ground truth bound-

ing box, and yi denotes the label of the ground truth,

LCPE =
1

N

N∑

i=1

f(ui) · Lzi (2)

Lzi =
−1

Nyi− 1

N∑

j=1,j 6=i

I{yi=yj}·log
exp(z̃i ·z̃j/τ)∑N

k=1
Ik 6=i · exp(z̃i ·z̃k/τ)

(3)

Nyi
is the number of proposals with the same label as

yi, and τ is the hyper-parameter temperature as in In-

foNCE [48].

In the above formula, z̃i=
zi

||zi||
denotes normalized features

hence z̃i · z̃j measures the cosine similarity between the i-th

and j-th proposal in the projected hypersphere. The opti-

mization of the above loss function increases the instance-

level similarity between object proposals with the same la-

bel and spaces proposals with different labels apart in the

projection space. As a result, instances from each category

will form a tighter cluster, and the margins around the pe-

riphery of the clusters are enlarged. The effectiveness of

our CPE loss has been confirmed by t-SNE visualization,

as shown in Figure 5 (a) and (b).

Proposal consistency control. Unlike image classification

where semantic information comes from the entire image,

classification signals in detection come from region propos-

als. We propose to use an IoU threshold to assure the con-

sistency of proposals that are used to be contrasted, with the

consideration that low IoU proposals deviate too much from

the center of regressed objects, therefore might contain ir-

relevant semantics. In the formula above, f(ui) controls the

7356



Method / Shot Backbone
Novel Split 1 Novel Split 2 Novel Split 3

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

LSTD AAAI 18 [54] VGG-16 8.2 1.0 12.4 29.1 38.5 11.4 3.8 5.0 15.7 31.0 12.6 8.5 15.0 27.3 36.3

YOLOv2-ft ICCV19 [14]

YOLO V2

6.6 10.7 12.5 24.8 38.6 12.5 4.2 11.6 16.1 33.9 13.0 15.9 15.0 32.2 38.4
†FSRW ICCV 19 [43] 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9
†MetaDet ICCV 19 [14] 17.1 19.1 28.9 35.0 48.8 18.2 20.6 25.9 30.6 41.5 20.1 22.3 27.9 41.9 42.9

‡RepMet CVPR 19 [44] InceptionV3 26.1 32.9 34.4 38.6 41.3 17.2 22.1 23.4 28.3 35.8 27.5 31.1 31.5 34.4 37.2

FRCN-ft ICCV 19 [14]

FRCN-R101

13.8 19.6 32.8 41.5 45.6 7.9 15.3 26.2 31.6 39.1 9.8 11.3 19.1 35.0 45.1

FRCN+FPN-ft ICML 20[16] 8.2 20.3 29.0 40.1 45.5 13.4 20.6 28.6 32.4 38.8 19.6 20.8 28.7 42.2 42.1
†MetaDet ICCV 19 [14] 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1
†Meta R-CNN ICCV 19 [13] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1

TFA w/ fc ICML 20 [16]

FRCN-R101

36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2

TFA w/ cos ICML 20 [16] 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8

MPSR ECCV 20 [17] 41.7 - 51.4 55.2 61.8 24.4 - 39.2 39.9 47.8 35.6 - 42.3 48.0 49.7

FSCE (Ours) 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5

TFA w/ cos⋆ ICML 20 [16]

FRCN-R101

25.3 36.4 42.1 47.9 52.8 18.3 27.5 30.9 34.1 39.5 17.9 27.2 34.3 40.8 45.6
†FSIW⋆ ECCV 20 [15] 24.2 35.3 42..2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6

FSCE⋆ (Ours) 32.9 44.0 46.8 52.9 59.7 23.7 30.6 38.4 43.0 48.5 22.6 33.4 39.5 47.3 54.0

Table 2. Performance evaluation (nAP 50) of existing few-shot detection methods on three PASCAL VOC Novel Split sets. † marks meta-

learning based methods. ⋆ represents average over 10 random seeds. ‡ marks methods use N-way K-Shot meta-testing, which is a different

evaluation protocol, see in Sec. 4.1.

consistency of proposals, defined with proposal consistency

threshold φ, and a re-weighting function g(·),

f(ui) = I{ui > φ} · g(ui) (4)

g(·) assigns different weight coefficients for object propos-

als with different level of IoU scores. We find φ=0.7 is a

good cut-off such that the contrastive head is trained with

most centered object proposals. Ablations regarding φ and

g are shown in Sec. 4.3.

Training objectives. In the first stage, the base detector

is trained with a standard Faster R-CNN loss [4], a binary

cross-entropy loss Lrpn to make foreground proposals from

anchors, a cross-entropy loss Lcls for bounding box classi-

fier, and a smoothed-L1 loss Lreg for box regression deltas.

When transfer to novel data in the fine-tuning stage, we find

the contrastive loss can be added to the primary Faster R-

CNN loss in a multi-task fashion without destabilizing the

training,

L = Lrpn + Lcls + Lreg + λLCPE (5)

λ is set to 0.5 to balance the scale of the losses.

