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Figure 1: We present a method that optimizes max-coverage camera placement based on learning. Given the real scene model

with the areas of interest (marked as black blocks) that require to be covered by a set of cameras, we learn a continuous scoring

function and apply continuous optimization on camera poses to improve the global coverage score. In this figure, the red area

in the top view of a scene indicates that the coverage increases after optimization.

Abstract

Efficient 3D space sampling to represent an underlying

3D object/scene is essential for 3D vision, robotics, and be-

yond. A standard approach is to explicitly sample a dense

collection of views and formulate it as a view selection prob-

lem, or, more generally, a set cover problem. In this paper,

we introduce a novel approach that avoids dense view sam-

pling. The key idea is to learn a view prediction network

and a trainable aggregation module that takes the predicted

views as input and outputs an approximation of their generic

scores (e.g., surface coverage, viewing angle from surface

normals). This methodology allows us to turn the set cover

problem (or multi-view representation optimization) into a

continuous optimization problem. We then explain how to

effectively solve the induced optimization problem using con-

tinuation, i.e., aggregating a hierarchy of smoothed scoring

modules. Experimental results show that our approach ar-

rives at similar or better solutions with about 10 x speed up

in running time, comparing with the standard methods.

1. Introduction

Computing the multi-view representation of an underly-

ing 3D object/scene is a fundamental problem in 3D vision

and beyond. The desired output shall use a small set of

views to maximize a pre-defined scoring function that in-

volves objectives such as coverage of the underlying scene

and viewing constraints among salient regions. A standard

approach is first to densely sample a set of views and then

formulate a generalized set cover problem, e.g., by optimally

selecting a subset of views to maximize the scoring function.

However, this approach usually incurs significant computa-

tional overheads due to the cost of rendering and solving the

induced optimization problem.

In this paper, we introduce a novel approach that avoids

explicitly sampling a dense set of views. Our approach is

motivated by training view prediction networks that take

a small collection of views as input and outputs predicted

views that correspond to other camera poses. Specifically,

our approach approximates the scoring function using a neu-

ral network that combines a view prediction network and a

scoring module.

The view prediction takes a 3D model and a camera pose

as input and outputs a concise representation under that view.

The scoring module then takes the view predictions under

multiple camera poses as input and outputs an approximation

of the pre-defined score. The entire network is trained end-to-

end. This approach allows us to turn the difficult multi-view

representation optimization problem into a simple continu-

ous optimization problem. In particular, our approach avoids

explicitly sampling rendered images (See Figure 1).

Our approach is motivated by the fact that although a

rendered image may contain rich geometric details of the

underlying scene, the visibility pattern, which affects the

coverage problem’s results, has low-dimensional structures.

A 3D scene usually consists of primitive geometric shapes,

and contours of shapes (e.g., sharp edges of box-shape ob-

jects) mostly capture the visibility patterns. Recent advances

in representations of 3D models and neural network models

make it possible to learn representations of visibility patterns
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to approximate the scoring function’s loss surface.

Specifically, our approach represents a 3D scene using

a volumetric representation. The view prediction network

combines a scene encoder, a camera transformation encoder,

and a coverage estimator decoder. We also design a separate

scoring module, which outputs the coverage score for a spe-

cific camera configuration. The resulting network allows us

to optimize an initial camera configuration by continuously

optimizing the camera configurations. This procedure is

efficient and effective.

Our learning-to-optimize formulation made two major

contributions: (1) we turn a discretized multiple-view se-

lection problem into a continuous optimization problem by

training a deep neural network that approximates the cov-

erage scoring function; (2) we provide the solver to find

the optimal camera poses given the formulation with much

less computational cost. We have evaluated our approach

on a benchmark dataset through greedy sampling over the

multi-view camera arrays in 339 high-resolution models of

real scenes. The evaluation results show that we achieve

similar coverage results comparing to greedy methods on

dense sampling grids with about 10× speed. Our method

also outperforms other fast baseline methods within similar

time budgets.

2. Related Works

The problem of optimizing a set of views to cover a 3D

model is related to a variety of problems in computer vision,

computer graphics, robotics, and combinatorics optimization.

In this section, we review relevant works in camera place-

ment, path planning, and view prediction, which are most

relevant to this paper’s context and the proposed approach.

