
RSN: Range Sparse Net for Efficient, Accurate LiDAR 3D Object Detection

Pei Sun1 Weiyue Wang1 Yuning Chai1 Gamaleldin Elsayed2

Alex Bewley2 Xiao Zhang1 Cristian Sminchisescu2 Dragomir Anguelov1

1Waymo LLC, 2Google

{peis}@waymo.com

Abstract

The detection of 3D objects from LiDAR data is a criti-

cal component in most autonomous driving systems. Safe,

high speed driving needs larger detection ranges, which are

enabled by new LiDARs. These larger detection ranges re-

quire more efficient and accurate detection models. Towards

this goal, we propose Range Sparse Net (RSN) – a sim-

ple, efficient, and accurate 3D object detector – in order to

tackle real time 3D object detection in this extended detection

regime. RSN predicts foreground points from range images

and applies sparse convolutions on the selected foreground

points to detect objects. The lightweight 2D convolutions

on dense range images results in significantly fewer selected

foreground points, thus enabling the later sparse convolu-

tions in RSN to efficiently operate. Combining features from

the range image further enhance detection accuracy. RSN

runs at more than 60 frames per second on a 150m× 150m
detection region on Waymo Open Dataset (WOD) while be-

ing more accurate than previously published detectors. As of

11/2020, RSN is ranked first in the WOD leaderboard based

on the APH/LEVEL 1 metrics for LiDAR-based pedestrian

and vehicle detection, while being several times faster than

alternatives.

1. Introduction

Concurrent with steady progress towards improving the

accuracy and efficiency of 3D object detector algorithms

[37, 24, 21, 16, 42, 32, 22, 30, 5, 35, 3], LiDAR sensor

hardware has been improving in maximum range and fidelity,

in order to meet the needs of safe, high speed driving. Some

of the latest commercial LiDARs can sense up to 250m [12]

and 300m [36] in all directions around the vehicle. This

large volume coverage places strong demands for efficient

and accurate 3D detection methods.

Grid based methods [43, 16, 42, 35, 8] divide the 3D

space into voxels or pillars, each of these being optionally en-

coded using PointNet [25]. Dense convolutions are applied

Figure 1. Accuracy (3D AP/L1 on WOD validation set) vs Latency

(ms). RSN models significantly outperform others. See Table 1 and

Table 2 for more details.

on the grid to extract features. This approach is inefficient

for large grids which are needed for long range sensing or

small object detection. Sparse convolutions [30] scale better

to large detection ranges but are usually slow due to the inef-

ficiencies of applying to all points. Range images are native,

dense representations, suitable for processing point clouds

captured by a single LiDAR. Range image based methods

[21, 3] perform convolutions directly over the range in order

to extract point cloud features. Such models scale well with

distance, but tend to perform less well in occlusion handling,

accurate object localization, and for size estimation. A sec-

ond stage, refining a set of initial candidate detections, can

help mitigate some of these quality issues, at the expense of

significant computational cost.

To address the shortcomings of existing approaches, we

5725

introduce a novel 3D object detection model – Range Sparse

Net (RSN) – which boosts the 3D detection accuracy and

efficiency by combining the advantages of methods based

on both dense range images and grids. RSN first applies

a lightweight 2D convolutional network to efficiently learn

semantic features from the high-resolution range image. Un-

like existing range image methods, which regress boxes

directly from their underlying features, RSN is trained for

high recall foreground segmentation. In a subsequent stage,

sparse convolutions are applied only on the predicted fore-

ground voxels and their learned range image features, in

order to accurately regress 3D boxes. A configurable sparse

convolution backbone and a customized CenterNet [41] head

designed for processing sparse voxels is introduced in or-

der to enable end-to-end, efficient, accurate object detection

without non-maximum-suppression. Figure 1 summarizes

the main gains obtained with RSN models compared to oth-

ers on the WOD validation set to demonstrate RSN’s effi-

ciency and accuracy.

RSN is a novel multi-view fusion method, as it trans-

fers information from perspective view (range image) to the

3D view (sparse convolution on the foreground points). Its

fusion approach differs from existing multi-view detection

methods [42, 35] in that 1) RSN’s first stage directly operates

on the high resolution range image while past approaches

[42, 35] perform voxelization (in a cylindrical or spherical

coordinate system) that may lose some resolution, especially

for small objects at a distance. 2) RSN’s second stage pro-

cesses only 3D points selected as foreground by the first

stage, which yields improvements in both feature quality and

efficiency.

RSN’s design combines several insights that make the

model very efficient. The initial stage is optimized to rapidly

discriminate foreground from background points, a task

that is simpler than full 3D object detection and allows a

lightweight 2D image backbone to be applied to the range

image at full resolution. The downstream sparse convolution

processing is only applied on points that are likely to belong

to a foreground object, which leads to additional, significant

savings in compute. Furthermore, expensive postprocessing

such as non-maximum suppression are eliminated by gather-

ing local maxima center-ness points on the output, similar to

CenterNet [41].

In this work, we make the following main contributions:

• We propose a simple, efficient and accurate 3D LiDAR

detection model RSN, which utilizes LiDAR range im-

ages to perform foreground object segmentation, fol-

lowed by sparse convolutions to efficiently process the

segmented foreground points to detect objects.

