
Task Programming: Learning Data Efficient Behavior Representations

Jennifer J. Sun1 Ann Kennedy2 Eric Zhan1 David J. Anderson1 Yisong Yue1 Pietro Perona1

1Caltech 2Northwestern University

Code & Project Website: https://sites.google.com/view/task-programming

Abstract

Specialized domain knowledge is often necessary to ac-

curately annotate training sets for in-depth analysis, but

can be burdensome and time-consuming to acquire from do-

main experts. This issue arises prominently in automated

behavior analysis, in which agent movements or actions of

interest are detected from video tracking data. To reduce

annotation effort, we present TREBA: a method to learn

annotation-sample efficient trajectory embedding for be-

havior analysis, based on multi-task self-supervised learn-

ing. The tasks in our method can be efficiently engineered

by domain experts through a process we call “task program-

ming”, which uses programs to explicitly encode structured

knowledge from domain experts. Total domain expert effort

can be reduced by exchanging data annotation time for the

construction of a small number of programmed tasks. We

evaluate this trade-off using data from behavioral neuro-

science, in which specialized domain knowledge is used to

identify behaviors. We present experimental results in three

datasets across two domains: mice and fruit flies. Using

embeddings from TREBA, we reduce annotation burden by

up to a factor of 10 without compromising accuracy com-

pared to state-of-the-art features. Our results thus suggest

that task programming and self-supervision can be an ef-

fective way to reduce annotation effort for domain experts.

1. Introduction

Behavioral analysis of one or more agents is a core el-

ement in diverse fields of research, including biology [36,

26], autonomous driving [6, 39], sports analytics [42, 43],

and video games [20, 3]. In a typical experimental work-

flow, the location and pose of agents is first extracted

from each frame of a behavior video, and then labels for

experimenter-defined behaviors of interest are applied on a

frame-by-frame basis based on the pose and movements of

the agents. In addition to reducing human effort, automated

quantification of behavior can lead to more objective, pre-

Correspondence to jjsun@caltech.edu.

1. Record videos and extract tracking data.

2. Apply behavior classifier for scalability.

Human Annotation

Base Classifier
80k annotations

Classifier B
80k annotations +

10 programs

Classifier A
781k annotations

+701k
annotations

+10
programs

Base Classifier
80k annotations

Base Classifier
80k annotations

Classifier A
781k annotations

Classifier B
80k annotations +

10 programs

Classifier
A

Classifier
B

Base
Classifier

Figure 1. Overview of our approach. Part 1: A typical behavior

study starts with extraction of tracking data from videos. We show

7 keypoints for each mouse, and draw the trajectory of the nose

keypoint. Part 2: Domain experts can either do data annotation

(Classifier A) or task programming (Classifier B) to reduce classi-

fier error. The middle panel shows annotated frames at 30Hz. Col-

ors in the bottom plot represent interpolated performance based on

classifier error at the circular markers (full results in Section 4.3).

The size of the marker represents the error variance.

cise, and scalable measurements compared to manual anno-

tation [1, 10]. However, training behavior detection models

can be data intensive and manual behavior annotation often

requires specialized domain knowledge and high-frequency

temporal labels. As a result, this process of generating train-

ing datasets is time-consuming and effort-intensive for ex-

perts. Therefore, methods to reduce annotation effort by

domain experts are needed to accelerate behavioral studies.

We study alternative ways for domain experts to improve

2876

classifier accuracy beyond simply increasing the sheer vol-

ume of annotations. In particular, we propose a framework

that unifies: (1) self-supervised representation learning, and

(2) encoding explicit structured knowledge on trajectory

data using expert-defined programs. Domain experts can

construct these programs efficiently because keypoint tra-

jectories in each frame are typically low dimensional, and

experts can already hand-design effective features for tra-

jectory data [36, 28]. To best leverage this structured ex-

pert knowledge, we develop a framework to learn trajectory

representations based on multi-task self-supervised learn-

ing, which has not been well-explored for trajectory data.

Our Approach. Our framework, Trajectory Embedding

for Behavior Analysis (TREBA), learns trajectory represen-

tations through trajectory generation alongside a set of de-

coder tasks based on expert-engineered programs. These

programs are created by domain experts through a process

we call task programming, inspired by the data program-

ming paradigm [33]. Task programming is a process by

which domain experts identify trajectory attributes relevant

to the behaviors of interest under study, write programs,

and apply those programs to inform representation learn-

ing (Section 3.2). This flexibility in decoder tasks allows

our framework to be applicable to a variety of agents and

behaviors studied across diverse fields of research.

