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Abstract

Diabetic retinopathy (DR) is the leading cause of per-

manent blindness in the working-age population. And au-

tomatic DR diagnosis can assist ophthalmologists to design

tailored treatments for patients, including DR grading and

lesion discovery. However, most of existing methods treat

DR grading and lesion discovery as two independent tasks,

which require lesion annotations as a learning guidance

and limits the actual deployment. To alleviate this problem,

we propose a novel lesion-aware transformer (LAT) for DR

grading and lesion discovery jointly in a unified deep model

via an encoder-decoder structure including a pixel relation

based encoder and a lesion filter based decoder. The pro-

posed LAT enjoys several merits. First, to the best of our

knowledge, this is the first work to formulate lesion discov-

ery as a weakly supervised lesion localization problem via

a transformer decoder. Second, to learn lesion filters well

with only image-level labels, we design two effective mecha-

nisms including lesion region importance and lesion region

diversity for identifying diverse lesion regions. Extensive

experimental results on three challenging benchmarks in-

cluding Messidor-1, Messidor-2 and EyePACS demonstrate

that the proposed LAT performs favorably against state-of-

the-art DR grading and lesion discovery methods.

1. Introduction

Diabetic retinopathy (DR) is one of the most severe com-

plications of blood vessel damage triggered by diabetes,

which can lead to vision impairment and even irreversible

blindness [13, 6, 25]. Usually, as shown in Figure 1 (a),

ophthalmologists identify DR severity based on the type

and number of associated lesion symptoms, such as microa-

neurysms, haemorrhages, soft exudates and hard exudates

[46, 22]. According to the international protocol [17, 35],

the severity of DR can be divided into five grades, including

normal, mild, moderate, severe non-proliferative, and pro-

liferative. These five grades can also be fused into binary
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Figure 1: (a) A sample fundus image with different lesions

is annotated. The arrows indicate the main DR-related le-

sions, among which the yellow, red and blue arrows repre-

sent haemorrhages, microaneurysms and exudates, respec-

tively. (b) The lesion regions marked by the green bounding

box in (a) are zoomed in, and we can observe that pixel ap-

pearances of the same lesion region tend to be similar. (c)

Our model can achieve DR grading and lesion discovery

jointly by using only the severity level labels.

classification, i.e. no DR (normal) versus DR (abnormal), or

non-referable (normal and mild DR) versus referable (mod-

erate and worse DR) [17, 34, 41].

Recently, with the development of deep learning, rapid

and automatic DR diagnostic models have been proposed

based on pixel-level supervision [46], or patch-level super-

vision [41, 23, 40]. However, their flexibility and scalability

are limited in the actual deployment because the annotation

of fundus images requires manual labeling by experienced

domain experts [22, 27, 32]. In addition, the identification

of lesion regions in fundus images is also very important,

since it provides visual instructions for ophthalmologists to

assist their diagnosis [12, 26, 30]. However, most existing

methods treat DR grading and lesion discovery as two in-

dependent tasks, and they both require lesion annotations

as a guide for learning. To overcome these issues, in [34],

a weakly supervised learning model based on DR severity

grades has been proposed for simultaneously grading DR

and highlighting lesion regions. Unfortunately, it tends to

be biased on the most important lesion regions while ig-

noring trivial lesion information contained in the fundus

images, which may impair the performance of lesion loca-

tion. Furthermore, the less discriminating regions found at

a certain severity level may be important for other severi-
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ty grades. Therefore, it is desirable to design an effective

model to obtain more complete lesion regions and their im-

portance for DR grading.

