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Abstract

We present HoHoNet, a versatile and efficient frame-

work for holistic understanding of an indoor 360-degree

panorama using a Latent Horizontal Feature (LHFeat). The

compact LHFeat flattens the features along the vertical direc-

tion and has shown success in modeling per-column modal-

ity for room layout reconstruction. HoHoNet advances in

two important aspects. First, the deep architecture is re-

designed to run faster with improved accuracy. Second, we

propose a novel horizon-to-dense module, which relaxes

the per-column output shape constraint, allowing per-pixel

dense prediction from LHFeat. HoHoNet is fast: It runs at

52 FPS and 110 FPS with ResNet-50 and ResNet-34 back-

bones respectively, for modeling dense modalities from a

high-resolution 512 × 1024 panorama. HoHoNet is also

accurate. On the tasks of layout estimation and semantic

segmentation, HoHoNet achieves results on par with cur-

rent state-of-the-art. On dense depth estimation, HoHoNet

outperforms all the prior arts by a large margin. Code is

available at https://github.com/sunset1995/HoHoNet.

1. Introduction

Panoramic images can capture the complete 360° FOVs

in one shot to provide a wide range of context that facil-

itates scene understanding [29]. As omnidirectional cam-

eras become more easily accessible and several large-scale

panorama datasets have been released, a growing number

of techniques are developed for tasks of panoramic scene

modeling such as semantic segmentation [9, 16, 28], depth

estimation [13, 24, 27], layout reconstruction [21, 26, 33],

and indoor real-time navigation [3].

This paper aims to address the problem of holistic scene

modeling from a single high-resolution equirectangular pro-

jection (ERP) image that captures the 360° panorama. We

present HoHoNet as an efficient, effective, and versatile

framework to achieve this goal (Fig. 1). The input ERP
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Figure 1: One framework for all: HoHoNet is a novel deep

learning framework for modeling layout structure, dense

depth, and semantic segmentation through a Latent Horizon-

tal Feature representation (LHFeat) whose height dimension

is flattened. The proposed horizon-to-dense (h2d) module

can produce dense predictions from the compact LHFeat.

image is first passed through a CNN backbone for feature

pyramid extraction, and then a proposed efficient height com-

pression module encodes the feature pyramid into a Latent

Horizontal Feature representation (LHFeat) whose height

dimension is flattened. Finally, from LHFeat, the HoHoNet

framework can yield both per-column and per-pixel modali-

ties with state-of-the-art quality.

Our way of encoding ERP images into LHFeat is inspired

by Sun et al. [21]. However, their model is only applicable

to tasks of predicting per-column modalities (e.g., corners

or boundaries of layout), which constrains its feasibility in

other scenarios requiring per-pixel predictions. We show that

LHFeat can flexibly encode latent features for recovering

the target 2D per-pixel modalities, based on our observation

of the strong regularity between human-made structures and

gravity aligned y-axis of ERP images (Fig. 2).

In HoHoNet we introduce a new horizon-to-dense (h2d)

module for recovering 2D per-pixel modalities while main-

taining the efficiency of overall framework (Fig. 1). A

naive method is to treat the channel dimension of horizon-

tal prediction as height and apply a linear interpolation if
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required. However, this requires the shallow Conv1D lay-

ers to disentangle the row-dependent information from the

row-independent LHFeat. The spatial (the row) blended

essence of LHFeat motivates us to model dense information

in the frequency domain, and we resort to the discrete cosine

transform (DCT) for its long-standing applications in data

compression. By replacing linear interpolation with IDCT,

we are able to improve the dense prediction results. With our

horizon-to-dense module, the efficiently encoded LHFeat

can now model dense modalities.

We summarize the key merits and contributions of Ho-

HoNet for holistic scene modeling from a 360° image.

• Fast. HoHoNet can yield dense modalities for a high-

resolution 512 × 1024 panorama at 52 FPS and 110

FPS with ResNet-50 and ResNet-34 respectively.

• Versatile. Our method relaxes the final prediction

space upon the compact LHFeat from O(W ) to the

most common O(HW ), capable of modeling layout,

dense depth, and semantic segmentation.

• Accurate. The performances of HoHoNet on semantic

segmentation and layout reconstruction are on par with

the recent state-of-the-art. On dense depth estimation,

HoHoNet outperforms prior arts by a margin.