• We propose a simple yet effective temporal fusion strat-

egy in RSN with little additional inference cost.

• In experiments on the Waymo Open Dataset [34]

(WOD), we demonstrate the state of art accuracy and

efficiency for vehicle and pedestrian detection. Experi-

ments on an internal dataset further demonstrate RSN’s

scalability for long-range object detection.

• We conduct ablation studies to examine the effective-

ness of range image features and the impact of aspects

like foreground point selection thresholds, or end-to-

end model training, on both latency and accuracy.

2. Related Work

2.1. LiDAR Data Representation

The are four major LiDAR data representations for 3D ob-

ject detection including voxel grids, point sets, range images,

and hybrids.

Voxel grid based methods. 3D points are divided into a grid

of voxels. Each voxel is encoded with hand-crafted metrics

such as voxel feature means and covariances. Vote3Deep [7]

was the first to apply a deep network composed of sparse

3D convolutions to 3D detection. They also proposed an L1

penalty to favour sparsity in deeper layers. The voxels can

be scattered to a pseudo-image which can be processed by

standard image detection architectures. MV3D [4], PIXOR

[38] and Complex YOLO [33] are notable models based on

this approach. VoxelNet [43] applied PointNet [25] in each

voxel to avoid handcrafted voxel features. PointPillars [16]

introduced 2D pillar to replace 3D voxel to boost model

efficiency. For small enough 3D voxel sizes, the PointNet

can be removed if 3D sparse convolutions are used. Notable

examples based on this approach include Second [37] and

PVRCNN [30].

There are three major drawbacks to voxel based meth-

ods. 1) Voxel size is constant at all ranges which limits the

model’s capability at distance and usually needs larger re-

ceptive fields. 2) The requirement of a full 3D grid poses a

limitation for long-range, since both complexity and memory

consumption scale quadratically or cubically with the range.

Sparse convolutions can be applied to improve scalability

but is usually still limited by the large number of voxels. 3)

The voxel representation has a limited resolution due to the

scalability issue mentioned above.

Point set based methods. This line of methods treats point

clouds as unordered sets. Most approaches are based on

the seminal PointNet and variants [25, 26]. FPointNet[24]

detects objects from a cropped point cloud given by 2D

proposals obtained from images; PointRCNN[32] proposes

objects directly from each point; STD [39] relies on a sparse

to dense strategy for better proposal refinement; DeepHough

[23] explores deep hough voting to better group points before

generating box proposals. Although these methods have

the potential to scale better with range, they lag behind the

quality of voxel methods. Moreover, they require nearest

neighbor search for the input, scaling with the number of

points, which can be costly.

5726

Range image based methods. Despite being a native and

dense representation for 3D points captured from a single

view-point e.g. LiDAR, prior work on using 2D range im-

ages is not extensive. LaserNet [21] applied a traditional 2D

convolution network to range image to regress boxes directly.

RCD-RCNN [3] pursued range conditioned dilation to aug-

ment traditional 2D convolutions, followed by a second stage

to refine the proposed range-image boxes which is also used

by Range-RCNN [18]. Features learned from range images

alone are very efficient when performing 2D convolutions on

2D images but aren’t that good at handling occlusions, for

accurate object localization, and for size regression, which

usually requires more expressive 3D features.

Hybrid methods. MultiView [42] fuses features learned

from voxels in both spherical and Cartesian coordinates

to mitigate the limited long-range receptive fields result-

ing from the fixed-voxel discretization in grid based meth-

ods. Pillar-MultiView [35] improves [42] by further project-

ing fused spherical and cartesian features to bird-eye views

followed by additional convolution processing to produce

stronger features. These methods face similar scalability

issues as voxel approaches.

2.2. Object Detection Architectures

Typical two-stage detectors [10, 9, 28, 6] generate a

sparse set of regions of interest (RoIs) and classify each of

them by a network. PointRCNN [32], PVRCNN [30], RCD-

RCNN [3] share similar architectures with Faster-RCNN

but rely on different region proposal networks designed for

different point cloud representations. Single-stage detectors

were popularized by the introduction of YOLO [27], SSD

[20] and RetinaNet [19]. Similar architectures are used to de-

sign single stage 3D point cloud methods [43, 16, 37, 42, 35].

These achieve competitive accuracy compared to two stage

methods such as PVRCNN [30] but have much lower la-

tency. Keypoint-based architectures such as CornerNet [17]

and CenterNet [41] enable end to end training without non-

maximum-suppression. AFDet [8] applies a CenterNet-style

detection head to a PointPillars-like detector for 3D point

clouds. Our proposed RSN method also relies on two stages.

However the first stage performs segmentation rather than

box proposal estimation, and the second stage detects objects

from segmented foreground points rather than performing

RoI refinement. RSN adapts the CenterNet detection head

to sparse voxels.

