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Figure 1 – Comparisons of different object detection pipelines. (a) In dense detectors, HWk object candidates enumerate on all image

grids, e.g. RetinaNet [23]. (b) In dense-to-sparse detectors, they select a small set of N candidates from dense HWk object candidates,

and then extract image features within corresponding regions by pooling operation, e.g. Faster R-CNN [30]. (c) Our proposed Sparse

R-CNN, directly provides a small set of N learned object proposals. Here N ≪ HWk.

Abstract

We present Sparse R-CNN, a purely sparse method for

object detection in images. Existing works on object de-

tection heavily rely on dense object candidates, such as

k anchor boxes pre-defined on all grids of image feature

map of size H × W . In our method, however, a fixed

sparse set of learned object proposals, total length of N ,

are provided to object recognition head to perform classifi-

cation and location. By eliminating HWk (up to hundreds

of thousands) hand-designed object candidates to N (e.g.

100) learnable proposals, Sparse R-CNN completely avoids

all efforts related to object candidates design and many-to-

one label assignment. More importantly, final predictions

are directly output without non-maximum suppression post-

procedure. Sparse R-CNN demonstrates accuracy, run-time

and training convergence performance on par with the well-

established detector baselines on the challenging COCO

dataset, e.g., achieving 45.0 AP in standard 3× train-

ing schedule and running at 22 fps using ResNet-50 FPN

model. We hope our work could inspire re-thinking the con-

vention of dense prior in object detectors. The code is avail-

able at: https://github.com/PeizeSun/SparseR-CNN .

* Equal contribution.
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Figure 2 – Convergence curves of RetinaNet, Faster R-CNN,

DETR and Sparse R-CNN on COCO val2017 [24]. Sparse

R-CNN achieves competitive performance in terms of training

efficiency and detection quality.

1. Introduction

Object detection aims at localizing a set of objects and

recognizing their categories in an image. Dense prior has

always been cornerstone to success in detectors. In classic

computer vision, the sliding-window paradigm, in which a

classifier is applied on a dense image grid, is leading de-
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tection method for decades [6, 9, 39]. Modern mainstream

one-stage detectors pre-define marks on a dense feature map

grid, such as anchors boxes [23, 29], shown in Figure 1a, or

reference points [36, 48], and predict the relative scaling

and offsets to bounding boxes of objects, as well as the cor-

responding categories. Although two-stage pipelines work

on a sparse set of proposal boxes, their proposal genera-

tion algorithms are still built on dense candidates [11, 30],

shown in Figure 1b.

These well-established methods are conceptually intu-

itive and offer robust performance [8, 24], together with

fast training and inference time [42]. Besides their great

success, it is important to note that dense-prior detectors

suffer some limitations: 1) Such pipelines usually pro-

duce redundant and near-duplicate results, thus making

non-maximum suppression (NMS) [1, 41] post-processing

a necessary component. 2) The many-to-one label assign-

ment problem [2, 46, 47] in training makes the network sen-

sitive to heuristic assign rules. 3) The final performance is

largely affected by sizes, aspect ratios and number of an-

chor boxes [23, 29], density of reference points [19, 36, 48]

and proposal generation algorithm [11, 30].

Despite the dense convention is widely recognized

among object detectors, a natural question to ask is: Is

it possible to design a sparse detector? Recently, DETR

proposes to reformulate object detection as a direct and

sparse set prediction problem [3], whose input is merely

100 learned object queries [38]. The final set of predic-

tions are output directly without any hand-designed post-

processing. In spite of its simple and fantastic framework,

DETR requires each object query to interact with global im-

age context. This dense property not only slows down its

training convergence [49], but also blocks it establishing a

thoroughly sparse pipeline for object detection.

We believe the sparse property should be in two aspects:

sparse boxes and sparse features. Sparse boxes mean that a

small number of starting boxes (e.g. 100) is enough to pre-

dict all objects in an image. While sparse features indicate

the feature of each box does not need to interact with all

other features over the full image. From this perspective,

DETR is not a pure sparse method since each object query

must interact with dense features over full images.