2. Related work

Indoor 360 datasets. Scene modeling on 360° images is a

topic with a growing number of researches recently. Several

360 datasets are released to facilitate the learning-based

methods. Stanford2D3D [1] and Matterport3D [2] datasets

are currently the two largest real-world indoor 360 datasets

with various modalities being provided. To model the higher

level indoor structure, human-annotated layout datasets [25,

26, 29, 32, 33] are constructed with more data and topology.

Structured3D [30] is a recently published photorealistic 360

dataset with abundant data and structure annotations from

virtual environments. In this work, we focus on real-world

datasets to model depth, semantic, and layout modalities.

Input 360 format. Three standard 360 input formats are

commonly used in the literature—i) equirectangular pro-

jection (ERP), ii) multiple perspective projections, and iii)

icosahedron mesh. ERP preserves all captured information

in one image, but it also introduces distortion that might de-

grade the performance of the conventional convolution layer

designed for perspective imagery. A number of variants of

convolution layers [6, 7, 19, 20, 22] have been proposed

to address the issue of ERP distortion. Projecting the 360°

signal to multiple planar images makes it applicable to use

classical CNNs with plenty of pre-trained models available,

but the FOV of each view is limited. Several padding [4, 24]

and view sampling [9] strategies are proposed to deliver con-

text information between views. Recently, a few approaches
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(d) Gravity-aligned 360 image columns are easier to compress.

Figure 2: We show that the structure information of an image

column can be better kept in compression when the y-axis

of the image is gravity aligned. We sample 1000 depth maps

from Structured3D [30] dataset for the statistic. A 512×1024
depth map is compressed to 16 × 1024 via discrete cosine

transform with high frequency truncated, which is applied

to each column separately. We measure the absolute error

between the original depth and the inverse transformed one.

propose to represent the omnidirectional input via icosahe-

dron mesh for scene modeling [16, 28]. In this work, our

model takes ERP as the 360° input format and apply classi-

cal convolution layers directly. Although we speculate that

incorporating distortion-aware techniques into our model

with extra computational overheads could potentially im-

prove performance, for the sake of simplicity and efficiency,

we do not digress to pursue in that direction as the proposed

method already achieves state-of-the-art performance.

Depth estimation on 360 imagery. To model depth

on omnidirectional imagery, OmniDepth [31] designs

encoder-decoder architectures considering the ERP distor-

tion. PanoPopups [8] shows that learning 360 depth with

plane-aware loss is beneficial in the synthetic environment.

Recent works on panorama dense depth estimation propose

to jointly learn from different projections [24] or differ-

ent modalities [13, 27]. In contrast to most recent meth-

ods [13, 24, 27] that employ multiple backbones with cas-

caded training stages, HoHoNet consists of only one back-

bone and is trained in only one stage. Besides, HoHoNet

models dense depth through the compact LHFeat while the

prior arts estimate depth from conventional dense features.

Semantic segmentation on 360 imagery. Semantic seg-

mentation is a fundamental task for scene modeling. Dist-

Conv [22] proposes a distortion-aware deformable convolu-
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Figure 3: An overview of the HoHoNet framework for dense depth estimation. (a) A high-resolution panorama is first

processed by the backbone (e.g., ResNet). (b) The feature pyramid is then squeezed and fused by the proposed Efficient Height

Compression (EHC) module, with a Multi-Head Self-Attention (MHSA) for refinement (detailed in Sec. 3.2). Note that the

resulting LHFeat is compact (e.g., it is R256×1024 if the input image is R3×512×1024), enabling the overall network to run

much faster than conventional encoder-decoder networks for dense features. (c) Finally, 1D convolution layers are employed

to yield the final prediction. We find that predicting in DCT frequency domain brings about superior results, so we apply IDCT

to the prediction of each column (detailed in Sec. 3.4). Sec. 3 and supplementary material contain more architectural details.

tion layer for dense depth and semantic prediction on ERP

images. Most of the recent methods for 360 semantic seg-

mentation design a trainable layer operating on representa-

tion related to icosahedral mesh [5, 12, 16, 28]. However,

all methods above run on a relatively low resolution for the

panoramic signal. Tangent images [9] project omnidirec-

tional signals to multiple planar images tangent to a subdi-

vided icosahedron, which allows to process high-resolution

panoramas and to deploy the pre-trained weights on perspec-

tive images. Similar to [9], HoHoNet can also operate on

a high-resolution image, which is shown to be an essential

factor in achieving better semantic segmentation accuracy.