3. Range Sparse Net

The main contribution of this work is the Range Sparse

Net (RSN) architecture (Fig. 2). RSN accepts raw LiDAR

range images [34] as input to an efficient 2D convolution

backbone that extracts range image features. A segmentation

head is added to process range image features. This segments

background and foreground points, with the foreground be-

Sparse Point Feature Extraction (3)

Segmentation (2a) Gather (2b)

Range Image Feature Extraction (1)

Box Regression (4)

t-2, t-1, t

Range images

azimuth

elongation

intensity

range

inclination

x
y

z

x
y

z

Figure 2. (Best viewed in color) Range Sparse Net object detec-

tion architecture. The net consists of five components: 1) Range

image feature extraction: a 2D convolution net on range images to

extract associated image features. 2) Foreground point selection:

foreground points are segmented on range images in 2a); together

with the learned range image features, they are gathered to sparse

points in 2b). 3) Sparse point feature extraction: per-point features

are extracted on the selected foreground points by applying sparse

convolutions. 4) A sparse CenterNet head to regress boxes. Red

points are selected foreground points. Light gray boxes are ground

truths. Teal boxes are detection results.

ing points inside ground truth objects. Unlike traditional

semantic segmentation, recall is emphasized over high preci-

sion in this network. We select foreground points based on

the segmentation result. The selected foreground points are

further voxelized and fed into a sparse convolution network.

These sparse convolutions are very efficient because we only

need to operate on a small number of foreground points. At

the end, we apply a modified CenterNet [41] head to regress

3D boxes efficiently without non-maximum-suppression.

5727

3.1. Range Image Feature Extraction (RIFE)

Range images are a native dense representation of the data

captured by LiDAR sensors. Our input range images contain

range, intensity and elongation channels, where range is the

distance from LiDAR to the point at the time the point is

collected, while intensity and elongation are LiDAR return

properties which can be replaced or augmented with other

LiDAR specific signals. The channel values of the input

range images are normalized by clipping and rescaling to

[0, 1].
A 2D convolution net is applied on the range image to si-

multaneously learn range image features and for foreground

segmentation. We adopt a lightweight U-Net [29] with its

structure shown in Fig. 3. Each D(L,C) downsampling

block contains L resnet [13] blocks each with C output

channels. Within each block the first has stride 2. Each

U(L,C) block contains 1 upsampling layer and L resnet

blocks. All resnet blocks have stride 1. The upsampling

layer consists of a 1× 1 convolution followed by a bilinear

interpolation.

D(1,16)

D(2,128)

U(1,16)

U(2,64)

U(2,128)

D(2,64)

D(2,128)

Figure 3. Range image U-Net feature extractor to compute high

level semantic range features. See section 3.1 for details.

3.2. Foreground Point Selection

To maximize efficiency through sparsity in the down-

stream processing, the output of this 2D convolutional net-

work is an ideal place to reduce the input data cloud to only

points most likely to belong to an object. Here, a 1× 1 con-

volutional layer performs pixelwise foreground classification

on the learned range image features from 3.1. This layer

is trained using the focal loss [19] with ground truth labels

derived from 3d bounding boxes by checking whether the

corresponding pixel point is in any box.

Lseg =
1

P

X

i

Li, (1)

P is the total number of valid range image pixels. Li is

the focal loss for point i. Points with foreground score si
greater than a threshold � are selected. As false positives

can be removed in the later sparse point feature extraction

phase (§3.3) but false negatives cannot be recovered, the

foreground threshold is selected to achieve high recall and

acceptable precision.

3.3. Sparse Point Feature Extraction (SPFE)

We apply dynamic voxelization [42] on the selected fore-

ground points. Similar to PointPillars [16], we append each

point p with p−m, var,p− c where m, var is the arith-

metic mean and covariance of each voxel, c is the voxel

center. Voxel sizes are denoted as ∆x,y,z along each dimen-

sion. When using a pillar style voxelization where 2D sparse

convolution is applied, ∆z is set to +∞. The selected fore-

ground points are encoded into sparse voxel features which

can optionally be further processed by a PointNet [25].

A 2D or 3D sparse convolution network (for pillar style,

or 3D type voxelization, respectively) is applied on the sparse

voxels. Fig. 4 illustrates the net building blocks and example

net architectures used for vehicle and pedestrian detection.

More network architecture details can be found in the Ap-

pendix A.

SC

SSC

SSC

SSC

SSC

B0 B1

B1
B0 / 2

B0

B0

B1
B0 / 2

B0
B0 / 2

B0
B0

PedL CarL

Figure 4. SPFE building blocks and example net architectures. See

section 3.3 for usage details. SC denotes 3x3 or 3x3x3 sparse

convolution [11] with stride 1 or 2. SSC denotes 3x3 or 3x3x3

submanifold sparse convolution. PedL (2D) and CarL (2D) are the

large pedestrian and vehicle SPFEs. /2 denotes stride 2.

3.4. Box Regression

We use a modified CenterNet [41, 8] head to regress boxes

from point features efficiently. The feature map consists of

voxelized coordinates V = {v|v ∈ N
d
0
}, where d ∈ {2, 3}

depending on whether 2D or 3D SPFE is used. We scale

and shift it back to the raw point Cartesian coordinate as

Ṽ = {ṽ|ṽ ∈ Rd}. The ground truth heatmap for any ṽ ∈ Ṽ

is computed as h = min{exp(− ||ṽ−bc||−||Ṽ−bc||
�2)|bc ∈

Bc(ṽ)} where Bc(ṽ) is the set of centers of the boxes that

contain ṽ. h = 0 if |Bc(ṽ)| = 0. This is illustrated in Fig.