In this paper, we propose Sparse R-CNN, a purely sparse

method, without object positional candidates enumerating

on all(dense) image grids nor object queries interacting

with global(dense) image feature. As shown in Figure 1c,

object candidates are given with a fixed small set of learn-

able bounding boxes represented by 4-d coordinate. For ex-

ample of COCO dataset [24], 100 boxes and 400 parameters

are needed in total, rather than the predicted ones from hun-

dreds of thousands of candidates in Region Proposal Net-

work (RPN) [30]. These sparse candidates are used as pro-

posal boxes to extract the feature of Region of Interest (RoI)

by RoIPool [10] or RoIAlign [13].

The learnable proposal boxes are the statistics of poten-

tial object location in the image. Whereas, the 4-d coor-

dinate is merely a rough representation of object and lacks

a lot of informative details such as pose and shape. Here

we introduce another key concept termed proposal feature,

which is a high-dimension (e.g., 256) latent vector. Com-

pared with rough bounding box, it is expected to encode

the rich instance characteristics. Specially, proposal feature

generates a series of customized parameters for its exclusive

object recognition head. We call this operation Dynamic In-

stance Interactive Head, since it shares similarities with re-

cent dynamic scheme [18, 35]. Compared to the shared 2-fc

layers in [30], our head is more flexible and holds a signif-

icant lead in accuracy. We show in our experiment that the

formulation of head conditioned on unique proposal feature

instead of the fixed parameters is actually the key to Sparse

R-CNN’s success. Both proposal boxes and proposal fea-

tures are randomly initialized and optimized together with

other parameters in the whole network.

The most remarkable property in our Sparse R-CNN is

its sparse-in sparse-out paradigm in the whole time. The

initial input is a sparse set of proposal boxes and proposal

features, together with the one-to-one dynamic instance in-

teraction. Neither dense candidates [23, 30] nor interacting

with global(dense) feature [3] exists in the pipeline. This

pure sparsity makes Sparse R-CNN a brand new member in

R-CNN family.

Sparse R-CNN demonstrates its accuracy, run-time and

training convergence performance on par with the well-

established detectors [2, 30, 36] on the challenging COCO

dataset [24], e.g., achieving 45.0 AP in standard 3× train-

ing schedule and running at 22 fps using ResNet-50 FPN

model. To our best knowledge, the proposed Sparse R-CNN

is the first work that demonstrates a considerably sparse de-

sign is qualified yet. We hope our work could inspire re-

thinking the necessary of dense prior in object detection and

exploring next generation of object detector.

2. Related Work

Dense method. Sliding-window paradigm has been popu-

lar for many years in object detection. Limited by classi-

cal feature extraction techniques [6, 39], the performance

has plateaued for decades and the application scenarios are

limited. Development of deep convolution neural networks

(CNNs) [14, 17, 20] cultivates general object detection

achieving significant improvement in performance [8, 24].

One of mainstream pipelines is one-stage detector, which

directly predicts the category and location of anchor boxes

densely covering spatial positions, scales, and aspect ratios

in a single-shot way, such as OverFeat [32], YOLO [29],

SSD [25] and RetinaNet [23]. Recently, anchor-free al-
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gorithms [16, 21, 36, 48, 19] are proposed to make this

pipeline much simpler by replacing hand-crafted anchor

boxes with reference points. All of above methods are built

on dense candidates and each candidate is directly classified

and regressed. These candidates are assigned to ground-

truth object boxes in training time based on a pre-defined

principle, e.g., whether the anchor has a higher intersection-

over-union (IoU) threshold with its corresponding ground

truth, or whether the reference point falls in one of object

boxes. Moreover, NMS post-processing [1, 41] is needed to

remove redundant predictions during inference time.

Dense-to-sparse method. Two-stage detector is another

mainstream pipeline and has dominated modern object de-

tection for years [2, 4, 10, 11, 30]. This paradigm can be

viewed as an extension of dense detector. It first obtains a

sparse set of foreground proposal boxes from dense region

candidates, and then refines location of each proposal and

predicts its specific category. The region proposal algorithm

plays an important role in the first stage in these two-stage

methods, such as Selective Search [37] in R-CNN and Re-

gion Proposal Networks (RPN) [30] in Faster R-CNN. Sim-

ilar to dense pipeline, it also needs NMS post-processing

and hand-crafted label assignment. There are only a few of

foreground proposals from hundreds of thousands of can-

didates, thus these detectors can be concluded as dense-to-

sparse methods.