In contrast to the recent methods, HoHoNet runs on ERP im-

ages directly, and the highly optimized deep-learning library

can easily implement all our operations.

Latent horizontal features (LHFeat). HoHoNet is

closely related to HorizonNet [21] on the motivation of

using 1D features. However, HorizonNet only tackles a

specific layout reconstruction task and can only predict hori-

zontal modalities. We design a new architecture for encoding

the LHFeat with much better speed and accuracy, and, im-

portantly, we relax the constraint on output space via the

proposed horizon-to-dense module, which enables dense-

modality holistic scene modeling. We show that the compact

LHFeat can be effectively applied to more tasks including

dense depth estimation and semantic segmentation.

3. Approach

3.1. Framework overview

An overview of the proposed framework is depicted in

Fig. 3. We describe the details below.

Input 360 image. We use the standard equirectangular

projection (ERP) for 360° images. The resolution of input

ERP images, Hinp. × Winp., is a hyperparameter, and we

set it according to the standard practice of each benchmark.

We show in Fig. 2 that the structure signals of an image

column are preserved better after compression if the gravity

direction is aligned with the image’s y-axis, which is also

a desirable property for our framework to encode a column

into a latent vector. In this work, the 360 data provided by

the benchmarks are mostly well-aligned, so we do not apply

any pre-processing. Future applications could consider using

the IMU sensor or 360 VP detection algorithm [29, 32] to

pre-process and align the input for better robustness.

Backbone. We adopt ResNet [10], and the intermedi-

ate features from the four ResNet stages form the fea-

ture pyramid—{RCℓ×Hℓ×Wℓ}ℓ=1,2,3,4 where Hℓ =
Hinp.

2ℓ+1 ,

Wℓ =
Winp.

2ℓ+1 and Cℓ is the latent dimension of ResNet.

Extracting latent horizontal features (LHFeat). We

propose an efficient height compression (EHC) module to

extract the LHFeat RD×W1 from the backbone’s feature

pyramid. We detail the EHC module in Sec. 3.2.

Predicting modalities. We use N in this work to denote

the number of target channels for a task (e.g., N is set to 1
for depth estimation and is set to the number of classes for se-

mantic segmentation). Given the LHFeat RD×W1 , we show

how HoHoNet predicts 1D output RN×Winp. in Sec. 3.3. In

Sec. 3.4, we propose the first method to yield 2D dense pre-

diction R
N×Hinp.×Winp. from the compact LHFeat, which

widely extends the potential applications of the proposed

efficient framework.

3.2. EHC module for LHFeat

The proposed efficient height compression (EHC) module

is illustrated in Fig. 4. We first employ EHC blocks to

squeeze the height of each 2D feature from the backbone’s

pyramid. The resulting 1D features are then simply fused by

summation. Within the EHC block, the input 2D features are

first processed by a Conv2D block for channel reduction,

and then the spatial width is upsampled to W1 if needed,

and finally, another Conv2D block refines the upsampled

features. To efficiently reduce the feature height to 1, we
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Figure 4: The proposed efficient height compression (EHC)

module. The sizes of 2D and 1D features are denoted as

[C,H,W ] and [C,W ] respectively. The ConvSqueezeH
layer is a depthwise convolution layer with kernel size set to

the prior known input feature height without padding, which

produces output feature height 1. See Sec. 3.2 for details.

design the ConvSqueezeH layer, a depthwise convolution

layer with kernel size set to (h, 1) to cover full feature height

without padding. Note that the parameter h of each EHC

block is automatically pre-computed given Hinp.. Finally, a

Conv2D layer converts the number of channels to LHFeat’s

latent size D, and the height dimension is simply discarded

as it is already reduced to 1 by the ConvSqueezeH layer.

To further refine the initial LHFeat, the similar prior

work [21] adopts bidirectional LSTM [11] for horizontal

prediction. We find the recurrent layer accounts for 22%

of our deep net processing time, so we employ multi-head

self-attention [23] (MHSA) instead. Our results show that

MHSA runs faster and improves accuracy more.