5. � is a per class constant. We use a single fully connected

layer to predict heatmap and box parameters. The heatmap

is regressed with a penalty-reduced focal loss [41, 19].

Lhm = −
1

N

X

p̃

{(1− h̃)↵ log(h̃)Ih>1−✏+

(1− h)� h̃↵ log(1− h̃)Ih≤1−✏},

(2)

where h̃ and h are the predicted and ground truth heatmap

values respectively. ✏, added for numerical stability, is set

to 1e − 3. We use ↵ = 2 and � = 4 in all experiments,

following [41, 17].

5728

Figure 5. RSN centerness heatmap computation. The heatmap

value is computed by the distance between the point and the circle

placed at the box center, with radius being the distance from the

box center to the closest point (red point).

The 3D boxes are parameterized as b =
{dx, dy, dz, l, w, h, ✓} where dx, dy, dz are the box

center offsets relative to the voxel centers. Note that dz is

the same as the absolute box z center if 2D point feature

extraction backbone is used (see 3.3). l, w, h, ✓ are box

length, width, height and box heading. A bin loss [32] is

applied to regress heading ✓. The other box parameters

are directly regressed under smooth L1 losses. IoU loss

[40] is added to further boost box regression accuracy.

Box regression losses are only active on the feature map

pixels that have ground truth heatmap values greater than a

threshold �1.

L✓i = Lbin(✓i, ✓̃i), (3)

Lbi\✓i = SmoothL1(bi\✓i − b̃i\✓̃i), (4)

Lbox =
1

N

X

i

(L✓i + Lbi\✓i + Lioui)Ihi>�1 , (5)

where b̃i, bi are the predicted and ground truth box param-

eters respectively, ✓̃i, ✓i are the predicted and ground truth

box heading respectively. hi is the ground truth heatmap

value computed at feature map pixel i.
The net is trained end to end with the total loss defined as

L = �1Lseg + �2Lhm + Lbox (6)

We run a sparse submanifold max pooling operation on

the sparse feature map voxels that have heatmap prediction

greater than a threshold �2. Boxes corresponding to local

maximum heatmap predictions are selected.

3.5. Temporal Fusion

Existing range image based detection methods [21] [3] are

not temporal fusion friendly as range images are constructed

while the self-driving-car (SDC) moves. Stacking range

images directly gives little benefit for detection performance

due to ego-motion. Removing ego-motion from the range

images is not optimal because range reconstructions at a

different frame results in non-trivial quantization errors.

Temporal RSN takes a sequence of temporal invariant

range images as input as shown in Fig. 2. RIFE is applied on

each range image to segment foreground points and extract

range image features. Then we transform all the selected

points to the latest frame to remove ego-motion. During

the SPFE phase, we append to each point voxel features

computed from its own frame instead of all frames. This

works better because it avoids mixing points from different

frames together during voxelization. In addition, we append

the time difference in seconds w.r.t. the latest frame to

each point to differentiate points from different frames. The

selected foreground points from all frames are processed by

the SPFE backbone same as single frame models.

4. Experiments

We introduce the RSN implementation details and illus-

trate its efficiency and accuracy in multiple experiments.

Ablation studies are conducted to understand the importance

of various RSN components.

4.1. Waymo Open Dataset

We primarily benchmark on the challenging Waymo Open

Dataset (WOD) [34]. WOD released its raw data in high

quality range image format directly, which makes it a better

fit for building range image models. The dataset contains

1150 sequences in total, split into 798 training, 202 valida-

tion, and 150 test. Each sequence contains about 200 frames,

where each frame captures the full 360 degrees around the

ego-vehicle that results in a range image of a dimension

64 × 2650 pixels. The dataset has one long range LiDAR

with range capped at 75 meters and four near range LiDARs.

We only used data from the long range LiDAR but still eval-

uated our results on full range. In practice, RSN can be

adapted to accept multiple LiDAR images as inputs.

4.2. Implementation Details

RSN is implemented in the Tensorflow framework [1]

with sparse convolution implementation similar as [37].

Pedestrians and vehicles are trained separately with differ-

ent SPFEs (§3.3). They share the same RIFE (§3.1). We

show results from 3 vehicle models CarS, CarL, CarXL and

2 pedestrian models PedS, PedL with network details de-

scribed in §3.3 and Appendix A. Each model can be trained

with single frame input (e.g. CarS 1f) or 3 frame input (e.g.

CarS 3f). The input images are normalized by min(v,m)/m
where v is range, intensity and elongation, m is 79.5, 2.0, 2.0

respectively. The last return is picked if there are multiple

laser returns.

The foreground score cutoff � in §3.2 is set to 0.15

for vehicle and 0.1 for pedestrian. The segmentation loss

weight �1 in Eq.6 is set to 400. The voxelization region is

[−79.5m, 79.5m] × [−79.5m, 79.5m] × [−5m, 5m]. The

voxel sizes are set to 0.2 meter and 0.1 meter for vehicle

model and pedestrian model respectively. Per object � in

the heatmap computation is set to 1.0 for vehicle and 0.5 for

pedestrian. The heatmap loss weight �2 is set to 4 in Eq. 6.