Expert Effort Tradeoffs. Since task programming will

typically require a domain expert’s time, we study the trade-

off between doing task programming and data annotation.

We compare behavior classification performance with dif-

ferent amounts of annotated training data and programmed

tasks. For example, for the domain illustrated in Figure 1,

domain experts can reduce error by 13% relative to the base

classifier by annotating 701k additional frames, or they can

reduce error by 16% by learning a representation using 10

programmed tasks in our framework. Our approach allows

experts to trade a large number of annotations for a small

number of programmed tasks.

We study our approach across two domains in behavioral

neuroscience, namely mouse and fly behavior. We chose

this setting because it requires specialized domain knowl-

edge for data annotation, and data efficiency is important for

domain experts. Furthermore, decoder tasks in our frame-

work can be efficiently programmed by experts based on

simple functions describing trajectory attributes for identi-

fying behaviors of interest. For example, for mouse social

behaviors such as attack [36], important behavior attributes

include the speed of each mouse and distance between mice.

The corresponding task could then be to decode these at-

tributes from the learned representations.

Our contributions are:

• We introduce task programming as an efficient way for

domain experts to reduce annotation effort and encode

structural knowledge. We develop a novel method to

learn an annotation-sample efficient trajectory repre-

sentation using self-supervision and programmatic su-

pervision.

• We study the effect of task programming, data annota-

tion, and different decoder losses on behavior classifier

performance.

• We demonstrate these representations on three datasets

in two domains, showing that our method can lead to a

10× annotation reduction for mice, and 2× for flies.

2. Related Work

Behavior Modeling. Behavior modeling using trajec-

tory data is studied across a variety of fields [26, 6, 39,

42, 20, 3]. In particular, there is an increasing effort to

automatically detect and classify behavior from trajectory

data [23, 1, 14, 27, 13, 36]. Our experiments are based

on behavior classification datasets from behavioral neuro-

science [15, 4, 36], a field where specialized domain knowl-

edge is important for identifying behaviors of interest.

The behavior analysis pipeline generally consists of the

following steps: (1) tracking the pose of agents, (2) com-

puting pose-based features, and (3) training behavior classi-

fiers [4, 21, 36, 28]. To address step 1, there are many exist-

ing pose estimation models [15, 27, 18, 36]. In our work, we

leverage two existing pose models, [36] for mice and [15]

for flies, to produce trajectory data. In steps 2 and 3 of the

typical behavior analysis pipeline, hand-designed trajectory

features are computed from the animals’ pose, and classi-

fiers are trained to predict behaviors of interest in a fully

supervised fashion [4, 21, 15, 36]. Training fully super-

vised behavior classifiers requires time-consuming annota-

tions by domain experts [1]. Instead, our proposed approach

enables domain experts to trade time-consuming annotation

work for task programming with representation learning.

Another group of work uses unsupervised methods to

discover new motifs and behaviors [22, 41, 2, 26, 5]. Our

work focuses on the more common case where domain ex-

perts already know what types of actions they would like

to study in an experiment. We aim to improve the data-

efficiency of learning expert-defined behaviors.

Representation Learning. Visual representation learn-

ing has made great progress in effective representations

for images and videos [17, 16, 7, 29, 25, 19, 38]. Self-

supervised signals are often used to train this visual rep-

resentation, such as learning relative positions of image

patches [11], predicting image rotations [16], predicting fu-

ture patches [29], and constrastive learning on augmented

images [7]. Compared to visual data, trajectory data is sig-

nificantly lower dimensional in each frame, and techniques

from visual representation learning often cannot be applied

directly. For example, while we can create image patches

that represent the same visual class, it is difficult to select

2877

Task Programming

Examine trajectory data Select behavior attributes Write programs

dist_nose(x1, y1, x2, y2):
 x_diff = x2 - x1
 y_diff = y2 - y1
 dist = norm(x_diff, y_diff)

Domain Expert

Add decoder task
Annotate frame-level

 behavior

Classifier
Training

Feature
Extraction

Model
Training

Data Annotation

Mount OtherSniffDistance

Speed

Figure 2. Task Programming and Data Annotation for Classifier Training. Domain experts can choose between doing task program-

ming and/or data annotation. Task programming is the process for domain experts to engineer decoder tasks for representation learning.

The programs enable learning of annotation-sample efficient trajectory features to improve performance instead of additional annotations.

a partial set of keypoints that represent the same behavior.

Our framework builds upon these approaches to learn effec-

tive representations for behavioral data.