3.3. Predicting 1D per­column modalities

The target modality of some applications can be formu-

lated into per-column prediction instead of the conventional

per-pixel format. An example in this regard has been shown

by Sun et al. [21] for layout estimation. To predict the 1D

modalities, we first upsample the horizontal features from

R
D×W1 to R

D×Winp. and apply three Conv1D layers of ker-

nel size 3, 3, and 1 respectively with BN, ReLU in between.

The last layer yields the final prediction in R
N×Winp. .

3.4. Predicting 2D per­pixel modalities

The strategy of shaping output space into per-column for-

mat does not apply to tasks that involve per-pixel modalities.

Here we present the horizon-to-dense module of HoHoNet to

derive dense prediction R
N×Hinp.×Winp. from the compact

LHFeat RD×W1 . This functionality opens the door to a more

common scenario for various applications.

The trainable layers for 2D modality prediction are al-

most the same as the layers for 1D prediction introduced in

Sec. 3.3 except that the number of channels in the output

Figure 5: The predictions at each column act as the weights

for the linear combination of components in basis M . Ho-

HoNet learns to predict in the spatial domain if M imple-

ments linear interpolation, and learns in the frequency do-

main if M implements IDCT. See Sec. 3.4 for details.

layer is augmented to E = N · r where N is the number of

target channels for a task and r is the number of components

shared by a image column. The produced prediction is then

reshaped from R
E×Winp. to R

N×r×Winp. . We present two

different operations to recover Rr back to R
Hinp. for each

column depending on the physical meaning we assign to the

r predicted values.

Interpolation. The simplest way is to view the latent di-

mension r as the output height and apply linear interpolation

to resize r to Hinp. if r < Hinp..

Inverse discrete cosine transform (IDCT). Inspired by

the application of the DCT in image compression for its

energy compaction property, we view the r predicted values

as if they are in the DCT frequency domain with higher

frequencies being truncated. In this case, we can apply

IDCT to recover the low-pass signal back to the original

signal. Let x = [xn]
r−1
n=0 ∈ R

r be the prediction; the final

output X = [Xm]H−1
m=0 ∈ R

H can be recovered by

Xm =
x0

2
+

r−1
∑

n=1

xn cos

[

π

H
n

(

m+
1

2

)]

. (1)

A unified view. We can put the two aforementioned op-

erations into a unified view of matrix multiplication as

X = Mx where x ∈ R
r, X ∈ R

H , and M ∈ R
H×r

consisting of r orthogonal column vectors. Depending on

the choice of basis, this unified view can implement linear

interpolation or IDCT, as shown in Fig. 5.

We find that IDCT constantly outperforms linear interpo-

lation. We elaborate the intuition as follows. The LHFeat

blends the spatial-row information (as described in Sec. 3.2),

so training the last layers to disentangle the row-dependent

dense modality from the flattened row-less LHFeat would

pose a challenge. Conversely, learning to predict in the

frequency domain can benefit from the well defined basis

functions with meaningful spatial frequencies that character-

ize each column’s original row information as a whole, and

therefore may alleviate the row-dependency problem.
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4. Experiments

In Sec. 4.1, we first conduct ablation studies for the

proposed components in HoHoNet. We then compare the

performance of HoHoNet with state-of-the-art methods on

dense depth estimation (Sec. 4.2), semantic segmentation

(Sec. 4.3), and layout estimation (Sec. 4.4). Note that we

train HoHoNet for each task separately and focus on show-

casing the effectiveness of HoHoNet in learning a modality.

In Sec. 4.5, we analyze the effect of non-gravity-aligned

view. More quantitative and qualitative results are included

in the supplementary material.

4.1. Ablation study

Table 1 summarizes the results of ablation experiments,

where we compare different settings of HoHoNet for dense

depth estimation. Detailed descriptions are as follows.

Ablation split for Matterport3D [2]. Matterport3D is a

large-scale real-world dataset of indoor panoramas. We

prepare the ablation split by splitting the official 61 training

houses into 41 and 20 houses (containing 4,921 and 2,908

panoramas) for training and validation during ablation study.

We do not use the official validation split for ablation study

as it will be used for state-of-the-art comparison later. The

input ERPs are resized to 512× 1024.

Training and evaluation. We use Adam [14] to optimize

the L1 loss for 40 epochs with batch-size of 4. The learning

rate is set to 1e-4, and we apply polynomial learning rate

decay with factor 0.9. Standard depth evaluation metric—

MAE, RMSE, and δ1—are used. We measure the average

frame per second (FPS) for processing 50 individual 512×
1024 panoramas on a GeForce RTX 2080 Ti.