Recently, DETR [3] is proposed to directly output the

predictions without any hand-crafted components, achiev-

ing promising performance. DETR utilizes a sparse set of

object queries, to interact with global(dense) image feature,

in this view, it can be seen as another dense-to-sparse for-

mulation.

Sparse method. Sparse object detection has the potential to

eliminate efforts to design dense candidates, but usually has

trailed the accuracy of above dense detectors. G-CNN [27]

can be viewed as a precursor to this group of algorithms.

It starts with a multi-scale regular grid over the image and

iteratively updates the boxes to cover and classify objects.

This hand-designed regular prior is obviously sub-optimal

and fails to achieve top performance. Instead, our Sparse

R-CNN applies learnable proposals and achieves better per-

formance. Concurrently, Deformable-DETR [49] is intro-

duced to restrict each object query to attend to a small set

of key sampling points around the reference points, instead

of all points in feature map. We hope sparse methods could

serve as solid baseline and help ease future research in ob-

ject detection community.

3. Sparse R-CNN

The key idea of Sparse R-CNN framework is to replace

hundreds of thousands of candidates from Region Proposal

Network (RPN) with a small set of proposal boxes (e.g.,

Proposal Features: N*d

…

Proposal Boxes: N*4

…

k-th box

Dynamic Head k

k-th feature

Cls

Reg

Figure 3 – An overview of Sparse R-CNN pipeline. The input

includes an image, a set of proposal boxes and proposal features,

where the latter two are learnable parameters. The backbone

extracts feature map, each proposal box and proposal feature are

fed into its exclusive dynamic head to generate object feature,

and finally outputs classification and location.

100). The pipeline is shown in Figure 3.

Sparse R-CNN is a simple, unified network composed

of a backbone network, a dynamic instance interactive head

and two task-specific prediction layers. There are three in-

puts in total, an image, a set of proposal boxes and proposal

features. The latter two are learnable and can be optimized

together with other parameters in network. We will describe

each components in this section in details.

Backbone. Feature Pyramid Network (FPN) based on

ResNet architecture [14, 22] is adopted as the backbone net-

work to produce multi-scale feature maps from input image.

Following [22], we construct the pyramid with levels P2

through P5, where l indicates pyramid level and Pl has res-

olution 2l lower than the input. All pyramid levels have

C = 256 channels. Please refer to [22] for more details.

Actually, Sparse R-CNN has the potential to benefit from

more complex designs to further improve its performance,

such as stacked encoder layers [3] and deformable convo-

lution network [5], on which a recent work Deformable-

DETR [49] is built. However, we align the setting with

Faster R-CNN [30, 22] to show the simplicity and effec-

tiveness of our method.

Learnable proposal box. A fixed small set of learnable

proposal boxes (N×4) are used as region proposals, instead

of the predictions from Region Proposal Network (RPN).

These proposal boxes are represented by 4-d parameters

ranging from 0 to 1, denoting normalized center coordi-

nates, height and width. The parameters of proposal boxes

will be updated with the back-propagation algorithm during

training. Thanks to the learnable property, we find in our

experiment that the effect of initialization is minimal, thus

making the framework much more flexible.
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def dynamic instance interaction(pro feats, roi feats):
# pro feats: (N, C)
# roi feats: (N, S∗S, C)

# parameters of two 1x1 convs: (N, 2 ∗ C ∗ C/4)
dynamic params = linear1(pro features)
# parameters of first conv: (N, C, C/4)
param1 = dynamic params[:, :C∗C/4].view(N, C, C/4)
# parameters of second conv: (N, C/4, C)
param2 = dynamic params[:, C∗C/4:].view(N, C/4, C)

# instance interaction for roi features: (N, S∗S, C)
roi feats = relu(norm(bmm(roi feats, param1)))
roi feats = relu(norm(bmm(roi feats, param2)))

# roi feats are flattened: (N, S∗S∗C)
roi feats = roi feats.flatten(1)
# obj feats: (N, C)
obj feats = linear2(roi feats)
return obj feats

Figure 4 – Pseudo-code of dynamic instance interaction, the k-

th proposal feature generates dynamic parameters for the corre-

sponding k-th RoI. bmm: batch matrix multiplication; linear:

linear projection.