2.1. Camera Placement

The camera placement problem originates from the ”Art

Gallery” problem [7] in computational geometry. Given

a 2D map, it aims to design an optimal static surveillance

system to completely cover the map. Directional cameras

with a pyramidal field of view and omnidirectional cameras

that can capture a spherical area around are two standard

camera models for this problem.

Many works on optimizing camera placement project a

3D scene to 2D polygons when computing the covered area

for simplicity [13, 24, 25, 29, 12], where the field of views

are reduced to triangles and circles, and check the feasibility

of camera placement back in the 3D scene. With the incre-

ment of computing power and availability of realistic 3D

models, Beker et al. [4] extended the coverage problem to the

real 3D setting, where the height of objects and their places

are evolved. The works in [2, 1] further generalized camera

placement optimization methods for 2D maps to compact

3D space.

A standard approach to compute visibility maps of scenes

is to discretize them as voxels [10]. The cameras are sampled

from a spatial grid. Under this formulation, coverage maxi-

mization is turned into a set cover problem (SCP), where a

set consists of voxels visible from one camera sample. Both

integer programming and greedy methods are applied for

solving SCP.

Fan et al. [11] conducted a comparison on both optimality

and time efficiency among different approximating methods.

Although greedy methods prove to be a good approximation

both theoretically [8, 34] and in practice with polynomial

complexity, we can only afford to compute visibility between

each camera-voxel pair with a coarse discretization. Zhao et

al.[37] proposed the idea of an iteratively refined dynamic

uniform grid for camera sampling to guarantee feasibility,

and we improve this technique for accelerating visibility

computation.

2.2. Path Planning

The problem of path planning is closely related to struc-

ture from motion (SfM), where the path’s length is a vital

factor of the utility function for 3D scanning and recon-

struction. Early works mainly focus on scanning a single

3D object with prior knowledge about its size and approxi-

mate position. The next best view (NextBest) strategy [3] is

applied to maximize the coverage of the 3D object with min-

imum numbers of views for the expectation of path length to

be small.

As NextBest is determined based on partial temporal ob-

servation of the objective, the two highlighted heuristic meth-

ods, voxel occupancy [9, 21] and occlusion edge [22, 23, 28]

make the simplest predictions in geometry on the unobserved

part to proceed. Therefore steps taken are conservative to

restrict viewpoints close to the surface of the objective of

scanning.

Sequeira and Goncalves [32] extended the occlusion

methods to the scanning of large indoor scenes and allowed

the view space to have high degrees of freedom. The defi-

nition of NBV requires the utility of every novel view to be

updated after each step. Therefore, only local path planning

is considered, and there is no guarantee on either the number

of views required for coverage or the overall path length.

When a coarse 3D model of the underlying object or scene

is available, one can hierarchically solve the view sampling

problem. [11, 30] first perform sampling on coarse grids to

build a rough model of the objective. These methods still

solve a set cover problem at the refinement phase to choose

the view candidates on a uniform fine grid. As a result, this

refinement phase can be very time-consuming.

Hepp et al. [14] applied a static and non-uniform grid

sampling for view candidates based on their distance to the

occupied voxels. While all these methods produce high-

quality 3D reconstructions, they are designed for one-time

applications and have to restart even with a simple perturba-

tion, such as moving one object in the scene.

Moreover, to build a surveillance system, occupied vox-

els and unoccupied ones may become the hotspot, which

dramatically increases the number of pairs for visibility com-

putation. After determining the camera views, connecting
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Figure 2: This figure illustrates the basic idea of our approach, which converts combinatorial optimization into continuous

optimization. We predict the ground-truth score with its learned approximation, given a discretized scene with a camera pose.

(a) shows the heat map of ground-truth scoring function in different positions with fixed view direction (a projection of a 6D

heat map) and its continuous approximation from learning. We fix the direction parallel to walls and obstacles to make views

and the scoring function easy to visualize. (b) shows three examples of ground-truth visible areas and the predicted ones

(middle-left, bottom-left, and top-right in order), cropped around cameras’ positions.

them using the shortest cycle solves the so-called travel-

ing salesman problem (or TSP), which is another NP-hard

problem. Many approximating algorithms [5, 19] have been

designed to solve TSP efficiently, and we do not focus on

this sub-problem in the paper.

2.3. View Synthesis

Our view prediction network is motivated by recent suc-

cesses in leveraging deep neural networks to model image

translation [15, 38] and neural rendering [35, 36, 20, 18, 33].