Architecture of LHFeat extraction. Table 1a compares

the proposed efficient height compression (EHC) module

with the architecture used in the related work [21]. In [21], a

sequence of convolution layers gradually reduces the feature

heights to form the initial LHFeat, which is then followed

by a bidirectional LSTM (Bi-LSTM) for feature refinement.

(Detailed architectures are in the supplementary material.)

Table 1a shows that employing the proposed EHC module

for initial LHFeat extraction achieves better speed and ac-

curacy under different refinement configurations. We also

find that using multi-head self-attention for feature refine-

ment provides a better speed-accuracy tradeoff. Finally, our

overall architecture for extracting the LHFeat is consider-

ably better than [21]’s—the depth MAE is improved from

0.3002 to 0.2835 with FPS from 38 to 52. All experiments

in Table 1a deploy ResNet-50 as backbone and use the IDCT

with r = 64 for dense prediction.

Hyperparameters of horizon-to-dense. We compare the

two operations—linear interpolation (spatial domain) and

IDCT (frequency domain)—applied to dense prediction un-

HC Refine MAE↓ RMSE↓ δ1 ↑ FPS↑

[21]
-

0.3090 0.5238 0.8158 49

EHC 0.3022 0.5102 0.8204 54

[21]
Bi-LSTM

0.3002 0.5147 0.8254 38

EHC 0.2928 0.5036 0.8294 41

[21]
MHSA

0.2915 0.5035 0.8331 47

EHC 0.2835 0.4916 0.8389 52

(a) Comparison of the components for LHFeat extraction. The ‘HC’

column indicates the height compression block, which produces the

initial LHFeat from the backbone features. We compare the results

of ‘no feature refinement’, ‘refined by bidirectional LSTM’ [11] (Bi-

LSTM), and ‘refined by multi-head self-attention’ [23] (MHSA).

Refinement with MHSA achieves the most favorable results.

r Basis MAE↓ RMSE↓ δ1 ↑ FPS↑

32
Interp. 0.2886 0.5013 0.8356 52

IDCT 0.2847 0.4935 0.8369 52

64
Interp. 0.2880 0.4996 0.8351 52

IDCT 0.2835 0.4916 0.8389 52

128
Interp. 0.2926 0.5043 0.8308 52

IDCT 0.2850 0.4955 0.8405 52

256
Interp. 0.2937 0.5059 0.8260 52

IDCT 0.2903 0.5028 0.8334 52

512
Interp. 0.3045 0.5189 0.8227 52

IDCT 0.2913 0.5040 0.8341 52

(b) Comparison on the different settings of the proposed horizon-to-

dense module. The parameter r denotes the number of components

in a basis. We compare the two bases that implement the linear

interpolation (Interp.) and the inverse discrete cosine transform

(IDCT).

Backbone MAE↓ RMSE↓ δ1 ↑ FPS↑

ResNet34 0.2854 0.4976 0.8397 110

ResNet50 0.2835 0.4916 0.8389 52

(c) Comparison of the results with different backbones.

Table 1: Ablation study on depth modality using the ablation

split of Matterport3D [2]. More details are in Sec. 4.1.

der different basis setups. As shown in Table 1b, learning

to predict in frequency domain (with IDCT) is consistently

better than predicting in spatial domain (with linear interpo-

lation) for dense depth estimation upon the compact LHFeat.

Interestingly, the number of components r is not monotonic

to the resulting accuracy, and we find r = 64 is the best

setting for our model. As the compared operations introduce

negligible computational cost, the FPSs are almost identical

even if we increase r. All experiments in Table 1b share

the same deep net setting that consists of ResNet-50, the

proposed EHC, and the MHSA.