Conceptually, these learned proposal boxes are the statis-

tics of potential object location in the training set and can be

seen as an initial guess of the regions that are most likely to

encompass the objects in the image, regardless of the input.

Whereas, the proposals from RPN are strongly correlated

to the current image and provide coarse object locations.

We rethink that the first-stage locating is luxurious in the

presence of later stages to refine the location of boxes. In-

stead, a reasonable statistic can already be qualified candi-

dates. In this view, Sparse R-CNN can be categorized as

the extension of object detector paradigm from thoroughly

dense [23, 25, 28, 36] to dense-to-sparse [2, 4, 11, 30] to

thoroughly sparse, shown in Figure 1.

Learnable proposal feature. Though the 4-d proposal box

is a brief and explicit expression to describe objects, it pro-

vides a coarse localization of objects and a lot of informa-

tive details are lost, such as object pose and shape. Here we

introduce another concept termed proposal feature (N ×d),

it is a high-dimension (e.g., 256) latent vector and is ex-

pected to encode the rich instance characteristics. The num-

ber of proposal features is same as boxes, and we will dis-

cuss how to use it next.

Dynamic instance interactive head. Given N proposal

boxes, Sparse R-CNN first utilizes the RoIAlign operation

to extract features for each box. Then each box feature will

be used to generate the final predictions using our predic-

tion head. Motivated by dynamic algorithms [18, 35], we

propose Dynamic Instance Interactive Head. Each RoI fea-

ture is fed into its own exclusive head for object location

and classification, where each head is conditioned on spe-

cific proposal feature.

Figure 4 illustrates the dynamic instance interaction. In

our design, proposal feature and proposal box are in one-

to-one correspondence. For N proposal boxs, N proposal

features are employed. Each RoI feature fi(S × S,C) will

interact with the corresponding proposal feature pi(C) to

filter out ineffective bins and outputs the final object feature

(C). For light design, we carry out two consecutive 1 × 1

convolutions with ReLU activation function, to implement

the interaction process. The parameters of these two convo-

lutions are generated by corresponding proposal feature.

The implementation details of interactive head is not cru-

cial as long as parallel operation is supported for efficiency.

The final regression prediction is computed by a 3-layer per-

ception, and classification prediction is by a linear projec-

tion layer.

We also adopt the iteration structure [2] and self-

attention module [38] to further improve the performance.

For iteration structure, the newly generated object boxes

and object features will serve as the proposal boxes and pro-

posal features of the next stage in iterative process. Thanks

to the sparse property and light dynamic head, it introduces

only a marginal computation overhead. Before dynamic in-

stance interaction, self-attention module is applied to the set

of object features to reason about the relations between ob-

jects. We note that [15] also utilizes self-attention module.

However, it demands geometry attributes and complex rank

feature in addition to object feature. Our module is much

more simple and only takes object feature as input.

Set prediction loss. Sparse R-CNN applies set prediction

loss [3, 33, 44] on the fixed-size set of predictions of clas-

sification and box coordinates. Set-based loss produces an

optimal bipartite matching between predictions and ground

truth objects. The matching cost is defined as follows:

L = λcls · Lcls + λL1 · LL1 + λgiou · Lgiou (1)

Here Lcls is focal loss [23] of predicted classifications and

ground truth category labels, LL1 and Lgiou are L1 loss and

generalized IoU loss [31] between normalized center coor-

dinates and height and width of predicted boxes and ground

truth box, respectively. λcls, λL1 and λgiou are coefficients

of each component. The training loss is the same as the

matching cost except that only performed on matched pairs.

The final loss is the sum of all pairs normalized by the num-

ber of objects inside the training batch.