4. Experiments

Extensive experiments are performed in both PASCAL

VOC [22, 23] and COCO [55] benchmarks. Our FSCE

forms an upper envelope for all fine-tuning based meth-

ods and memory-inefficient meta-learns with large margins

Method Year
Novel AP Novel AP75

10 30 10 30

LSTD [54] AAAI 18 3.2 6.7 - -
†FSRW [43] ICCV 19 5.6 9.1 4.6 7.6
†MetaDet [14] ICCV 19 7.1 11.3 5.9 10.3
†Meta-RCNN [13] ICCV 19 8.7 12.4 6.6 10.8

MPSR [17] ECCV 20 9.8 14.1 9.7 14.2

TFA w/ cos [16] ICML 20 10.0 13.7 9.3 13.4

Ours N/A 11.9 16.4 10.5 16.2

TFA w/ cos⋆ [16] ICML 20 9.1 12.1 8.8 12.0
†FSIW⋆ [15] ECCV 20 12.5 14.7 9.8 12.2

Ours⋆ N/A 11.1 15.3 9.8 14.2

Table 3. Few-shot detection evaluation results on COCO. ⋆ repre-

sents average over 10 random seeds. † marks meta-learning based

methods.

in any shots in all data splits. We strictly follow the con-

sistent few-shot detection data construction and evaluation

protocol [43, 16, 17, 15] to ensure fair and direct compar-

ison. In this section, we first describe the few-shot detec-

tion settings, then provide complete comparisons of con-

temporary few-shot detection works on PASCAL VOC and

COCO benchmarks, and provide ablation studies.

Implementation Details. For the detection model, we use

Faster-RCNN [4] with Resnet-101 [1] and Feature Pyramid

Network [52]. All experiments are run on 8 GPUs with

standard batch-size 16. The solver is standard SGD with

momentum 0.9 and weight decay 1e-4. Naturally, we scale

the training steps when training number of shots. Every
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detail will be open-sourced in a self-contained codebase to

facilitate future research.

4.1. Few­shot detection benchmarks

PASCAL VOC. The overall 20 categories in PASCAL

VOC are divided into 15 base categories and 5 novel cat-

egories. All base category data from PASCAL VOC 07+12

trainval sets are considered available, and K-shot of novel

instances are randomly sampled from previously unseen

novel classes for K = 1, 2, 3, 5 and 10. Following exist-

ing works [16, 43, 15], we consider the same three random

partitions of base and novel categories and samplings intro-

duced in [43], referred as Novel Split 1, 2, and 3. And we re-

port AP50 for novel predictions (nAP50) on PASCAL VOC

2007 test set. Note, this is different from the N-Way K-

shot settings commonly used in meta-learning based meth-

ods [44]. The huge variance between different random runs

make the N-Way K-shot evaluation protocol unsuitable for

few-shot object detection. For methods that provide results

over 10 random seeds, we provide the corresponding results

to compare with.

MS COCO. Similarly, for the 80 categories in COCO, 20

categories in common with PASCAL VOC are reserved as

novel classes, the rest 60 categories are used as base classes.

The K = 10 and 30 shots detection performance are eval-

uated on 5K images from COCO 2014 val dataset, COCO-

style AP and AP75 for novel categories are reported by con-

vention.

4.2. Few­shot detection results

PASCAL VOC Results. Results for all three random novel

splits from PASCAL VOC are shown in Table 2. Our FSCE

outperforms all existing works in any shot and all splits.

The effectiveness of our method is fully demonstrated. We

are the first to achieve >50 nAP50 on split 2 and split 3,

with up to +8.8 nAP50 above current SOTA on split 3. At

the same time, our contrastive proposal encodings powered

FSCE persists the less base forgetting property as in TFA.

Demonstrated below in Table 4.

Method
Base AP50 Novel AP50

1 3 5 1 3 5

Baseline-FPN [17] 56.9 66.2 67.9 25.5 41.1 49.6

MPSR [17] 59.4 67.8 68.4 41.7 51.4 55.2

TFA w/ cos (Our impl.) 79.1 77.3 77.0 39.8 44.6 55.6

FSCE (Ours) 78.9 74.1 76.6 44.2 51.4 61.9

Table 4. Base forgetting comparisons on PASCAL VOC Split 1.

Before fine-tuning, the base AP50 in base training is 80.8.

COCO Results. Few-shot detection results for COCO are

shown in Table 3. Our FSCE set new state-of-the-art for

all shots, under the same testing protocol and same met-

rics. Our proposed methods gain +1.7 nAP and +2.7 nAP75

above current SOTA, which is more significant than the

gaps between any previous advancements.

4.3. Ablation

Components of our proposed FSCE. First, with our mod-

ified training specification for fine-tune stage, the class-

agnostic RPN and RoI head can be directly transferred to

novel data and incur huge performance gain, this is because

we utilize more low-quality RPN proposals that would nor-

mally be suppressed by NMS and provide more foregrounds

to learn given the limited optimization opportunity in few-

shot setting. And the jointly fine-tuned FPN top-down con-

volution and RoI feature extractor opens up room for better

representation learning. Second, our CPE loss guides the

RoI feature extractor to establish contrastive-aware objects

embeddings, intra-class compactness and inter-class vari-

ance ease the classification task and rescue misclassifica-

tions. The whole system benefits from the proposal consis-

tency control by employing only high-IoU region proposals

that are less deviated from objects center to contrast. All

ablation studies are done with PASCAL VOC Novel Split 1

unless otherwise specified.