We investigate different decoder tasks in order to learn

an effective behavior representation. One decoder task that

we investigate is self-decoding: the reconstruction of input

trajectories using generative modeling. Generative model-

ing has previously been applied to learn representations for

visual data [45, 38, 29] and language modeling [31]; for tra-

jectory data, we use imitation learning [40, 44, 43] to train

our trajectory representation. The other tasks in our multi-

task self-supervised learning framework are created by do-

main experts using task programming (Section 3.2). This

idea of using a human-provided function as part of train-

ing has been studied for training set creation [33, 32], and

controllable trajectory generation [43]. Our work explores

these additional decoder tasks to further improve the learned

representation over the generative loss alone.

Multi-Task Self-Supervised Learning. We jointly op-

timize a family of self-supervised tasks in an encoder-

decoder setup, making this work an example of multi-

task self-supervised learning. Multi-task self-supervised

learning has been applied to other domains such as visual

data [12, 25], accelerometer recordings [35], audio [34] and

multi-modal inputs [37, 30]. Generally in each of these do-

mains, tasks are defined ahead of time, as is the case for

tasks such as frame reconstruction, colorization, finding rel-

ative position of image patches, and video-audio alignment.

Most of these tasks are designed for image or video data,

and cannot be applied directly to trajectory data. To con-

struct tasks for trajectory representation learning, we pro-

pose that domain experts can use task programming to en-

gineer decoder tasks and encode structural knowledge.

3. Methods

We introduce Trajectory Embedding for Behavior

Analysis (TREBA), a method to learn an annotation-sample

efficient trajectory representation using self-supervision and

auxiliary decoder tasks engineered by domain experts. Fig-

ure 2 provides an overview of the expert’s role. In our

framework, domain experts replace (a significant amount

of) time-consuming manual annotation with the construc-

tion of a small number of programmed tasks, reducing total

expert effort. Each task places an additional constraint on

the learned trajectory embedding.

TREBA uses the expert-programmed tasks based on a

multi-task self-supervised learning approach, outlined in

Figure 3. To learn task-relevant low-dimensional represen-

tations of pose trajectories, we train a network jointly on

(1) reconstruction of the input trajectory (Section 3.1) and

(2) expert-programmed decoder tasks (Section 3.3). The

learned representation can then be used as input to behavior

modeling tasks, such as behavior classification.

3.1. Trajectory Representations

Let D be a set of N unlabelled trajectories. Each tra-

jectory τ is a sequence of states τ = {(st)}
T
t=1, where the

state si at timestep i corresponds to the location or pose of

the agents at that timestep. In this study, we divide trajecto-

ries from longer recordings into segments of length T , but

in general trajectory length can vary. For multiple agents,

the keypoints of each agent is stacked at each timestep.

Before we introduce our expert-programmed tasks,

we will use trajectory reconstruction as an initial self-

supervised task. Given a history of agent states, we would

like our model to predict the next state. This task is usually

studied with sequential generative models. We used trajec-

tory variational autoencoders (TVAEs) [9, 43] to embed the

input trajectory using an RNN encoder, qφ, and an RNN

decoder, pθ, to predict the next state. The TVAE loss is:

Ltvae = Eqφ

[T
∑

t=1

− log(pθ(st+1|st, z))

]

+DKL(qφ(z|τ)||pθ(z)).

(1)

2878

Train

Trajectory
Data

Trajectory
Encoder

Embedding Trajectory
Decoder

For each timestamp t

State at time t State
Prediction

Generated
Trajectory

Trajectory
Recon. Loss For each program

Attribute Decoder

Representation Decoder

Attribute
Decoding

Loss

Contrastive
Loss

Attribute
Consistency

 Loss

Inference

Trajectory
Data

Trajectory
Encoder

Embedding Downstream Model
(ex: Behavior Classifier)

Figure 3. TREBA Training and Inference Pipelines. During training, we use trajectory self-decoding and the programmed decoder tasks

to train the trajectory encoder. The learned representation is used for downstream tasks such as behavior classification.

We use a prior distribution pθ(z) on z to regularize the

learned embeddings; in this study, our prior is the unit Gaus-

sian. By optimizing for the TVAE loss only, we learn an

unsupervised version of TREBA. When performing subse-

quent behavior modeling tasks such as classification, we use

the embedding mean, zµ.

3.2. Task Programming

Task programming is the process by which domain

experts create decoder tasks for trajectory self-supervised

learning. This process consists of selecting attributes from

trajectory data, writing programs, and creating decoder

tasks based on the programs (Figure 2). Here, domain ex-

perts are people with specialized knowledge for studying

behavior, such as neuroscientists or sports analysts.