R-CNN families [2, 47] have always been puzzled by

label assignment problem since many-to-one matching re-

mains. Here we provide new possibilities that directly by-

passing many-to-one matching and introducing one-to-one

matching with set-based loss. This is an attempt towards

exploring end-to-end object detection.
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Method Feature Epochs AP AP50 AP75 APs APm APl FPS

RetinaNet-R50 [42] FPN 36 38.7 58.0 41.5 23.3 42.3 50.3 24

RetinaNet-R101 [42] FPN 36 40.4 60.2 43.2 24.0 44.3 52.2 18

Faster R-CNN-R50 [42] FPN 36 40.2 61.0 43.8 24.2 43.5 52.0 26

Faster R-CNN-R101 [42] FPN 36 42.0 62.5 45.9 25.2 45.6 54.6 20

Cascade R-CNN-R50 [42] FPN 36 44.3 62.2 48.0 26.6 47.7 57.7 19

DETR-R50 [3] Encoder 500 42.0 62.4 44.2 20.5 45.8 61.1 28

DETR-R101 [3] Encoder 500 43.5 63.8 46.4 21.9 48.0 61.8 20

DETR-DC5-R50 [3] Encoder 500 43.3 63.1 45.9 22.5 47.3 61.1 12

DETR-DC5-R101 [3] Encoder 500 44.9 64.7 47.7 23.7 49.5 62.3 10

Deformable DETR-R50 [49] DeformEncoder 50 43.8 62.6 47.7 26.4 47.1 58.0 19

Sparse R-CNN-R50 FPN 36 42.8 61.2 45.7 26.7 44.6 57.6 23

Sparse R-CNN-R101 FPN 36 44.1 62.1 47.2 26.1 46.3 59.7 19

Sparse R-CNN*-R50 FPN 36 45.0 63.4 48.2 26.9 47.2 59.5 22

Sparse R-CNN*-R101 FPN 36 46.4 64.6 49.5 28.3 48.3 61.6 18

Table 1 – Comparisons with different object detectors on COCO 2017 val set. The top section shows results from Detectron2 [42] or

original papers [3, 49]. Here “∗” indicates that the model is with 300 learnable proposal boxes and random crop training augmentation,

similar to Deformable DETR [49]. Run time is evaluated on NVIDIA Tesla V100 GPU.

Method Backbone TTA AP AP50 AP75 APs APm APl

CornerNet [21] Hourglass-104 40.6 56.4 43.2 19.1 42.8 54.3

CenterNet [48] Hourglass-104 42.1 61.1 45.9 24.1 45.5 52.8

RepPoint [45] ResNet-101-DCN 45.0 66.1 49.0 26.6 48.6 57.5

FCOS [36] ResNeXt-101-DCN 46.6 65.9 50.8 28.6 49.1 58.6

ATSS [47] ResNeXt-101-DCN X 50.7 68.9 56.3 33.2 52.9 62.4

YOLO [40] CSPDarkNet-53 47.5 66.2 51.7 28.2 51.2 59.8

EfficientDet [34] EfficientNet-B5 51.5 70.5 56.1 - - -

Sparse R-CNN ResNeXt-101 46.9 66.3 51.2 28.6 49.2 58.7

Sparse R-CNN ResNeXt-101-DCN 48.9 68.3 53.4 29.9 50.9 62.4

Sparse R-CNN ResNeXt-101-DCN X 51.5 71.1 57.1 34.2 53.4 64.1

Table 2 – Comparisons with different object detectors on COCO 2017 test-dev set. The top section shows results from original papers.

“TTA” indicates test-time augmentations, following the settings in [47].

4. Experiments

Dataset. Our experiments are conducted on the challeng-

ing MS COCO benchmark [24] using the standard met-

rics for object detection. All models are trained on the

COCO train2017 split (∼118k images) and evaluated

with val2017 (5k images).

Training details. ResNet-50 [14] is used as the back-

bone network unless otherwise specified. The optimizer is

AdamW [26] with weight decay 0.0001. The mini-batch is

16 images and all models are trained with 8 GPUs. Default

training schedule is 36 epochs and the initial learning rate

is set to 2.5 × 10−5, divided by 10 at epoch 27 and 33, re-

spectively. The backbone is initialized with the pre-trained

weights on ImageNet [7] and other newly added layers are

initialized with Xavier [12]. Data augmentation includes

random horizontal, scale jitter of resizing the input images

such that the shortest side is at least 480 and at most 800

pixels while the longest at most 1333. Following [3, 49],

λcls = 2, λL1 = 5, λgiou = 2. The default number of

proposal boxes, proposal features and iteration is 100, 100

and 6, respectively. To stabilize training, the gradients are

blocked at proposal boxes in each stage of iterative archi-

tecture, except initial proposal boxes.