Based on the above discussions, to achieve accurate DR

grading and complete lesion discovery simultaneously, we

need to consider the following three aspects. (1) As shown

in Figure 1 (a), the distribution of lesion areas contained in

fundus images is usually relatively sparse. Besides, the ap-

pearance of pixels in the same lesion region is similar, but is

different from the background pixels, as shown in Figure 1

(b). Therefore, it is necessary to model the correlation be-

tween pixels for robust feature learning. (2) The importance

of different lesion regions in each image should be consid-

ered. The observation is that not all lesion information is

beneficial to a particular DR severity level, and even some

lesion information is noise signal. Therefore, we should e-

valuate and adaptively fuse the contribution of each lesion

region. (3) As shown in Figure 1 (a), each fundus image

may contain multiple different lesions. Moreover, even fun-

dus images of the same severity grade may contain incon-

sistencies in the type and number of lesions. Thus, it is de-

sirable to make the lesion-aware features diverse, namely,

capturing the corresponding lesion features from as many

lesion regions as possible. Besides, since each region indi-

cates a specific type of lesion or a combination of different

lesions, the compactness of the lesion features should also

be considered. In other words, the lesion features obtained

from the same lesion filter are encouraged to approach each

other to form a more compact distribution. In this way, each

lesion region can suggest more explicit lesion semantics and

different regions are combined to form a complete lesion

discovery, as shown in Figure 1 (c).

Motivated by the above observations, we propose a nov-

el lesion-aware transformer (LAT) for DR prediction and

lesion discovery in a unified deep model via an encoder-

decoder structure including a pixel relation based encoder

and a lesion filter based decoder. In the pixel relation

based encoder, we propose a self-attention mechanism to

adapt to pixel appearance variations. In specific, we model

the correlation of pixels to capture full-image context in-

formation. In other words, it is to realize the aggregation

of lesion pixels with similar appearances and the suppres-

sion of cluttered background pixels. In the lesion filter

based decoder, we design a self-attention module and a

cross-attention module to learn lesion-aware filters for le-

sion discovery in a given dataset. In the self-attention mod-

ule, we model the interactions between lesion filters to in-

crease their discrepancies. In the cross-attention module,

given an input fundus image, we treat the pixels of feature

map as keys and values. And we store each lesion filter as a

query, then the corresponding region activation map based

on the similarity between a specific query and keys can be

obtained. Each lesion region activation map denotes the s-

patial distribution of one specific lesion. With the region ac-

tivation map, we can get the lesion-aware features by adap-

tively blending values. Without the specific lesion informa-

tion as supervision signals, it is difficult to learn the lesion

filters well. Therefore, to learn lesion filters well with only

the severity level labels, we design two mechanisms includ-

ing a lesion region importance learning mechanism and a

lesion region diversity learning mechanism to constrain the

lesion-aware features. For the importance learning mecha-

nism, we introduce an importance prediction module to e-

valuate and adaptively fuse the contribution of each lesion

region. For the diversity learning mechanism, we adopt a

triplet loss based on the hard negative mining strategy to

achieve the diversity and compactness of the lesion-aware

features simultaneously. Then, based on the lesion-aware

features, we add a classification module containing a global

consistency constraint loss for DR grading. By optimizing

the encoder-decoder structure and the classification module

jointly, the lesion-aware filters can be learned through the

whole dataset during training. As a result, we can achieve

DR prediction and lesion discovery in a unified deep model.

To sum up, the contributions of this work can be sum-

marized as follows: (1) We propose a novel lesion-aware

transformer (LAT) to achieve DR grading and lesion discov-

ery jointly in a unified deep model via an encoder-decoder

structure including a pixel relation based encoder and a le-

sion filter based decoder. (2) To the best of our knowl-

edge, this is the first work to formulate lesion discovery

as a weakly supervised lesion localization problem via a

transformer decoder. To learn lesion filters well with on-

ly image-level labels, we design two effective mechanism-

s including lesion region importance and lesion region di-

versity. (3) Extensive experimental results on three chal-

lenging benchmarks including Messidor-1, Messidor-2 and

EyePACS demonstrate that the proposed LAT performs fa-

vorably against state-of-the-art DR grading methods.

2. Related Work

In this section, we briefly overview methods that are re-

lated to diabetic retinopathy assessment, weakly supervised

object localization and attention-based transformers.

Diabetic Retinopathy Assessment. Early methods on au-

tomatic diabetic retinopathy assessment involve two tasks

including DR grading and lesion discovery. For lesion dis-

covery, in order to assist ophthalmologists to make accu-

rate diagnosis, a series of approaches based on pixel-level

[12, 38, 8, 26] or patch-level annotation [29, 30] have been

proposed. Recently, deep features have become popular for

DR grading [18, 14, 36, 22]. Unlike handcrafted features,

deep features are more discriminative. Generally, existing

DR grading methods can be divided into two main cate-

gories. The first category is to use lesion information to

assist DR classification [3, 23]. In specific, Antal and Balin-
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t [3] detect microaneurysms and predict the DR severity

level based on the presence or absence of microaneurysm-

s. In [23], Lin et al. extract lesion information with the

original image for DR grading. The second category on-

ly uses image-level supervision for DR grading [22, 14].