Comparison of the backbones. We compare the results

of different backbones in Table 1c, where we find that em-

ploying ResNet-34 can almost double the FPS with only a

little drop in accuracy comparing to ResNet-50.
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Dataset Method MRE MAE RMSE RMSE (log) δ1 δ2 δ3

Matterport3D

FCRN [15] 0.2409 0.4008 0.6704 0.1244 0.7703 0.9174 0.9617

OmniDepth (bn) [31] 0.2901 0.4838 0.7643 0.1450 0.6830 0.8794 0.9429

Equi [24] 0.2074 0.3701 0.6536 0.1176 0.8302 0.9245 0.9577

Cube [24] 0.2505 0.3929 0.6628 0.1281 0.7556 0.9135 0.9612

BiFuse [24] 0.2048 0.3470 0.6259 0.1134 0.8452 0.9319 0.9632

Ours 0.1488 0.2862 0.5138 0.0871 0.8786 0.9519 0.9771

Stanford2D3D

FCRN [15] 0.1837 0.3428 0.5774 0.1100 0.7230 0.9207 0.9731

OmniDepth (bn) [31] 0.1996 0.3743 0.6152 0.1212 0.6877 0.8891 0.9578

Equi [24] 0.1428 0.2711 0.4637 0.0911 0.8261 0.9458 0.9800

Cube [24] 0.1332 0.2588 0.4407 0.0844 0.8347 0.9523 0.9838

BiFuse [24] 0.1209 0.2343 0.4142 0.0787 0.8660 0.9580 0.9860

Ours 0.1014 0.2027 0.3834 0.0668 0.9054 0.9693 0.9886

Table 2: State-of-the-art comparison for depth estimation on real-world indoor 360 datasets—Matterport3D [2] and Stan-

ford2D3D [1]. The evaluation protocol follows [24], where the depth is clipped to 10 meter without depth median alignment.

4.2. Depth estimation

4.2.1 State-of-the-art comparison using the protocol of

Wang et al. [24]

Datasets and evaluation protocol. We compare Ho-

HoNet with state-of-the-art 360 depth estimation methods

on real-world datasets following the testing protocol of [24].

Matterport3D [2] has 10,800 panoramas, and its training split

contains 61 houses, and the testing results are reported on the

merged official validation and test split. Stanford2D3D [1]

contains 1,413 panoramas, and the fold-1 is used where the

fifth area is for testing, and the other areas are for training.

All the ERP images and depth maps are resized to 512×1024.

Standard depth estimation evaluation metrics—MRE, MAE,

RMSE, RMSE (log), and δ—are used. Depths are clipped to

10 meters without median alignment.

Implementation details. We employ ResNet-50 as the

backbone with the proposed EHC module for LHFeat extrac-

tion; the latent size D of LHFeat is set to 256; IDCT with

r = 64 components is applied to the model predictions. We

use Adam [14] to optimize the L1 loss for 60 epochs with

a batch-size of 4. The learning rate is set to 1e-4, and we

apply the polynomial learning rate decay with factor 0.9.

Results. Table 2 shows the comparisons with prior arts.

We demonstrate that the proposed HoHoNet outperforms

the previous state-of-the-art, BiFuse [24], by a large margin.

Note also that BiFuse takes both ERP and cubemap as their

model inputs and thus requires two backbone networks. Ho-

HoNet has only one backbone and the compact LHFeat can

achieve superior results, which shows the effectiveness of

the proposed framework.

A qualitative comparison with BiFuse [24] is provided in

Fig. 6, where we download their code1 and the pre-trained

1https://github.com/Yeh-yu-hsuan/BiFuse

weights for the comparison. We find that HoHoNet is good

at capturing the overall structure of the scene. However,

some drawbacks of HoHoNet are also observable through

the visualization in Fig. 6.

4.2.2 State-of-the-art comparison using the protocol of

Jin et al. [13]

Dataset and evaluation protocol. We also compare Ho-

HoNet with another set of methods following the testing pro-

tocol of [13]. A subset of the real-world Stanford2D3D [1]

dataset with extra layout annotation is used, where there are

only 404 and 113 panoramas for training and testing. All

the ERP images and depth maps are resized to 256 × 512.

Standard evaluation metrics—RMSE, MRE, log10, and δ1—

for depth estimation are used. Neither depth clipping nor

median alignment is applied during evaluation.

Implementation details. The network and the training de-

tails are the same as in Sec. 4.2.1. However, we find the

training strategy of [13] is very different from ours. For a

fair comparison, we also report the results of training Ho-

HoNet with the training protocol of [13]—SGD optimizer

with a batch-size of 8, learning rate of 0.01, and weight

decay set to 5e-4.