Inference details. The inference process is quite simple

in Sparse R-CNN. Given an input image, Sparse R-CNN

directly predicts 100 bounding boxes associated with their

scores. The scores indicate the probability of boxes con-

taining an object. For evaluation, we directly use these 100

boxes without any post-processing.

4.1. Main Result

We provide two versions of Sparse R-CNN for fair com-

parison with different detectors in Table 1. The first one

adopts 100 learnable proposal boxes without random crop

data augmentation, and is used to make comparison with
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Sparse Iterative Dynamic AP AP50 AP75 APs APm APl

X 18.5 35.0 17.7 8.3 21.7 26.4

X X 32.2 (+13.7) 47.5 (+12.5) 34.4 (+16.7) 18.2 (+9.9) 35.2 (+13.5) 41.7 (+15.3)

X X X 42.3 (+10.1) 61.2 (+13.7) 45.7 (+11.3) 26.7 (+8.5) 44.6 (+9.4) 57.6 (+15.9)

Table 3 – Ablation studies on each components in Sparse R-CNN. Starting from Faster R-CNN, we gradually add learnable proposal

boxes, iterative architecture, and dynamic head in Sparse R-CNN. All models are trained with set prediction loss.

Cascade Feature reuse AP AP50 AP75

18.5 35.0 17.7

X 20.5(+2.0) 29.3 20.7

X X 32.2(+11.7) 47.5 34.4

Table 4 – The effect of feature reuse in iterative architecture.

Original cascading implementation makes no big difference.

Concatenating object feature of previous stage to object feature

of current stage leads to a huge improvement.

Self-att. Ins. interact AP AP50 AP75

32.2 47.5 34.4

X 37.2(+5.0) 54.8 40.1

X X 42.3(+5.1) 61.2 45.7

Table 5 – The effect of instance-interaction in dynamic head.

Without instance interaction, dynamic head degenerates to self-

attention. The gain comes from both self-attention and instance-

interaction.

mainstream object detectors, e.g. Faster R-CNN and Reti-

naNet [42]. The second one leverages 300 learnable pro-

posal boxes with random crop data augmentations, and is

used to make comparison with DETR-series models [3, 49].

As shown in Table 1, Sparse R-CNN outperforms well-

established mainstream detectors, such as RetinaNet and

Faster R-CNN, by a large margin. Surprisingly, Sparse R-

CNN based on ResNet-50 achieves 42.8 AP, which has al-

ready competed with Faster R-CNN on ResNet-101 in ac-

curacy.

We note that DETR and Deformable DETR usually em-

ploy stronger feature extracting method, such as stacked en-

coder layers and deformable convolution. The stronger im-

plementation of Sparse R-CNN is used to give a more fair

comparison with these detectors. Sparse R-CNN exhibits

higher accuracy even using the simple FPN as feature ex-

tracting method. Moreover, Sparse R-CNN gets much bet-

ter detection performance on small objects compared with

DETR (26.7 AP vs. 22.5 AP).

The training convergence speed of Sparse R-CNN is 10×

faster over DETR, as shown in Figure 2. Since proposed,

DETR has been suffering from slow convergence, which

motivates the proposal of Deformable DETR. Compared

with Deformable DETR, Sparse R-CNN exhibits better per-

formance in accuracy (45.0 AP vs. 43.8 AP) and shorter

running-time (22 FPS vs. 19 FPS), with shorter training

schedule (36 epochs vs. 50 epochs).

The inference time of Sparse R-CNN is on par with other

detectors. We notice that the model with 100 proposals is

running at 23 FPS, while 300 proposals only decreases to

22 FPS, thanks to the light design of the dynamic instance

interactive head.

Table 2 compares Sparse R-CNN with other methods in

COCO test-dev set. Using ResNeXt-101 [43] as back-

bone, Sparse R-CNN achieves 46.9 AP without bells and

whistles, 48.9 AP with DCN [5]. With additional test-time

augmentations, Sparse R-CNN achieves 51.5 AP, on par

with state-of-the-art methods.