In [22], Li et al. present a novel attention network for DR

prediction by exploring the internal relationship with dia-

betic macular edema. However, the above methods treat

DR grading and lesion discovery as two independent tasks.

In order to alleviate this limitation, several methods [40, 46]

have been proposed to achieve two tasks simultaneously. In

specific, Yang et al. [40] propose a two-stage framework

for both lesion detection and DR grading by using the le-

sion annotations. In [46], a collaborative learning mecha-

nism is proposed for both lesion segmentation and DR grad-

ing. Although the above methods have achieved remarkable

progress, most of them require pixel-level or patch-level le-

sion annotations, which is time-consuming and laborious.

Recently, Wang et al. [34] adopt attention maps to high-

light the suspicious regions and predict DR grading based

on both suspicious patches and the fundus image. However,

this method may tend to the most important lesion regions

and impair the performance of lesion discovery. Different

from previous methods, here, we formulate lesion discov-

ery as a weakly supervised lesion localization problem via

a transformer decoder. To learn lesion filters well with on-

ly image-level labels, we design two effective mechanisms

including lesion region importance and lesion region diver-

sity.

Weakly Supervised Object Localization. Weakly Super-

vised Object Localization (WSOL) aims to infer object po-

sitions and categories simultaneously with only image-level

labels. In order to achieve this goal, Zhou et al. [45] utilize

the Class Activation Mapping (CAM) to implement both

object classification and localization. Later, Grad-CAM

[28] and CCAM [39] have been proposed to obtain more ro-

bust localization performance. The inherent intuition inside

the CAM-based methods is that the classification networks

have the ability for mining the discriminative object region-

s. Unfortunately, a common issue for these methods is that

they tend to focus on the most discriminative object regions

which results in poor localization performance. To mitigate

this issue, several methods [7, 42, 37, 24] explore objects

context information to expand the most discriminative re-

gion to the entire object. Motivated by the above methods

for WSOL, we formulate lesion discovery as a weakly su-

pervised lesion localization problem. To achieve this goal,

we design a novel lesion-aware transformer by considering

lesion importance and lesion diversity for lesion filter learn-

ing with only image-level labels.

Attention-based Transformers. Since Vaswani et al. [31]

have proposed the attention-based transformer, it has been

widely applied in machine translation [15, 16], speech

recognition [5], word representation learning [11] and ob-

ject detection [4, 43, 47]. Transformer models introduce

multi-head attention layers, similar to Non-Local Neural

Networks [33], which can scan through each element of

a sequence and updated it by aggregating global informa-

tion from the whole sequence. Our model applies the idea

of transformer to learn the lesion-aware filters through the

encoder-decoder structure, so that we can discover as many

lesions as possible and predict the final severity level at the

same time.

3. Lesion-Aware Transformer Network

In this section, we describe the details of LAT for DR

prediction and lesion discovery in a unified deep model vi-

a an encoder-decoder structure including a pixel relation

based encoder and a lesion filter based decoder.

3.1. Overview

In DR grading, given a fundus image I, let F ∈
R

H×W×D denote the feature map extracted from a back-

bone network (e.g. ResNet50 [19]), where H , W and D
denote the height, width and channel number of the fea-

ture map, respectively. And each image is associated with

a ground truth label z ∈ R
C , where C represents the num-

ber of severity grades. During testing, given an image, the

outputs are a predicted DR severity level ỹ and the corre-

sponding lesion activation map. As illustrated in Figure 2,

the proposed LAT includes a pixel relation based encoder

and a lesion filter based decoder. The pixel relation encoder

is designed to adapt to pixel appearance variations by mod-

eling the correlation of pixels, and the lesion filter based

decoder is proposed to learn lesion-aware filters for lesion

discovery.