Results. The comparison on the Stanford2D3D subset is

shown in Table 3a. HoHoNet achieves the best accuracy

under the same training protocol, and using Adam optimizer

with our training setting can further improve the results. Note

that GeoReg360 [13] employs a ResNet-50 and a ResNet-34,

and the network is jointly trained with the additional layout

and semantic annotation. Conversely, HoHoNet employs a

single ResNet-50 and is only trained with depth modality,

but still shows superior results, which further demonstrates

the effectiveness of the proposed framework.
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Method RMSE MRE log10 δ1

FCRN [15] 0.534 0.164 0.073 0.749

UResNet [31] 0.590 0.187 0.084 0.711

RectNet [31] 0.577 0.181 0.081 0.717

Sph. FCRN [22] 0.523 0.145 0.067 0.783

U-Net [18] 0.472 0.140 0.062 0.803

GeoReg360 [13]† 0.421 0.118 0.053 0.851

Ours* 0.408 0.111 0.050 0.867

Ours 0.394 0.104 0.048 0.896

*Using [13] training protocol for a fair comparison.

†Using layout and semantic annotation.

(a) Quantitative comparison for dense depth on Stanford2D3D [1]

layout-available subset [32]. We strictly follow [13] evaluation

protocol. See detail in Sec. 4.2.2.

H ×W Input Method mIoU mAcc

Simple backbone w/ low-resolution 360°

64× 128

RGB-D Gauge Net [5] 39.4 55.9

RGB-D UGSCNN [12] 38.3 54.7

RGB-D HexRUNet [28] 43.3 58.6

RGB-D TangentImg [9] 37.5 50.2

RGB-D Ours 40.8 52.1

256× 512
RGB-D TangentImg [9] 41.8 54.9

RGB-D Ours 43.3 53.9

ResNet backbone w/ high-resolution 360°

2048× 4096 RGB TangentImg [9] 45.6 65.2

1024× 2048 RGB Ours 52.0 65.0

2048× 4096 RGB-D TangentImg [9] 51.9 69.1

1024× 2048 RGB-D Ours 56.3 68.9

(b) Quantitative comparison for semantic segmentation on Stan-

ford2D3D [1]. Results are averaged over the official 3 folds.

Method Backbone
IoU

FPS
3D 2D

LayoutNet v2 [33] ResNet-34 75.82 78.73 46

DuLa-Net v2 [26] ResNet-50 75.05 78.82 34

HorizonNet [21] ResNet-50 79.11 81.71 31

AtlantaNet [17] ResNet-50 80.02 82.09 5

Ours ResNet-34 79.88 82.32 110

(c) Quantitative comparison for room layout estimation on Matter-

portLayout [33].

Table 3: State-of-the-art comparison on various datasets and

different modalities.

4.3. Semantic segmentation

Dataset and evaluation protocol. We evaluate Ho-

HoNet’s semantic segmentation performance on Stan-

ford2D3D [1] dataset. As previous work, we report the aver-

aged results from the official 3-fold cross-validation splits,

using standard semantic segmentation evaluation metrics—

class-wise mIoU and class-wise mAcc.

Implementation detail. The architecture setting of Ho-

HoNet for semantic segmentation is almost the same as

for depth estimation in Sec. 4.2.1 except the last layer has

E = Nr = 13 · 64 = 832 channels. To compare with

methods using a simple backbone under low resolution, we

follow [9, 12, 28] to construct a shallow U-Net but purely

with planar CNN. For results on high resolution, we use

ResNet-101 as backbone. We use Adam [14] to optimize the

cross-entropy loss for 60 epochs with a batch-size of 4. The

learning rate is 1e-4 with polynomial decay of factor 0.9.

Results. Table 3b shows the comparison with previous

methods. On the lowest resolution, HexRUNet [28], with

a specially designed kernel on icosahedron representation,

achieves the best result. Ours with purely planar CNNs

and compact LHFeat is still competitive with the distortion

mitigated methods under the low-resolution settings. When

scaling to a high resolution, we achieve similar mACC with

the recent state-of-the-art [9], while our mIoU is signifi-

cantly better. Note that the results of [9] are obtained from a

stronger FCN-ResNet101 backbone and a higher input reso-

lution. Limited by our device and ERP projection, we can

only train on a lower 1024× 2048 resolution but still obtain

competitive performance with the current state-of-the-art on

360° semantic segmentation.