4.2. Module Analysis

In this section, we analyze each component in Sparse R-

CNN. All models are based on ResNet50-FPN backbone,

100 proposals, 3x training schedule, unless otherwise noted.

Learnable proposal box. Starting with Faster R-CNN, we

naively replace RPN with a sparse set of learnable proposal

boxes. The performance drops from 40.2 AP (Table 1 line

3) to 18.5 (Table 3). We find that there is no noticeable

improvement even more fully-connected layers are stacked.

Iterative architecture. Iteratively updating the boxes is an

intuitive idea to improve its performance. However, we find

that a simple cascade architecture does not make a big dif-

ference, as shown in Table 4. We analyze the reason is that

compared with refined proposal boxes in [2] which mainly

locating around the objects, the candidates in our case are

much more coarse, making it hard to be optimized. We ob-

serve that the target object for one proposal box is usually

consistent in the whole iterative process. Therefore, the ob-

ject feature in previous stage can be reused to play a strong

cue for the next stage, for example, the object feature en-

codes rich information such as object pose and location. To

this end, we concatenate object feature of the previous stage

to the current stage. This minor change of feature reuse re-

sults in a huge gain of 11.7 AP on basis of original cascade

architecture. Finally, the iterative architecture brings 13.7

AP improvement, as shown in second row of Table 3.

Dynamic head. The dynamic head uses object feature of

previous stage in a different way with iterative architec-

ture discussed above. Instead of simply concatenating, the

object feature of previous stage is first processed by self-

attention module, and then used as proposal feature to im-
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Init. AP AP50 AP75 APs APm APl

Center 41.5 59.6 45.0 25.6 43.9 56.1

Image 42.3 61.2 45.7 26.7 44.6 57.6

Grid 41.0 59.4 44.2 23.8 43.7 55.6

Random 42.1 60.3 45.3 24.5 44.6 57.9

Table 6 – Effect of initialization of proposal boxes. Detec-

tion performance is relatively robust to initialization of proposal

boxes.

Proposals AP AP50 AP75 FPS Training time

100 42.3 61.2 45.7 23 19h

300 43.9 62.3 47.4 22 24h

500 44.6 63.2 48.5 20 60h

Table 7 – Effect of number of proposals. Increasing number of

proposals leads to continuous improvement, while more propos-

als take more training time.

Stages AP AP50 AP75 FPS Training time

1 21.7 36.7 22.3 35 12h

2 36.2 52.8 38.8 33 13h

3 39.9 56.8 43.2 29 15h

6 42.3 61.2 45.7 23 19h

12 41.6 60.2 45.0 17 30h

Table 8 – Effect of number of stages. Gradually increasing the

number of stages, the performance is saturated at 6 stages.

plement instance interaction of current stage. The self-

attention module is applied to the set of object features

for reasoning about the relation between objects. Table 5

shows the benefit of self-attention and dynamic instance in-

teraction. Finally, Sparse R-CNN achieves accuracy perfor-

mance of 42.3 AP.

Initialization of proposal boxes. The dense detectors

always heavily depend on design of object candidates,

whereas, object candidates in Sparse R-CNN are learnable

and thus, all efforts related to designing hand-crafted an-

chors are avoided. However, one may concern that the ini-

tialization of proposal boxes plays a key role in Sparse R-

CNN. Here we study the effect of different methods for ini-

tializing proposal boxes:

• “Center” means all proposal boxes are located in the

center of image at beginning, height and width is set to

0.1 of image size.

• “Image” means all proposal boxes are initialized as the

whole image size.

• “Grid” means proposal boxes are initialized as regular

grid in image, which is exactly the initial boxes in G-

CNN [27].

• “Random” denotes the center, height and width of pro-

posal boxes are randomly initialized with Gaussian

Method AP AP50 AP75

Multi-head Attention [38] 35.7 54.9 37.7

Dynamic head 42.3(+6.6) 61.2 45.7

Table 9 – Dynamic head vs. Multi-head Attention. As object

recognition head, dynamic head outperforms multi-head atten-

tion.