However, these works have focused on computing dense

pixel-wise outputs. In our early experiments, we found that

such dense outputs are not only time-consuming to compute,

but they also lead to rather non-smooth objective functions

that are hard to optimize. In contrast, we focus on designing

an intermediate representation suitable for approximating

the scoring function of the set cover problem.

3. Approach

This section describes the technical details of our ap-

proach. Section 3.1 presents the problem statement and

an overview of the proposed approach. Section 3.2 to Sec-

tion 3.6 elaborate on the details of each component.

3.1. Problem Statement and Approach Overview

Problem statement. The input to our approach consists of a

3D scene S = (V ,F ), represented as a triangular mesh and a

set of entities E ⊂F for coverage (which are represented as

a subset of triangular faces). In real applications, the entities

encode interest regions (e.g., products in a supermarket).

We also assume we have a pre-defined scoring function

s(e,C) ∈ R that takes an entity e ∈ E and the transformation

of a camera C as input, and outputs a score. Our goal is to

place a minimal number of cameras so that a user-specified

fraction of the entities are covered (e.g., 90%).

Approach overview. As illustrated in Figure 2, the key idea

of our approach is to formulate the view selection problem as

solving a continuous optimization problem. Traditional ap-

proaches typically apply combinatorial optimization to solve

the induced set cover problem. However, such approaches

require very dense sampling of the high-dimensional camera

configuration space. Our approach addresses this issue by

directly learning a continuous scoring function that takes a

collection of cameras as input and outputs a score to repre-

sent coverage. Instead of learning the overall coverage with

the entire configuration of cameras, which enlarges the latent

space drastically when the number of cameras increases, this

is done by learning a visibility function using a deep neural

network and then concatenate the visibility function to form

the scoring function. This continuous function enables us to

optimize camera poses by using powerful continuous opti-

mization tools. Our approach consists of five components,

which are highlighted below.

1. Scoring function modeling. Although our goal is to

minimize the number of cameras, directly formulating this

objective does not lead to optimization problems that are

easy to solve (due to the non-continuity nature of the camera

count). Our approach addresses this issue by formulating

a surrogate function, which is easier to approximate using

neural networks.

2. Visibility module. The visibility module replaces the

costly rendering operation with a network that takes a 3D

scene and a camera pose as input and outputs a visibility

map. A key advantage of this module is that one can easily

extract gradients of the visibility map concerning the camera

pose beside the visibility map. Such gradients are critical for

optimizing camera poses.

3. Scoring function module. The module takes n views

as input and outputs their score. This scoring module and

the visibility module are learned together so that the scor-

ing module’s output approximates the scores obtained from

solving costly combinatorial optimization.

4. Optimization. The optimization phase consists of a con-

tinuous optimization component and a discrete optimization

component. The continuous component fixes the number
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of cameras and applies BFGS [26] to optimize the camera

poses, obtaining a score for each camera count. The dis-

crete component determines the optimal number of cameras

through a binary search.

5. Hyper-parameter optimization. The last component per-

forms hyper-parameter optimization to maximize the perfor-

mance of our approach. This step involves using the finite-

difference method to compute gradients of hyper-parameter

to minimize the average number of cameras required on a

small validation set.

3.2. Scoring Function Modeling

This section presents a surrogate function for optimiz-

ing a collection of cameras. We will use this function

to generate the training data for learning the scoring net-

work. Specifically, consider n cameras C = {C1, · · · ,Cn}.
Let wie = w(e,Ci) ∈ {0,1},∀1 ≤ i ≤ n,e ∈ E be the indi-

cator that specifies whether the entity e is visible from the

camera Ci or not. Note that wie depends on the orientation

Ri ∈ SO(3) of the camera Ci and its field-of-view. With this

setup, we define the scoring function s(C1, · · · ,Cn) ∈ R that

measures the coverage of E using C as

s := ∑
e∈E

(

max
1≤i≤n

wies(e,Ci)

)

−λn (1)

where λ is the trade-off parameter between ensuring the

quality of the coverage and using a minimal number of cam-

eras. s(e,Ci) is the scoring function to be introduced next.

Note that although our goal is to ensure a user-specified cov-

erage rate, we found the formulation of (1), which mimics a

Lagrangian form, is easy to optimize.