The heatmap thresholds �1, �2 in §3.4 are both set to 0.2. We

5729

use 12 and 4 bins in the heading bin loss in Eq. 3 for heading

regression for vehicle and pedestrian, respectively.

4.3. Training and Inference

RSN is trained from scratch end-to-end using an ADAM

optimizer [15] on Tesla V100 GPUs. Different SPFE back-

bones are trained with the maximum possible batch sizes

to fit the net in GPU memory. Single frame models are

trained on 8 GPUs. 3-frame temporal models are trained on

16 GPUs. We adopted the cosine learning rate decay, with

initial learning rate set to 0.006, 5k warmup steps starting

at 0.003, 120k steps in total. We observed that accuracy

metrics such as AP fluctuate during training because the

points selected to SPFE keep changing, although networks

always stabilize at the end. This input diversity to SPFE

adds regularization to RSN. Layer normalization [2] instead

of batch normalization [14] is used in the PointNet within

each voxel because the number of foreground points varies a

lot among input frames.

We rely on two widely adopted data augmentation strate-

gies, including random flipping along the X axis and global

rotation around the Z axis with a random angle sampled from

[−⇡/4,⇡/4] on the selected foreground points.

During inference, we reuse past learned range features

and segmentation results (outputs of foreground point se-

lection) such that the inference cost for temporal models

remains similar as the single frame models.

4.4. Results

All detection results are measured using the official WOD

evaluation detection metrics which are BEV and 3D average

precision (AP), heading error weighted BEV and 3D average

precision (APH) for L1 (easy) and L2 (hard) difficulty levels

[34]. The IoU threshold is set as 0.7 for vehicle, 0.5 for

pedestrian. We show results on the validation set for all

our models in Table 1 and Table 2, results on the official

test set in Table 3. The latency numbers are obtained on

Tesla V100 GPUs with float32 without TensorRT except

PVRCNN which is obtained on Titan RTX from PVRCNN

authors. In order to better show the latency improvement

from our RSN model, NMS timing is not included in all

of the baselines because our efficient detection head can be

adapted to most of other baselines. We do not show timing

for our single frame models as their latency is bounded by

their multi-frame correspondences.

Table 1 shows that our single frame model CarS 1f is at

least 3x more efficient than the baselines while still being

more accurate than all single stage methods. Its temporal ver-

sion boosts the accuracy further at negligible additional infer-

ence costs. CarXL 3f significantly outperforms all published

methods. It also outperforms PVRCNN-WOD [31], the most

accurate LiDAR only model submitted in the Waymo Open

Dataset Challenge.

Table 2 shows more significant improvements on both

efficiency and accuracy on pedestrian detection. The efficient

single frame model PedS 1f is significantly more accurate

and efficient than all published single-stage baseline models.

Its temporal version further improves accuracy. The less

efficient model PedL 3f , outperforms PVRCNN-WOD [31],

while still being significantly more efficient than all baselines.

We see additional efficiency gains on pedestrian detection

compared with vehicle detection because there are much

fewer people-foreground points. Given the high resolution

range image and the high recall foreground segmentation,

our model is a great fit for real time small object detection.

Table 3 shows that RSN ensemble outperforms the PVR-

CNN WOD challenge submission [31] which is an ensemble

of many models.

Fig. 6 shows a few examples picked from Waymo Open

Dataset validation set to demonstrate the model quality in

dealing with various hard cases such as a crowd of pedestri-

ans, small objects with few points, large objects, and moving

objects in temporal model.

4.5. Foreground Point Selection Experiments

Foreground point selection is one of the major contribu-

tions in the RSN model that supports better efficiency. We

conduct experiments by scanning the foreground selection

threshold � described in §3.3. As shown in Fig. 7, there

exists a score threshold � that reduces model latency signifi-

cantly with negligible impact on accuracy.

In practice, � and �1 in Eq 6 need to be set to values so

that selected foreground points have high recall and enough

accuracy to achieve good speedup. In our experiments, fore-

ground precision/recall is 77.5%/99.6% for CarS 3f and

15.3%/97.6% for PedS 3f. We can start with low � and scan-

ning some possible values of �1 to pick one �1. Then we

grid search a few �.

4.6. Ablation study

In this section, we show additional ablation studies in

order to gain insight into model design choices. All experi-

ments in this section are conducted on our efficient models

CarS 3f and on PedS 3f.

Table 4 shows that features learnt from range image not

only help segment foreground points, thus supporting model

efficiency, but also improve model accuracy as shown in row

-RI. Accuracy improvement is higher for pedestrians because

of the high resolution semantic feature learned especially

impacting the long range. Gradients passed from SPFE to

RIFE help detection accuracy as shown in row -E2E. Tempo-

ral variant features (x, y, z) with ego-motion removed hurt

detection accuracy for pedestrian detection as shown in row

+xyz. Detection accuracy drops if the heatmap normalization

described in §3.4 is disabled as shown in row -Norm.