3.2. Pixel Relation based Encoder

To capture the full-image context information, we model

the correlation of pixels and aim to generate the enhanced

feature map to adapt to pixel appearance variations by using

a self-attention mechanism. In specific, we first utilize a

convolution layer to reduce the channel dimension of the

feature map to a smaller dimension L, and then flatten the

spatial dimensions into one dimension to produce the new

feature map F ∈ R
HW×L. Then, for the n-th head, we

obtain the queries, keys and values based on the feature map

F, denoted as Qn,Kn,Vn ∈ R
HW×L/8.

Qn = FWQ
n ,Kn = FWK

n ,Vn = FWV
n , (1)

where n = 1, 2, . . . , N , and N is the number of heads in the

multi-head attention mechanism. In this work, N is set to

8. WQ
n ,W

K
n ,WV

n ∈ R
L×L/8 are linear projections. Then,

we calculate the attention weight Sn ∈ R
HW×HW , which
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Figure 2: The architecture of our LAT including an encoder-decoder structure and the classification module. By optimizing

the encoder-decoder structure and the classification module jointly, the lesion-aware filters can be learned to identify diverse

lesion regions for DR grading and lesion discovery. Please refer to the Supplementary Material for details on self-attention,

cross-attention and feed-forward network (FFN).

models the interdependencies between different pixels,

Sn = softmax

(

QnK
T

n
√

L/8

)

, (2)

where
√

L/8 is a scaling factor. With the attention weight

Sn, we can get the output of the head Hn ∈ R
HW×L/8 by

adaptively blending values,

Hn = SnVn. (3)

We concatenate all single head outputs {Hn}
N
n=1 along

the channel dimension and obtain the final output H ∈
R

HW×L through a projection matrix WO ∈ R
L×L,

H = [H1;H2; . . . ;HN ]WO. (4)

The final output H can be further fed into the feed-forward

network (FFN) containing two fully connected layers to

produce the enhanced feature map F̃ ∈ R
HW×L. Through

the self-attention operation, the pixels of the lesion region

with similar appearance can be gathered, which also mean-

s the better suppression of the messy background pixels

caused by under/overexposure and out-of-focus problems.

3.3. Lesion Filter based Decoder

In order to identify different lesion regions, we design

the lesion filter based decoder to learn lesion-aware filters.

We first learn a set of lesion-aware filters P = {pk}Kk=1
,

and each filter pk is represented as a L-dimension vector

to recognize whether the pixels in the image belong to this

lesion region. Then, we use a self-attention mechanism

to further incorporate context information from other fil-

ters to increase their discrepancies. The implementation

is similar to Section 3.2 and only use {pk}Kk=1
to replace

F ∈ R
HW×L as the input. In this module, the output is

the updated lesion-aware filters P̃ = {p̃k}Kk=1
. Then we

propose a cross-attention mechanism to obtain lesion-aware

activation maps M ∈ R
H×W×K . Specifically, we denote

lesion-filters {p̃k}Kk=1
as queries, the enhanced feature map

F̃ ∈ R
HW×L as keys and values. Formally,

Qn = P̃WQ
n , Kn = F̃WK

n , Vn = F̃WV
n , (5)

where WQ
n ,W

K
n ,WV

n ∈ R
L×L/8 are linear projections,

and n = 1, 2, . . . , N . Then we have

Sn = softmax

(

QnK
T

n
√

L/8

)

, (6)

where
√

L/8 is a scaling factor, and Sn denotes similarities

of the n-th head between the enhanced feature map F̃ and

the enhanced lesion-aware filters P̃. Then, the lesion-aware

activation map M can be calculated as

M =
1

N

∑N

n=1
Sn, (7)

where N is the number of heads, M = {Mk}Kk=1
denotes a

set of lesion-aware activation maps, and the Mk ∈ RH×W

corresponds to the k-th lesion-aware activation map. Each

lesion region activation map denotes the spatial distribution

of one specific lesion, that is to say, the activation map has

high response values at the pixels belonging to the corre-

sponding lesion. After obtaining the similarities Sn, we can

calculate the multi-head attention output H according to (3)

and (4). Then it is fed to the feed-forward network (FFN)

to obtain a set of lesion-aware features X = {xk}Kk=1
.