We proceed to model s(e,Ci). Instead of using a binary

function, our goal is to model s(e,Ci) so that it depends

on the angle between the viewing direction and the face

geometry. This leads to a smooth scoring function that is

easy to optimize and approximate. Specifically, let t i be

the location of the camera Ci. With oe and ne we denote

the center and normal of the face associated with entity

e, respectively. Let θi j be the angle between the viewing

direction t i−oe and the face normal ne. With this setup, we

rewrite the scoring function s as

s := ∑
e∈E

max
1≤i≤n

(

wie · (cosα(θie)+δmax)−δmax

)

−λn (2)

where δmax is a hyper-parameter that ensures all the views are

covered. α is a hyper-parameter that determines the quality

function. Note that we will optimize all the hyper-parameters

in the final phase of our approach (See Section 3.6).

(2) is difficult to optimize because it is a highly non-

smooth (due to wie) and non-convex objective function of

the camera poses. One strategy to optimize such a rather

complex objective function is to discretize the solution space

by placing a dense set of camera pose samples and select a

subset of samples to optimize (2). This strategy usually leads

to solving a variant of the set cover problem [31]. However,

the downside of this approach is that the solution space is

only discrete. To obtain a sufficiently accurate solution, we

have to place a dense set of view samples, which incur a

high computational cost during testing time.

Our approach is to regress a neural network to predict

the score from a camera collection C = {C1, · · · ,Cn}. This

scoring function is learned from a sample set of camera

configurations and their corresponding scores. The learned

scoring function allows us to solve continuous optimization

problems to optimize the camera poses. Note that in contrast

to solving the problem of predicting a distribution over cam-

era collections (in which high-density regions correspond to

camera collections with high scores), our approach, which

integrates predicted visibility maps, is more interpretable.

3.3. View Prediction Network

This section introduces the technical details of the view

prediction network, which approximates the coverage func-

tion of the scene S from one camera C. We first describe

how we encode a 3D scene. We then discuss the network

structure and the training procedure.

Scene encoding. The input scene S is discretized by a 3D

grid (We used 85×85×7 in our experiment). Let GS denote

the 3D tensor that shares the same size as the grid, with

each cell counting the number of enclosed entities in that

cell. To encode the underlying scene (which dictates the

visibility information), we add a mask channel MS to the grid,

i.e., each cell is associated with a 0-1 indicator, specifying

whether some objects in the scene occupy this block or not.

Specifically, MS(i, j,k) = 0 if cell (i, j,k) is occupied and 1

otherwise. Note that the non-zero cells of GS and MS may

not be identical, as the entity set E of S can be a subset of its

faces.

We use another six channels PC (each channel has the

same dimension as GS and MS) to encode the camera pose.

The first three channels store the relative position of each

cell to the camera C. The second three channels encode the

absolute location of each cell in the scene coordinate system.

We found that such a dense encoding facilitates direct inter-

actions between the scene geometry and the camera pose

and improves the learned visibility map’s generability. In

the following, we denote the predicted view Ṽ (C,S) from

camera C as

Ṽ (C,S) :=Vθv
(GS,MS,PC,C) .

Note that Ṽ (C,S) is also a grid with the same dimension

as GS and MS. In the following, we introduce the network

design and the training procedure.

Network Structure. As illustrated in Figure 3 admits an

encoding-decoding pipeline. The encoding module extracts

features (e.g., shape, pose, spacial interaction between ob-

jects) from the queried scene with the given camera trans-

formation. This module has six 3D convolutions and three

fully connected layers. The decoder outputs a visibility
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Figure 3: Our view prediction network consists of an encoding module and a decoding module. Each module has six 3D

convolution or deconvolution layers. They are bridged together by three fully connected layers. The input is a dense 3D tensor

that encodes scene geometry and an input camera pose.

map from a combination of the encoded inputs above. The

convolution layers of the decoding module share the same

network as the encoder. Moreover, A rectified linear unit

follows the 3D convolution, fully connected, and 3D upsam-

pling/Deconvolution layers.