Method
Refinement CPE

loss
Proposal

Consistency
Novel AP50

RPN ROI 3 5 10

TFA w/ cos ✗ ✗ - - 44.7 55.7 56.0

FSCE
(Ours)

✓ ✗ ✗ ✗ 47.2 56.9 59.8

✓ ✓ ✗ ✗ 49.7 58.6 61.4

✓ ✓ ✓ ✗ 50.6 60.7 62.7

✓ ✓ ✓ ✓ 51.4 61.9 63.4

Table 5. Ablation for key components proposed in FSCE.

Ablation for contrastive branch hyper-parameters. Pri-

mary RoI feature vector contains post-ReLU activations

truncated at zero, we therefore encode the RoI feature with

a contrastive head to z ∈ R
DC such that similarity can

be meaningfully measured. Based on our ablations, the

few-shot detection performance is not sensitive to the con-

trastive head dimension. And among the commonly used

temperature τ used in contrastive objectives [34, 32, 50], a

medium temperature τ = 0.2 works better than relatively

small value 0.07 and large value 0.5.

Contrast Head
Dimension

Temperature (τ )

0.07 0.2 0.5

DC = 128 63.1 63.4 62.9

DC = 256 62.4 63.4 63.3

Table 6. Ablation for contrastive hyper-parameters, results from

10 shot of PASCAL VOC Split 1.
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Figure 5. Conceptually and t-SNE visualization of the object proposal embeddings learned with and without our CPE loss, our CPE loss

explicitly model the within-class similarity and cross-class distance. t-SNE here shows the proposal encodings from randomly selected

200 PASCAL VOC images. Right panel shows bad cases rescued by our contrastive-aware representations.

Ablation for Proposal Consistency Control. In equa-

tion (3) and (4), we propose a compound proposal consis-

tency control mechanism, comprised of an indicator func-

tion with an IoU cut-off threshold φ, and a function g(·) for

re-weighting proposals with different level of IoU. Turns

out a re-weighting is not necessary and a simple high-IoU

cut-off works the best for 5 and 10 shots, but when num-

ber of shots is low, simply filtering out proposals with IoU

less than φ becomes less favorable as the data sparsity is

too severe. In low-shot cases, keeping all proposals but

down-weight low-IoU ones make more sense, and empir-

ically, exponential decay (easy mining) does worse than a

simple linear weighting.

Option Threshold
Reweight

function
Novel AP

3 5 10

Hard Clip
φ = 0.5 g(x) = 1 50.5 60.7 62.1

φ = 0.7 g(x) = 1 50.8 61.9 63.4

Weighting
φ = 0 g(x) = x 51.4 59.7 61.1

φ = 0 g(x) = ex − 1 50.8 59.6 61.6

Table 7. Ablation for proposal consistency control in FSCE.

Visual inspections and analysis. Figure 5 shows visual in-

spections of our proposed FSCE. We find in data-abundant

general detection, the saturated performance of fc classi-

fier and cosine classifier are essentially equal. fc layer can

learn sophisticated decision boundary from enough data.

Existing literature and we all confirm that cosine box clas-

sifier excels in few shot object detection, this can be at-

tributed to the explicitly modeled similarity helps form

tighter instances clusters on the projected unit hypersphere.

The intuition to spacing different categories is trivial, but

per our experiments well-established margin-based classi-

fiers [20, 21] does not work in this data-hunger setting (-

2 nAP compared to FSCE in 10 shots and worse in lower

shots). Instead of adding a margin to classifier, FSCE mod-

els the instance-level intra-class similarity and inter-class

via CPE loss and guide RoI head to learn contrastive-

aware object proposal representations. t-SNE [56] visual-

ization of objects proposal embeddings affirms the effec-

tiveness of our CPE loss in reducing intra-class variance

and form more defined decision boundaries, this aligns well

with our proposition. Figure 5 (c) shows example bad cases

from TFA that are rescued by our FSCE including, miss-

ing detection for novel instances, low confidence scores for

novel instances, and the pervasive misclassifications.

5. Conclusion

In this work, we propose a new perspective of solving

FSOD via contrastive proposals encoding. Effectively sav-

ing accurately localized objects from being misclassified,

our method achieves state-of-the-art results in any shot and

both benchmarks, with up to +8.8% on PASCAL VOC and

+2.7% on COCO. Our proposed contrastive proposal en-

coding head has a negligible cost and is generally applica-

ble. It can be chipped into any two-stage detectors without

interfering with the training pipeline. Also, we provide a

strong baseline comparable to contemporary SOTA to facil-

itate future research in FSOD. For a broader impact, FSOD

is of great worth considering the vast amount of objects in

the real world. Our work proves the plausibility of incor-

porating contrastive learning into object detection frame-

works. We hope our work can inspire more researches in

contrastive visual embedding and few-shot object detection.
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