5730

Method
Latency AP/APH L1 AP/APH L2 AP/APH L1 3D by distance

(ms) BEV 3D BEV 3D <30m 30-50m > 50m

LaserNet CVPR’19 [21] * 64.3 71.2/67.7 52.1/50.1 - - 70.9/68.7 52.9/51.4 29.6/28.6

P.Pillars CVPR’19[16] † 49.0 82.5/81.5 63.3/62.7 73.9/72.9 55.2/54.7 84.9/84.4 59.2/58.6 35.8/35.2

PillarMultiView ECCV’20[35] 66.7‡ 87.1/- 69.8/- - - 88.5/- 66.5/- 42.9/-

PVRCNN CVPR’20[30] - 83.0/82.1 70.3/69.7 77.5/76.6 65.4/64.8 91.9/91.3 69.2/68.5 42.2/41.3

PVRCNN WOD’20[31] 300 ¶ - 77.5/76.9 - 68.7/68.2 - - -

RCD CORL’20 [3] - 82.1/83.4 69.0/68.5 - - 87.2/86.8 66.5/66.1 44.5/44.0

RSN CarS 1f (Ours) - 86.7/86.0 70.5/70.0 77.5/76.8 63.0/62.6 90.8/90.4 67.8/67.3 45.4/44.9

RSN CarS 3f (Ours) 15.5 88.1/87.4 74.8/74.4 80.8/80.2 65.8/65.4 92.0/91.6 73.0/72.5 51.8/51.2

RSN CarL 1f (Ours) - 88.5/87.9 75.1/74.6 81.2/80.6 66.0/65.5 91.8/91.4 73.5/73.1 53.1/52.5

RSN CarL 3f (Ours) 25.4 91.0/90.3 75.7/75.4 82.1/81.6 68.6/68.1 92.1/91.7 74.6/74.1 56.1/55.4

RSN CarXL 3f (Ours) 67.5 91.3/90.8 78.4/78.1 82.6/82.2 69.5/69.1 92.1/91.7 77.0/76.6 57.5/57.1

Table 1. Performance comparisons on the Waymo Open Dataset validation set for vehicle detection. (*) is re-implemented by [3]. (†) is

our re-implementation with flip and rotation data augmentation following PointPillar setting in [34] which is better than other PointPillars

re-implementations such as [42]. (‡) is from [35]. ¶is obtained privately from PVRCNN authors who benchmarked on Titan RTX. All the

other latency numbers are obtained based on our own implementations on Tesla V100 GPUs. They are averaged on 10 scenes, each has

more than 100 vehicles.

Method
Latency AP/APH L1 AP/APH L2 AP/APH L1 3D by distance

(ms) BEV 3D BEV 3D < 30m 30-50m > 50m

LaserNet CVPR’19[21]* 64.3 70.0/- 63.4/- - - 73.5/- 61.6/- 42.7/-

P.Pillars CVPR’19[16]† 49.0 76.0/62.0 68.9/56.6 67.2/54.6 60.0/49.1 76.7/64.3 66.9/54.3 52.9/40.5

PillarMultiView ECCV’20[35] 66.7‡ 78.5/- 72.5/- - - 79.3/—– 72.1/—– 56.8/—–

PVRCNN WOD’20[31] 300 ¶ - 78.9/75.1 - 69.8/66.4 - - -

RSN PedS 1f (Ours) - 80.7/74.9 74.8/69.6 71.2/65.9 65.4/60.7 81.4/77.4 72.8/66.8 59.0/50.6

RSN PedS 3f (Ours) 14.4 84.2/80.7 78.3/75.2 74.8/71.6 68.9/66.1 81.7/78.8 74.4/71.3 64.9/61.5

RSN PedL 1f (Ours) - 83.4/77.6 77.8/72.7 73.9/68.6 68.3/63.7 83.9/79.7 74.1/68.2 62.1/54.1

RSN PedL 3f (Ours) 28.2 85.0/81.4 79.4/76.2 75.5/72.2 69.9/67.0 84.5/81.5 78.1/74.7 68.5/65.0

Table 2. Performance comparison on the Waymo Open Dataset validation set for pedestrian detection. See Table 1 for details on ways to

obtaining latency numbers. All the latency of our models are averaged on 10 scenes, each has more than 50 pedestrians.

Method
AP/APH L1 3D AP/APH L2 3D

Overall < 30m 30-50m > 50m Overall < 30m 30-50m > 50m

VEHICLE

P.Pillars CVPR’19[16] † 68.6/68.1 87.2/86.7 65.5/64.9 40.9/40.2 60.5/60.1 85.9/85.4 58.9/58.3 31.3/30.8

PVRCNN Ensem WOD’20 [31] 81.1/80.6 93.4/93.0 80.1/79.6 61.2/60.5 73.7/73.2 92.5/92.0 74.0/73.5 49.3/48.6

RSN CarXL 3f (Ours) 80.7/80.3 92.2/91.9 79.1/78.7 63.0/62.5 71.9/71.6 91.5/91.1 71.4/71.1 49.9/49.5

RSN CarXL 3f Ensem (Ours) 81.4/81.0 92.4/92.0 80.2/79.8 64.7/64.1 72.8/72.4 91.5/91.1 74.2/73.8 51.3/50.8

PEDESTRIAN

P.Pillars CVPR’19[16] † 68.0/55.5 76.0/63.5 66.8/54.1 54.3/42.1 61.4/50.1 73.4/61.2 61.5/49.8 43.9/34.0

PVRCNN Ensem WOD’20 [31] 80.3/76.3 86.7/82.9 78.9/74.8 70.5/66.4 74.0/70.2 84.8/80.9 73.6/69.6 59.2/55.5

RSN PedL 3f (Ours) 78.9/75.6 85.5/82.4 77.5/74.2 67.3/64.1 70.7/67.8 81.9/78.9 70.3/67.3 55.8/53.0

RSN PedL 3f Ensem (Ours) 82.4/78.0 89.1/85.0 81.1/76.8 70.7/66.3 74.7/70.7 86.0/82.0 74.6/70.6 58.7/54.8

Table 3. Performance comparison on the Waymo Open Dataset test set. (†) is our re-implementation as described in Table 1. ’Ensem’ is

short for ensemble. See Appendix C for details.