Learning a single camera view. To find an optimal set of

parameters θv for the view prediction network, we seek to

minimize the following loss function:

∑
<C,S,V ⋆>∈D

∥

∥

∥
(Ṽ (C,S)−V ⋆)◦

(

µ(GS +1)◦MS−1
)

∥

∥

∥

2

F

where D is the set of training data tuples, V ⋆ is the ground

truth for supervision, and ◦ denotes the element-wise prod-

uct; ‖ · ‖F is the tensor Frobenius norm. µ is a hyper-

parameter that adjusts the weights of three types of block:

blocks that are occupied, blocks that are not occupied and

contain no entity for detection, and blocks that contain at

least one entity for detection.

3.4. Scoring Module

The scoring module is designed to approximate the scor-

ing function (1). It is separated from the view prediction

network as an individual module because computing gradi-

ents of the outside ”max” in (1) is relatively inexpensive for

a discretized scene with a small camera budget. This mod-

ule’s input is the set of views from view prediction network

Ṽ1,Ṽ2, ...,Ṽn.

Specifically, we query the view prediction network with

scene S and camera transformations C1,C2, ...,Cn and collect

all the outputs to be the input of the scoring module, rear-

ranging them in a 4-dimensional tensor with n channels. We

pass the 4-dimensional tensor to a max-pooling layer along

the channels and take the summary of all entries as the final

estimation of the scoring function. We define the output g of

the scoring module as

g(Ṽ1,Ṽ2, ...,Ṽn) = ∑
i, j,k

(

max
1≤l≤n

Ṽl(i, j,k)

)

·MS(i, j,k)−λn

where (i, j,k) denotes the value of the (i, j,k)-th entry.

3.5. Optimization

This section discusses how to utilize the learned scoring

network to solve the view selection for each new scene.

This problem involves the optimization of two variables: the

number of cameras and camera locations. In the following,

we describe how to solve the continuous problem of placing

the cameras while fixing the number of cameras. We then

introduce how to optimize the number of cameras.

Continuous optimization of camera poses. The learned

scoring function g can be combined with other potential

functions for optimizing camera parameters. This paper con-

siders a log-barrier function to ensure that all camera poses

are feasible, i.e., they do not lie within the interior of the 3D

model. Specifically, consider n camera poses C1,C2, · · · ,Cn,

where n is fixed. We parameterize each camera pose Ci using

a vector vi = (ci; t i), where t i ∈ R
3 and Ri = exp(ci×) en-

code the location and the orientation of Ci, respectively. Let

v = (v1; · · · ;vn) ∈ R
6n collect all the camera variables. De-

fine gn(v) := g(V̂1, · · · ,V̂n), we setup the following objective

function to optimize the camera variables v:

max
v

gn(v)− γ
n

∑
i=1

log(dS(t i)) (3)

where dS : R3→R is the signed distance function associated

with the scene model S; γ is a hyper-parameter in front of

the log-barrier potential.

Starting from an initial camera configuration v0, e.g., by

solving the set cover problem using a coarse grid (See Sec-

tion 4), we follow a standard continuation approach to op-

timize (3) (c.f. [26]). Specifically, we choose a sufficiently
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Figure 4: Optimization pipeline (best viewed in color). Our optimization process takes a scene with entities for coverage and

initial camera poses as input and iteratively optimizes the scoring function. The view prediction module predicts the visibility

of the scene for each camera view. The scoring module implements max-pooling over all predicted views and then compute the

final score and back-propagate to update camera poses. In this pipeline we freeze the weights of the view prediction network.

large γ and gradually reduce its size by half γ ← γ
2

until γ
is sufficiently small. With fixed γ , we apply BFGS [26] to

solve (3). Note that although the objective function of (3)

is non-convex, we found that the final solution is generally

insensitive to the initialization, particularly when n is large.

Determine the number of cameras. There is a fundamen-

tal tradeoff between the number of cameras and the area of

the coverage, i.e., a large n usually corresponds to a large cov-

erage ratio. We determine the optimal number of cameras by

performing a binary search, i.e., starting from a sufficiently

large value for n, and find the smallest n so that the coverage

ratio is above 90%. For our experiments under real scenes,

the optimal value of n is around dozens.

3.6. HyperParameter Optimization

The performance of our approach depends on the hyper-

parameters, i.e., λ , α , δmax, and µ . These hyper-parameters

are used to regularize the underlying scoring function for op-

timization. Instead of choosing them manually, we optimize

them together through a finite-difference approach. Specifi-

cally, given the current hyper-parameters, we sample a set

of neighboring hyper-parameter configurations and run our

approach to obtain the corresponding value for each hyper-

parameter configuration (i.e., the average number of cameras

needed on the training scenes). We use these samples to

compute a numerical gradient (c.f. [26]) and use line-search

to obtain the next hyper-parameter configuration.