Without the specific lesion information as supervision

signals, it is difficult to learn the lesion filters well. There-

fore, to learn lesion filters well with only the severity level

labels, we design two mechanisms to constrain the lesion-

aware features, the details are as follows.
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Lesion Region Importance Learning Mechanism. Con-

sidering that not all lesion information is beneficial to a

particular DR level, we should evaluate and incorporate

the contribution of each lesion region. In specific, we de-

sign an importance prediction module g(·|φ), parameterized

by φ, to evaluate the importance for lesion-aware features

{xk}Kk=1
and generate importance weights {tk}Kk=1

. The

prediction module g(·|φ) is a linear layer followed by a sig-

moid operation to output probabilities between 0 and 1.

tk = g(pk|φ), (8)

Lesion Region Diversity Learning Mechanism. Mean-

while, we adopt a triplet loss [44] based on the hard negative

mining strategy [20] to simultaneously achieve the diversity

and the compactness of the lesion-aware features. The in-

troduced triplet loss is based on a mini-batch of T images.

Therefore, we rewrite the lesion-aware features {xk}Kk=1

as {xk
m}Kk=1

, where m = 1, 2, . . . , T . The triplet loss is

trained on a series of triplets, and each triplet consists of

an anchor with the label k, a positive lesion feature with the

same label and a negative lesion feature with different label.

By treating the xk
m as the anchor, the hardest positive pair

and negative pair distances are defined as follows

d+(m, k) = min
q

〈xk
m,xk

q 〉

‖ xk
m ‖2‖ xk

q ‖2
,

d−(m, k) = max
z,n

〈xk
m,xz

n〉

‖ xk
m ‖2‖ xz

n ‖2
,

(9)

where q 6= m, z 6= k. q, n = 1, 2, . . . , T and z = 1, 2, . . . ,K.

The triplet loss function is adopted to reduce the dis-

tances of the hardest positive pairs and increase the dis-

tances of the hardest negative pairs.

Ltri =

T
∑

m=1

K
∑

k=1

[d+(m, k)− d−(m, k) + α]
+
. (10)

Where α is the margin between positive and negative pairs,

and [b]+ = max(b, 0). In this way, each lesion region can

suggest more explicit lesion semantics and different regions

are combined to form a complete lesion discovery.

3.4. DR Grading

For DR grading, we add a classification module, which

contains a global consistency loss based on the lesion-

aware features. In specific, lesion part-aware features

{xk
m}Kk=1

are fed to generate the DR severity level predic-

tion {yk
m}Kk=1

. yk
m ∈ R

C is corresponding to the k-th grade

prediction in the m-th image by the classification module,

which consists of K fully connected layers and the k-th lay-

er is denoted as h(·|σk), parameterized by σk.

yk
m = h(xk

m|σk), (11)

where k = 1, 2, . . . ,K and m = 1, 2, . . . , T . The final DR

prediction ỹm ∈ R
C can be calculated by a weighted sum

operation as follows

ỹm =
∑K

k=1
tkm · yk

m. (12)

The classification loss is given by the cross entropy loss be-

tween ground truth labels {zm}Tm=1 and the predicted la-

bels ỹm:

Lcls(zm, ỹm) = −
1

T

∑T

m=1

∑C

c=1
zcm · log ỹcm. (13)

Besides, for the m-th image, assume that the ground truth

label zm corresponding to the c-th category, the overall le-

sion feature oc
m ∈ R

L is calculated by a weighted sum strat-

egy with importance weights. Here, the importance weights

{tk}Kk=1
are also rewritten as {tkm}Kk=1

for the m-th image.

oc
m =

∑K

k=1
tkm · xk

m. (14)

Then, the local center of a particular category c in a mini-

batch can be calculated as

oc =
1

Tc

∑Tc

m=1
oc
m, (15)

where Tc represents the number of fundus images for c-th
in a minibatch. Meanwhile, we maintain a randomly initial-

ized memory bank {bc}Cc=1 , and bc ∈ R
L can be repre-

sented as the c-th class center. The memory bank will up-

date with moving average. Specifically, bc = (1− ηtc)b
c +

ηtco
c, where ηtc = e−tc is the updating rate of the class

c, and tc counts the number of category c in previous mini-

batches. Then, we introduce the global consistency loss to

align the local center oc with the corresponding global class

center by

Lgcl =
1

C

∑C

c=1
‖bc − oc‖

2
. (16)

We can alleviate problems such as Grades 0 and 1 that are d-

ifficult to distinguish by pushing class-specific local centers

in each minibatch approaching their corresponding global

centers, thereby improving DR grading performance.