4.7. Scalability

To further demonstrate RSN’s model scalabilty, we con-

ducted experiments on an internal dataset collected from

higher quality longer range LiDARs. Here, the detection

range is a square of size [−250m, 250m]× [−250m, 250m]
and that is centered at the SDC. This is beyond the mem-

ory capacity of PointPillars [16] running on a Tesla v100

GPU. We have trained RSN CarS 3f and a variant with RIFE

5731

Figure 6. (Best viewed in color) Example pedestrian and vehicle detection results of CarS 3f and PedS 3f on the Waymo Open Dataset

validation set. Light gray boxes are ground-truth and teal boxes are our prediction results. Red points are selected foreground points. Ex 1, 2:

RSN performs well when objects are close and mostly visible. Both vehicles and pedestrians are predicted with high accuracy, including

dynamic vehicles, large vehicles. Ex 3, 4: RSN handles large crowds with severe occlusion with few false positives and false negatives.

Many of the false-negatives in Ex 4 have very few points in the ground-truth boxes. Ex 5, 6: Typical failures of RSN are for distant or

heavily occluded objects and having very few points observed.

Figure 7. Model performance for different foreground point selec-

tion thresholds γ as defined in §3.2. Top: vehicle result for RSN

CarS 3f. Bottom: pedestrian result for model PedS 3f. The model

accuracy (by APH/L2) does not decrease much but latency drops

rapidly when γ is less than a certain threshold.

and foreground point selection removed on this dataset. As

shown in table 5, RSN can scale to a significantly larger

detection range with good accuracy and efficiency. This

demonstrates that foreground sampling and range image

features remain effective in the larger detection range.

Vehicle Pedestrian

AP/APH L2 Latency AP/APH L2 Latency

Baseline 64.2/63.9 15.4 68.88/66.07 14.4

-RI 60.9/60.3 27.0 63.5/60.5 30.0

-E2E 60.1/59.7 15.6 64.8/61.7 14.6

+xyz 64.1/63.7 - 64.2/61.3 -

-Norm 60.6/60.2 - 64.7/61.9 -

Table 4. The 3D AP/APH at LEVEL 2 difficulty and latency in

milliseconds on the validation set for several ablations (§4.6).

RIFE stage BEV APH 3D APH Latency (ms)

3 83.6 61.2 22

7 79.4 53.4 44

Table 5. The APH and latency in milliseconds on the test set of an

internal long range LiDAR dataset for vehicle detection with model

CarS 3f.

5. Conclusions

We have introduced RSN, a novel range image based 3D

object detection method that can be trained end-to-end using

LiDAR data. The network operates in the large detection

range required for safe, fast-speed driving. In the Waymo

Open Dataset, we show that RSN outperforms all existing

LiDAR-only methods by offering higher detection perfor-

mance (AP/APH on both BEV and 3D) as well as faster

running times. For future work, we plan to explore alterna-

tive detection heads and optimized SPFE in order to better

take advantage of the sparsity of the foreground points.

5732

References

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,

Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Mur-

ray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete War-

den, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-

sorflow: A system for large-scale machine learning. In 12th

USENIX Symposium on Operating Systems Design and Im-

plementation (OSDI 16), pages 265–283, 2016. 5

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.

Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

6

[3] Alex Bewley, Pei Sun, Thomas Mensink, Dragomir Anguelov,

and Cristian Sminchisescu. Range conditioned dilated convo-

lutions for scale invariant 3d object detection. In Conference

on Robot Learning, 2020. 1, 3, 5, 7

[4] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.

Multi-view 3d object detection network for autonomous driv-

ing. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1907–1915, 2017. 2

[5] Shuyang Cheng, Zhaoqi Leng, Ekin Dogus Cubuk, Barret

Zoph, Chunyan Bai, Jiquan Ngiam, Yang Song, Benjamin

Caine, Vijay Vasudevan, Congcong Li, et al. Improving

3d object detection through progressive population based

augmentation. In ECCV, 2020. 1

[6] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object

detection via region-based fully convolutional networks. In

Advances in neural information processing systems, pages

379–387, 2016. 3

[7] Martin Engelcke, Dushyant Rao, Dominic Zeng Wang,

Chi Hay Tong, and Ingmar Posner. Vote3deep: Fast ob-

ject detection in 3d point clouds using efficient convolutional

neural networks. In 2017 IEEE International Conference on

Robotics and Automation (ICRA), pages 1355–1361. IEEE,

2017. 2

[8] Runzhou Ge, Zhuangzhuang Ding, Yihan Hu, Yu Wang, Sijia

Chen, Li Huang, and Yuan Li. Afdet: Anchor free one stage

3d object detection. arXiv preprint arXiv:2006.12671, 2020.