4. Experimental Results

This section presents an experimental evaluation of the

proposed approach. We begin by describing the problem

setup in Section 4.1. We then analyze the experimental

results in Section 4.2. Finally, we present an analysis of our

approach.

4.1. Experimental Setup

Dataset. The experimental study utilizes a dataset consist-

ing of 339 high-resolution 3D models reconstructed from

real indoor scenes. Each model contains a set of marked

entities, which are to be covered (Note that entity labels were

unavailable for other datasets such as Matterport [6]). We

split them into a training set with 300 models, a validation

set with ten models, and a testing set with 29 models.

To train the view prediction network, we randomly place

cameras in the training scenes and collect 500K views in

total. The views are sampled from a uniform discretizing

grid with random perturbation for both translations and rota-

tions on the scene, with step angle = 30◦ and step translation

= 40 centimeters. For each view, we used Unreal rendering

Engine 4 [16], which is based on ray tracing. This proce-

dure determines for each entity its score under the scoring

function.

Baseline approach. We employ three baseline approaches

for experimental. The first baseline is the view-planner

of [11] (or NextBest), which adopts a greedy method that

searches for the Next-Best View through a discretized space

of candidate locations for camera positioning. The second

baseline is SubMOpt [30], which performs sub-modular op-

timization for view-planning. The third baseline employs

simulated annealing to solve the induced combinatorial opti-

mization problem.

Implementation details. Our network is built in the Py-

Torch framework [27]. We use Adam solver [17] with an

initial learning rate of 0.002 and a decaying rate of 0.7 every

30 epochs. During testing, we generate the initial solution by

applying the greedy approach [31] on a coarse grid with 1.2

meters in translation (translation along the up-right axis is 0)

and 60◦ in rotation (rotation axis is along the up-right direc-

tion). All experiments were conducted on a machine with a
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S-Avg. S-Var. S-Per-Cam Time(sec.) #Cam (80%) Time (80%) #Cam (90%) Time(90%) Time(8.3%-Per-Came)

Sim. Anneal. 0.464 1.0×10−4 0.046 565 - - - - -

NextBest [11] 0.711 6.7×10−5 0.079 467 22.3 932 47.8 1784 -

SubMOpt [30] 0.691 1.6×10−4 0.080 463 21.1 1023 40.4 1484 4873

Ours 0.724 2.5×10−5 0.083 462 18.8 512 34.2 534 462

Table 1: Quantitative baseline comparisons. Columns 2 to 5 show the results with ten cameras. We kept the running time of

each method close for fair comparisons of their performance on coverage score. The overall scores and scores per camera are

given by the ratio between the entities covered by them and the total number of entities. Columns 6 and 7 show the average

number of cameras and each approach’s running time to achieve the coverage rate of 80%. Columns 8 and 9 show the average

number of cameras and each approach’s running time to achieve the coverage rate of 90%. Column 10 shows the average time

for the baseline approaches to achieve the same performance as ours.

38.8% 81.7% 77.3% 82.9%

49.3% 70.7% 60.1% 72.4%
Simul. Anneal. NextBest SubMOpt Ours

Figure 5: Qualitative evaluation of our method. Cameras are marked in red (visually enhanced with triangles and circles), and

the green area indicates the covered regions from the camera configurations, with the overall coverage rates marked below. For

configurations that are close to optimum, the visual difference in coverage becomes small. Since our method evolves coarse

sampling, to compare with the NextBest baseline, we mark the cameras with noticeable movement in circles with different

colors to make them more distinguishable.

3.2GHz CPU, 16G main memory, and Geforce GTX1080

GPU.

Evaluation protocol. We perform an experimental evalu-

ation, both quantitatively and qualitatively. For quantita-

tive evaluation, we compare the performance of our method

and baseline approaches under the same running time upper

bound. For qualitative evaluation, we provide a rendering of

the scene to visually inspect the quality of the results. Specif-

ically, we put a light source in the position of each camera

with its emission cone the same geometry as the view cone

of the camera.