3.5. Joint Training and Inference

By optimizing the encoder-decoder structure and the

classification module jointly, the lesion-aware filters can be

learned through the whole dataset during training. As a re-

sult, our LAT is trained by minimizing the overall objective

as follows

Lfinal = Lcls + λtriLtri + λgclLgcl. (17)

Where λtri and λgcl are balance parameters. During the

testing stage, for each fundus image, we can get fused acti-

vation map A ∈ R
H×W as follows,

A =
∑K

k=1
tkMk. (18)
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4. Experiments

4.1. Datasets and Evaluation Metrics

We conduct experiments on three benchmarks including

Messidor-1 [10], Messidor-2 [21] and EyePACS [1].

Messidor-1 dataset [10] contains 1,200 fundus images

from three French hospitals. However, their grading scale

only has four grades, which is slightly different from the

five-level international protocol [17, 35]. Therefore, we

implement referral classification and normal classification.

For referral classification, Grade 0 and Grade 1 are marked

as non-referable, while Grade 2 and Grade 3 are consid-

ered referable. For normal classification, only Grade 0 is

assigned as normal, and other grades are regarded as abnor-

mal. Following the protocol in previous methods [22, 34],

we use 10-fold cross validation on the entire dataset.

Messidor-2 dataset [10, 2, 21] is an extension of the orig-

inal Messidor-1 dataset, which contains 1,748 fundus im-

ages, and each image is divided into one of five DR grades.

Since there is no published method to compare on this

dataset, we mainly adopt it to implement ablation studies to

measure the effectiveness of each module of our proposed

LAT by calculating Referral AUC and Kappa score.

EyePACS dataset [1, 9] contains 35,126 training images,

10,906 validation images and 42,670 testing images. The

grading protocol is the same as the Messidor-2 dataset, with

five DR categories. For this dataset, we train the model with

the training set and evaluate the performance with the vali-

dation set and testing set respectively.

Evaluation Metrics. For the five DR categories, we use the

quadratic weighted kappa metric [1], which can effective-

ly reflect the performance of the model on the unbalanced

dataset. The value of kappa varies between 0 and 1, with

higher values indicating better model performance. And for

the referral or normal classification, we evaluate by using

the AUC (area under the ROC curve) metric.

4.2. Implementation Details

In this work, we use ResNet50 [19] as our backbone net-

work for feature extraction by removing the global average

pooling (GAP) layer and fully connected layer. The fun-

dus images are resized to 512 × 512 and augmented with

random horizontal flips, vertical flips and random cropping.

Extra color jitter is adopted to reduce overfitting. There are

two kinds of modules in our network including the impor-

tance prediction module g(·|φ) and the classification mod-

ule h(·|σ). The importance prediction module g(·|φ) con-

sists of a shared fully connected layer with 1 output channel

followed by a sigmoid operation. The classification mod-

ule h(·|σ) contains K fully connected layers with C output

channels. Empirically, the weight λtri for the triplet loss

and the λgcl for the global consistency loss are set to 0.04

and 0.01 respectively.

Table 1: Performance comparison with state-of-the-art

methods on the Messidor-1 dataset.