4.4. Room layout estimation

Dataset and evaluation protocol. We use MatterportLay-

out [33, 25] dataset, which is a real-world 360 Manhattan

layout dataset. The official evaluation function2 for 2D IoU

and 3D IoU is used directly, where the 2D IoU is measured

by projecting floor corners to an aligned floor, while 3D IoU

is for pop-up view considering both floor and ceiling corners.

Implementation details. HoHoNet is compatible with

the 1D layout representation proposed by HorizonNet [21].

Since our main focus is not to design a new method for lay-

out reconstruction, we use [21]’s loss, training protocol, and

post-processing algorithm directly. We find HoHoNet with

ResNet-34 shows slightly better accuracy than ResNet-50 in

validation, so we use the simpler ResNet-34 as backbone.

Results. The comparison with previous methods on Mat-

terportLayout is shown in Table 3c. The FPSs are obtained

using the official codes2345 and measured by the averaged

feed-forward times of the models on a GeForce RTX 2080

Ti. The result of AtlantaNet [17] is obtained from their of-

ficial new pre-trained weights5 with aligned data split and

re-evaluated by the official evaluation function2. Our result

is on par with the state-of-the-art AtlantaNet but 22× faster.

HoHoNet also outperforms HorizonNet [21] by +0.77 3D

2https://github.com/zouchuhang/LayoutNetv2
3https://github.com/SunDaDenny/DuLa-Net
4https://github.com/sunset1995/HorizonNet
5https://github.com/crs4/AtlantaNet
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Input BiFuse Ours Ground Truth Advantage

Figure 6: Qualitative comparison of the estimated dense depth with the prior art—BiFuse [24]. The ‘Advantage’ column shows

the MAE difference between ours and BiFuse’s where the blue color indicates ours is better and the red color for vice versa.

We find HoHoNet achieves good results in capturing the overall structure, but we also find some drawback in the visualization.

First, HoHoNet’s depth boundary is blurrier comparing to those of BiFuse. Second, some high-frequency signal in a column is

discarded by HoHoNet. See the last row for an example. We find that i) the boundary of the chairs in the left of the image

is blurrier, and ii) the lamp at the middle of the image is poorly reconstructed by HoHoNet while it seems to be easier to

reconstruct from the conventional dense features. The intuitive reason for the qualitatively identified drawback is that the

LHFeat focuses on learning the most prominent signals of a column, which makes it easier to optimize the training criterion.

IoU and +0.61 2D IoU, and is 3.5× faster, which shows the

effectiveness of the designed architecture.

4.5. Results on non­gravity­aligned views

In Fig. 2, we show that the structure signals of an image

column suffer more losses in compression if the image’s

y-axis is not aligned with the gravity. Though the 360 data

in all benchmarks we use are mostly well-aligned with grav-

ity, the captured 360° views could be non-gravity-aligned in

practice. In Table 4, we show the vulnerability of our model

to heavy pitch or roll rotation (see Fig. 2c and Fig. 2b for visu-

alization). The pre-trained model in our ablation study takes

the rotated images directly as input, and the output depth

maps are rotated back to the original view for a fair compar-

ison. As expected, the pre-trained model performs poorly

when input 360° views are not gravity-aligned. Introducing

10° of pitch or roll rotation increases MAE from 28.45cm to

more than 44cm. A simple solution is to use the IMU sensor

or 360 vanishing point detection algorithm [29, 32] to ensure

gravity alignment (the VP alignment is also a standard step

in 360 layout benchmark [25, 32, 33]).

We also show the results by training with U(−30°, 30°)
pitch/roll rotation as data augmentation, which makes the

model much more robust against the non-canonical view but

sacrifices the test-time performance when input 360° view

Training

Rot. Aug.

Testing

Cam. Rot.

MAE (cm)

0° 10° 20° 30°

Pitch
28.35 44.88 62.77 75.79

X 30.92 31.30 31.80 32.97

Roll
28.35 44.32 61.90 75.11

X 30.92 31.32 31.80 32.90

Table 4: Vulnerability to non-gravity-aligned views.

are gravity-aligned (MAE↑ from 28.35cm to 30.92cm).

5. Conclusion

This work presents a novel framework, HoHoNet, which

is the first step to learning compact latent horizontal features

for dense modalities modeling of omnidirectional images.

HoHoNet is fast, versatile, and accurate for solving layout

reconstruction, depth estimation, and semantic segmentation

with accuracy on par with or better than the state-of-the-art.
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