4.2. Analysis of Results

Table 1 shows that our approach outperforms baseline

approaches across different settings. The second to the fifth

columns compare our approach and baseline approaches

under ten cameras. We can see that with a similar run-

ning time, our approach outperforms all baseline approaches.

Specifically, our approach achieves a coverage rate of 72.4%,

which is 1.3% higher than the top-performing baseline

NextBest [11] (See Figure 5 for a visual comparison). In

terms of the covering ratio of one camera, our approach

achieved an average ratio of 8.3%, which 0.3% higher than

the top-performing baseline. Our approach, NextBest, and

SubMOpt outperform simulated annealing by a salient mar-

gin. On the one hand, this indicates the hardness of view

selection. On the other hand, it also shows the greedy ap-

proach’s effectiveness for providing the initial solution.

Our approach separates from the baseline approaches

when increasing the number of cameras to achieve higher

coverage ratios (Note that simulated annealing did not con-

verge in this case). For example, to achieve the coverage

ratio of 80%, our approach only requires 18.8 cameras on

average, while the top-performing baseline requires 22.1

cameras on average. When increasing the coverage ratio

to 90%, our approach requires 34.2 cameras on average,

while the top-performing baseline requires 40.4 cameras on

average. In this regime, we can see the advantages of our

approach and SubMopt that uses global optimization tech-

niques. Another advantage of our approach comes from the

14470



Initial-I. Optimized-I. Initial-II. Optimized-II.

Figure 6: This figure shows the effects of our approach under different initializations. Each sub-figure shows the camera poses,

the covered regions are colored in green, and the uncovered regions are in gray. Every row shows a scene (top view). The first

and third columns show two different random initial camera configurations of the same scene. The second and fourth columns

show the corresponding optimized camera configurations. Cameras can be invalid and not marked initially and become valid

after optimization. We can see that the coverage change drastically after optimization.

running time, which only slightly increases when adding

more cameras. This is because the most time-consuming

part of our approach is sampling a grid of initial cameras, and

these initial samples are shared when applying our approach.

4.3. Analysis of Our Approach

Influence on camera initialization. Our experiments sug-

gest our approach only requires a rather coarse grid to com-

pute the initialization for our approach. Specifically, adding

more samples to the initial grid (i.e., 1.2m spatial resolution

and 60◦ angular resolution) does not increase the perfor-

mance of our approach anymore. Figure 6 shows that our

optimizer can significantly change the camera poses after

optimization (See the reduction in uncovered regions, which

are colored in gray). These results show that our approach

only places modest constraints on the initial camera configu-

ration and can be applied in different ways.

In contrast, the greedy approach and the next best viewer

planner, which operate on a discrete set of samples, require

much denser grids to achieve the same solution quality. In

terms of timing, the running time of sub-modular optimiza-

tion (the top-performing baseline) requires 4873 seconds

to achieve the same performance as reported in Table 1. In

other words, our approach leads to more than ten times speed

up from the state-of-the-art in terms of running time.

Different optimization strategies. Besides the BFGS opti-

mizer, we also tried other optimization strategies such as gra-

dient descent with line search and the active set method [26].

The optimal solutions of different approaches remain simi-

lar. Such results suggest that local minimums of the learned

continuous objective function are distinctive, which again

demonstrates our approach’s effectiveness.

Sensitivity of hyper-parameters. Note that our scoring

function depends on a few hyper-parameters. Varying these

hyper-parameters leads to variations of ±0.6 #cameras on

average (with the coverage threshold of 80%). In other

words, optimizing these hyper-parameters is effective for our

approach. On the other hand, such variations are not salient.

We can understand from the fact that although the scoring

function varies a lot, the locations of its local minimums may

possess small variations. This shows the flexibility of our

approach.

Scene resolution. We also tried using different resolutions

to encode the visibility network. The performance of our

approach remains similar. One explanation is that the vis-

ibility network is used to define a scoring function whose

input dimension is much smaller than the number of cells,

meaning a coarse grid is effective.

5. Conclusions

In this paper, we have introduced an approach for solving

the multi-view coverage problem for 3D models. We have

shown that it is possible to learn a neural network that takes

a camera pose and a 3D model as input and outputs a feature

representation of the visible area under that camera pose.

The feature representations under multiple views can be

aggregated to output an approximation of a pre-defined

coverage score. This approach enables fast local refinement

via gradient descent. We have demonstrated the usefulness

of this approach in accuracy and efficiency.
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