Methods Annotations
Referral Normal

AUC AUC

VNXK [32] - 0.887 0.870

CKML [32] - 0.891 0.862

Comp. CAD [27] - 0.910 0.876

Expert A [27] - 0.940 0.922

Expert B [27] - 0.920 0.865

Zoom-in-Net [34] - 0.957 0.921

AFN [23] patch 0.968 -

Semi+Adv [46] pixel 0.976 0.943

CANet [22] - 0.963 -

LAT (ours) - 0.987 0.963

4.3. Comparisons with Stateoftheart Methods

DR Grading Performance. We compare the proposed

method with various recent DR grading methods including

VNXK [32], CKML [32], Comprehensive CAD [27], Ex-

pert A [27], Expert B [27], Zoom-in-Net [34], AFN [23],

Semi+Adv [46], and CANet [22]. Table 1 shows the com-

parison of our model with state-of-the-art methods on the

Messidor-1 dataset, where ‘Annotations’ denotes whether

additional lesion information is used as pixel-level or patch-

level supervision signals to assist DR grading. According

to these results, we can observe that our LAT outperform-

s all baseline methods by a large margin for referral clas-

sification and normal classification, even if some methods

[23, 46] use additional lesion information to promote DR

classification. Compared to the state-of-the-art method Se-

mi+Adv [46], LAT using only image-level labels surpass-

es it by 2% on the Normal AUC metric. This is because

most methods cannot effectively distinguish between Grade

0 and Grade 1, which degrades Normal AUC score. Our

LAT can effectively alleviate this problem by forcing Grade

0 and Grade 1 to be close to the corresponding global cen-

ter through the global consistency loss, which increases the

discriminability. Besides, we can find that LAT obtains 3%

Referral AUC and 4.2% Normal AUC gain over Zoom-in-

Net [34], which uses the severity level label to implement

DR grading and lesion discovery like ours. This can be at-

tributed to the fact that our encoder-decoder architecture can

find diverse lesion regions and adaptively fuse correspond-

ing lesion features for comprehensive DR grading. More-

over, clinical experts [27] are also invited to grade on the

Messidor-1 dataset. It is worth mentioning that our method

outperforms the experts by 4.7% and 4.1% on the AUC of

referral and normal settings, respectively.

As shown in Table 2, we also experiment on the Eye-

PACS dataset to test the advancements of our proposed ap-

proach. The fundus images collected from this dataset are

captured by different types of cameras, so the quality of im-
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CAMGround-truth Diverse Region Activation Maps LAT

Figure 3: Visualization comparison with CAM [45]. Our method can identify diverse lesion regions through different filters,

and adaptively fuse these regions to produce a more complete and accurate activation map. The ground-truth contains

microaneurysms, haemorrhages, soft exudates and hard exudates, annotated with green, yellow, green and blue respectively.

Table 2: Performance comparisons of DR grading with

state-of-the-art methods on the EyePACS dataset.

Methods
Val set Test set

Kappa Kappa

Min-pooling [1] 0.860 0.849

o O 0.854 0.844

Reformed Gamblers 0.851 0.839

Zoom-in-Net [34] 0.865 0.854

AFN [23] 0.871 0.859

Semi+Adv [46] - 0.872

LAT (ours) 0.893 0.884

ages is relatively low which contains some noises like un-

der/overexposure and out-of-focus problem. Among them,

Kappa values of the top three places from the Kaggle chal-

lenge [1] are shown, where the top-1 place can achieve

84.9% Kappa score. And our LAT reports 89.3% and 88.4%

Kappa on the validation set and the testing set respective-

ly, and sets a new state-of-the-art performance. Besides,

LAT obtains 1.2% performance gain over the recent Se-

mi+Adv [46] on the validation set. The results show that

our method can adapt to pixel appearance variations by us-

ing a self-attention mechanism. In other words, the pixels of

the lesion region with similar appearance can be gathered,

and the noisy background pixels caused by overexposure or

underexposure can be suppressed.

Lesion Discovery Performance. To demonstrate the

power of LAT for lesion discovery, we compare it with

CAM [45], and its backbone is also set as ResNet50 [19]

Ground-truth CAM LAT- LAT

Figure 4: The qualitative comparisons for lesion discovery.

for a fair comparison. As illustrating in Figure 3, we vi-

sualize the different region activation maps generated from

different lesion filters for qualitative evaluation. We can

observe that different lesion filters can successfully identi-

fy multiple regions such as microaneurysms, haemorrhages

and exudates. This is because that we explicitly model a

set of lesion filters and learn them based on the encoder-

decoder structure to focus on different lesions, which great-

ly improves the performance of lesion discovery. Unlike our

method, CAM [45] and Zoom-in-Net [34] do not constrain

the obtained attention map for more lesion information, so

the network usually only focuses on the most important le-

sion region for DR grading. Please refer to the Supplemen-

tary Material for more visualization results and analysis.
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Table 3: Evaluation of the effectiveness of different compo-

nents on the Messidor-2 dataset.