1, 3, 4

[9] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-

national conference on computer vision, pages 1440–1448,

2015. 3

[10] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages

580–587, 2014. 3

[11] Benjamin Graham and Laurens van der Maaten. Sub-

manifold sparse convolutional networks. arXiv preprint

arXiv:1706.01307, 2017. 4

[12] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raventos,

and Adrien Gaidon. 3d packing for self-supervised monocular

depth estimation. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2020. 1

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2016. 4

[14] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015. 6

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[16] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,

Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders

for object detection from point clouds. In CVPR, 2019. 1, 2,

3, 4, 7

[17] Hei Law and Jia Deng. Cornernet: Detecting objects as paired

keypoints. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 734–750, 2018. 3, 4

[18] Zhidong Liang, Ming Zhang, Zehan Zhang, Xian Zhao, and

Shiliang Pu. Rangercnn: Towards fast and accurate 3d object

detection with range image representation, 2021. 3

[19] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In Pro-

ceedings of the IEEE international conference on computer

vision, pages 2980–2988, 2017. 3, 4

[20] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg.

Ssd: Single shot multibox detector. In ECCV, 2016. 3

[21] Gregory P Meyer, Ankit Laddha, Eric Kee, Carlos Vallespi-

Gonzalez, and Carl K Wellington. Lasernet: An efficient

probabilistic 3d object detector for autonomous driving. In

CVPR, 2019. 1, 3, 5, 7

[22] Jiquan Ngiam, Benjamin Caine, Wei Han, Brandon Yang,

Yuning Chai, Pei Sun, Yin Zhou, Xi Yi, Ouais Alsharif,

Patrick Nguyen, et al. Starnet: Targeted computation

for object detection in point clouds. arXiv preprint

arXiv:1908.11069, 2019. 1

[23] Charles R Qi, Or Litany, Kaiming He, and Leonidas J Guibas.

Deep hough voting for 3d object detection in point clouds. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 9277–9286, 2019. 2

[24] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J

Guibas. Frustum pointnets for 3d object detection from rgb-d

data. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 918–927, 2018. 1, 2

[25] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification and

segmentation. In CVPR, 2017. 1, 2, 4

[26] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In NeurIPS, 2017. 2

[27] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788, 2016. 3

[28] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. IEEE transactions on pattern analysis

and machine intelligence, 39(6):1137–1149, 2016. 3

5733

[29] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.

In MICCAI, 2015. 4

[30] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping

Shi, Xiaogang Wang, and Hongsheng Li. Pv-rcnn: Point-

voxel feature set abstraction for 3d object detection. In CVPR,

2020. 1, 2, 3, 7

[31] Shaoshuai Shi, Chaoxu Guo, Jihan Yang, and Hongsheng

Li. Pv-rcnn: The top-performing lidar-only solutions for

3d detection/3d tracking/domain adaptation of waymo open

dataset challenges. arXiv preprint arXiv:2008.12599, 2020.

6, 7

[32] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-

cnn: 3d object proposal generation and detection from point

cloud. In CVPR, 2019. 1, 2, 3, 5

[33] Martin Simon, Stefan Milz, Karl Amende, and Horst-Michael

Gross. Complex-yolo: Real-time 3d object detection on point

clouds. arXiv preprint arXiv:1803.06199, 2018. 2

[34] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien

Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,

Yuning Chai, Benjamin Caine, et al. Scalability in perception

for autonomous driving: Waymo open dataset. In CVPR,

2020. 2, 3, 5, 6, 7

[35] Yue Wang, Alireza Fathi, Abhijit Kundu, David Ross, Caro-

line Pantofaru, Tom Funkhouser, and Justin Solomon. Pillar-

based object detection for autonomous driving. In ECCV,

2020. 1, 2, 3, 7

[36] Waymo. Waymo’s 5th generation driver. https://

blog.waymo.com/2020/03/introducing-5th-

generation-waymo-driver.html. 1

[37] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-

ded convolutional detection. Sensors, 2018. 1, 2, 3, 5

[38] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-time

3d object detection from point clouds. In Proceedings of the

IEEE conference on Computer Vision and Pattern Recogni-

tion, pages 7652–7660, 2018. 2

[39] Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Ji-

aya Jia. Std: Sparse-to-dense 3d object detector for point

cloud. In Proceedings of the IEEE International Conference

on Computer Vision, pages 1951–1960, 2019. 2

[40] Dingfu Zhou, Jin Fang, Xibin Song, Chenye Guan, Junbo

Yin, Yuchao Dai, and Ruigang Yang. Iou loss for 2d/3d object

detection, 2019. 5

[41] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects

as points. arXiv preprint arXiv:1904.07850, 2019. 2, 3, 4

[42] Yin Zhou, Pei Sun, Yu Zhang, Dragomir Anguelov, Jiyang

Gao, Tom Ouyang, James Guo, Jiquan Ngiam, and Vijay Va-

sudevan. End-to-end multi-view fusion for 3d object detection

in lidar point clouds. In CORL, 2019. 1, 2, 3, 4, 7

[43] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning

for point cloud based 3d object detection. In CVPR, 2018. 1,

2, 3

5734