Method Pos. encoding AP AP50 AP75

DETR [3] X 40.6 61.6 -

DETR [3] 32.8 (-7.8) 55.2 -

Sparse R-CNN X 41.9 60.9 45.0

Sparse R-CNN 42.3(+0.4) 61.2 45.7

Table 10 – Proposal feature vs. Object query. Object query is

learned positional encoding, while proposal feature is irrelevant

to position.

distribution.

From Table 6 we show that the final performance of Sparse

R-CNN is relatively robust to the initialization of proposal

boxes.

Number of proposals. The number of proposals largely

effects both dense and sparse detectors. Original Faster

R-CNN uses 300 proposals [30]. Later on it increases to

2000 [42] and obtains better performance. We also study

the effect of proposal numbers on Sparse R-CNN in Ta-

ble 7. Increasing proposal number from 100 to 500 leads

to continuous improvement, indicating that our framework

is easily to be used in various circumstances. Whereas, 500

proposals take much more training time, so we choose 100

and 300 as the main configurations.

Number of stages in iterative architecture. Iterative ar-

chitecture is a widely-used technique to improve object de-

tection performance [2, 3, 39], especially for Sparse R-

CNN. Table 8 shows the effect of stage numbers in iterative

architecture. Without iterative architecture, performance is

merely 21.7 AP. Considering the input proposals of first

stage is a guess of possible object positions, this result is not

surprising. Increasing to 2 stage brings in a gain of 14.5 AP,

up to competitive 36.2 AP. Gradually increasing the num-

ber of stages, the performance is saturated at 6 stages. We

choose 6 stages as the default configuration.

Dynamic head vs. Multi-head Attention. As discussed

in Section 3, dynamic head uses proposal feature to filter

RoI feature and finally outputs object feature. We find that

multi-head attention module [38] provides another possible

implementation for the instance interaction. We carry out

the comparison experiments in Table 9, and its performance

falls behind 6.6 AP. Compared with linear multi-head at-

tention, our dynamic head is much more flexible, whose pa-

rameters are conditioned on its specific proposal feature and

more non-linear capacity can be easily introduced.
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Figure 5 – Visualization of predicted boxes of each stage in iterative architecture, including learned proposal boxes. Learned proposal

boxes are drawn in white color, except those are shown in later stages. Predicted boxes of classification score above 0.3 are shown.

The boxes from the same proposal are drawn in the same color. The learned proposal boxes are randomly distributed on the image and

together cover the whole image. The iterative heads gradually refine box position and remove duplicate ones.

Proposal feature vs. Object query. Object query proposed

in DETR [3] shares a similar design as proposal feature.

Here we make a comparison of object query [3] proposed

in DETR and our proposal feature. As discussed in [3],

object query is learned positional encoding, guiding the de-

coder interacting with the summation of image feature map

and spatial positional encoding. Using only image feature

map will lead to a significant drop. However, our proposal

feature can be seen as a feature filter, which is irrelevant to

position. The comparisons are shown in Table 10, DETR

drops 7.8 AP if the spatial positional encoding is removed.

On the contrary, positional encoding gives no gain in Sparse

R-CNN.

4.3. The Proposal Boxes Behavior

Figure 5 shows the learned proposal boxes of a con-

verged model. These boxes are randomly distributed on the

image to cover the whole image area. This guarantees the

recall performance on the condition of sparse candidates.

Further, each stage of cascading heads gradually refines box

position and remove duplicate ones. This results in high

precision performance. Figure 5 also shows that Sparse R-

CNN presents robust performance in both rare and crowd

scenarios. For object in rare scenario, its duplicate boxes

are removed within a few of stages. Crowd scenarios con-

sume more stages to refine but finally each object is detected

precisely and uniquely.

5. Conclusion

We present Sparse R-CNN, a purely sparse method for

object detection in images. A fixed sparse set of learned

object proposals are provided to perform classification and

location by dynamic heads. Final predictions are directly

output without non-maximum suppression post-procedure.

Sparse R-CNN demonstrates its accuracy, run-time and

training convergence performance on par with the well-

established detector. We hope our work could inspire re-

thinking the convention of dense prior and exploring next

generation of object detector.
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