Index P S C D G AUC Kappa

1 % % % % % 0.941 0.785

2 ! % % % % 0.948 0.797

3 % ! ! % % 0.959 0.821

4 % % ! % % 0.952 0.813

5 ! ! ! % % 0.959 0.839

6 ! ! ! ! % 0.971 0.842

7 ! ! ! ! ! 0.979 0.851

4.4. Ablation Studies

To look deeper into our method, we perform a series

of ablation studies using ResNet50 as the backbone on the

Messidor-2 dataset. Results and analysis are as follows.

Effectiveness of the lesion region diversity mechanis-

m for lesion discovery. To evaluate the improvement for

the region diversity mechanism, we compare two baselines

with our final proposed model, including CAM [45] and our

method without diversity mechanism (LAT-). Figure 4 illus-

trates qualitative comparisons for lesion discovery. We can

observe that CAM only focuses on the most important le-

sion region, and LAT- performs better than CAM. This is

because the self-attention mechanism in the decoder can in-

corporate contextual information from other lesion filters to

increase their discrepancies. Our method can achieve the

best performance for lesion discovery, because the diver-

sity mechanism can further explicitly constrain the lesion

features and enable the different filters to find their corre-

sponding regions containing more explicit lesion semantics.

Next, we analyze the effectiveness of each component of

our LAT for DR grading, including the pixel relation based

encoder (P), the self-attention layer (S) and cross-attention

layer (C) of the lesion filter based decoder, the region diver-

sity mechanism (D), and the global consistency loss (G).

Effectiveness of the pixel relation based encoder. In

index-2, we only add the self-attention based on the pixel

relation based encoder. Compared with the baseline model,

the performances is improved by 1.2% in Kappa score. This

is because the self-attention mechanism of the encoder can

model the correlation of pixels and generate more robust

features to adapt to pixel appearance variations.

Effectiveness of the lesion filter based decoder. Based

on index-1 and index-3, when the lesion filter based decoder

is added, the performance is improved by 1.8% in AUC and

3.6% in Kappa. This demonstrates the importance of learn-

ing lesion filters. Based on index-3 and index-4, when the

self-attention layer in decoder is added, the performance is

further improved. This demonstrates the self-attention can

further incorporate context information from other filters to

increase their discrepancies.

Effectiveness of the region diversity mechanism.

Based on index-5 and index-6, the performance is improved
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Figure 5: Evaluation of the hyperparameters λgcl, λtri, and

the number of lesion filters K.

by 1.2% in AUC, which shows the necessity of our diversity

mechanism. By adding the triplet loss, the learned lesion fil-

ters can be guided to discover diverse lesion regions, and the

corresponding features extracted from lesion regions can be

adaptively fused together to improve DR grading.

Effectiveness of the global consistency loss. Compared

with index-6 and index-7, when the global consistency loss

is added, the performance is further improved by 0.9% in

Kappa. This shows that this loss can alleviate problems

such as Grade 0 and 1 that are difficult to distinguish by

pushing class-specific local centers approaching their cor-

responding global centers.

Hyperparameter evaluations. We evaluate how λtri

and λgcl affect our model learning. Here, λtri controls the

relative importance of the region diversity mechanism, and

λgcl controls the relative importance of the global consis-

tency loss. As shown in Figure 5, our model achieves much

better performance when λtri = 0.04, λgcl = 0.01. We also

evaluate the influence of different lesion filters in Figure 5.

We conduct experiments to explore the effect of differen-

t numbers of lesion filters. The performance continues to

grow until K = 4, which means that 4 filters are enough to

identify lesion regions.

5. Conclusion

In this paper, we propose a novel lesion-aware trans-

former to achieve DR grading and lesion discovery joint-

ly via an encoder-decoder structure. Specifically, the pix-

el relation based encoder can effectively adapt to pixel ap-

pearance variations. And the lesion filter based decoder is

designed to learn lesion-aware filters for lesion discovery.

Extensive results on three challenging benchmarks demon-

strate that our LAT performs favorably against state-of-the-

art other approaches.
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