To start, domain experts identify attributes from trajec-

tory data relevant to the behaviors of interest under study.

Behavior attributes capture information that is likely rele-

vant to agent behavior, but is not explicitly included in the

trajectory states {(st)}
T
t=1. These attributes represent struc-

tured knowledge that domain experts are implicitly or ex-

plicitly considering for behavior analysis, such as the dis-

tance between two agents, agent velocity, or the relative po-

sitioning of agent body parts.

Next, domain experts write a program to compute these

attributes on trajectory data, which can be done with exist-

ing tools such as MARS [36] or SimBA [28]. Algorithm 1

shows a sample program from the mouse social behavior

domain, for measuring the “facing angle” between a pair of

interacting mice. Each program can be used to construct

decoder tasks for self-supervised learning (Section 3.3).

Our framework is inspired by the data programming

paradigm [33], which applies programs to training set cre-

ation. In comparison, our framework uses task program-

ming to unify expert-engineered programs, which encode

structured expert knowledge, with representation learning.

Algorithm 1: Sample Program for Facing Angle

Input: centroid of mouse 1 (x1, y1), centroid of

mouse 2 (x2, y2), heading of mouse 1 (φ1)

xdiff = x2 − x1

ydiff = y2 − y1
θ = arctan(ydiff, xdiff)
Return θ − φ1

Domain Behavior Attributes

Mouse Facing Angle Mouse 1 and 2, Speed Mouse 1 and 2

Nose-Nose Distance, Nose-Tail Distance,

Head-Body Angle Mouse 1 and 2

Nose Movement Mouse 1 and 2

Fly Speed Fly 1 and 2, Fly-Fly Distance

Angular Speed Fly 1 and 2, Facing Angle Fly 1 and 2

Min and Max Wing Angles Fly 1 and 2

Major/Minor Axis Ratio Fly 1 and 2

Table 1. Behavior Attributes used in Task Programming. We

base our programmed tasks in our experiments on these behavior

attributes from domain experts in each domain.

Working with domain experts in behavioral neuro-

science, we created a set of programs to use in studying

our approach. The selected programs are a subset of be-

havior attributes in [36] (for mouse datasets) and a subset

of behavior attributes in [15] (for fly datasets). We list the

programs used in Table 1, and provide more details about

the programs in the Supplementary Material.

3.3. Learning Algorithm

We develop a method to incorporate the programs from

domain experts as additional learning signals for TREBA.

We consider the following three approaches: (1) enforc-

ing attribute consistency in generated trajectories (Sec-

tion 3.3.1), (2) performing attribute decoding directly (Sec-

tion 3.3.2), (3) applying contrastive loss based on program

supervision (Section 3.3.3). Each of these methods applies

2879

a different loss on the low-dimensional representation z of

trajectory τ . Any combinations of these decoding tasks can

be combined with self-decoding from Section 3.1 to inform

the trajectory embedding z.

3.3.1 Attribute Consistency

Let λ be a set of M domain-expert-designed functions mea-

suring agent behavior attributes, such as agent velocity or

facing angle. Recall that each λj , j = 1...M takes as input

a trajectory τ , and returns some expert-designed attribute

λj(τ) computed from that trajectory. For λj designed for a

single frame, we apply the function to the center frame of

τ . Attribute consistency aims to maintain the same behav-

ior attribute labels for the generated trajectory as the orig-

inal. Let τ̃ be the trajectory generated by the TVAE given

the same initial condition as τ and encoding z.The attribute

consistency loss is:

Lattr = Eτ∼D

[M
∑

j=1

✶(λj(τ̃) 6= λj(τ))

]

. (2)

Here, we show the loss for categorical λj , but in general,

λj can be continuous and any loss measuring differences

between λj(τ̃) and λj(τ) applies, such as mean squared er-

ror. We do not require λ to always be differentiable, and we

use the differentiable approximation introduced in [43] to

handle non-differentiable λ.

3.3.2 Attribute Decoding

Another option is to decode each attribute λj(τ) directly

from the learned representation z. Here we apply a shallow

decoder f to the learned representation, with decoding loss:

Ldecode = Eτ∼D

[M
∑

j=1

✶(f(qφ(zµ|τ)) 6= λj(τ))

]

. (3)

Similar to Eq. (2), we show the loss for categorical λj ,

however any type of λ may be used.

3.3.3 Contrastive Loss

Lastly, the programmed tasks can be used to supervise con-

trastive learning of our representation. For a trajectory τi,
and for each λj , positive examples are those trajectories

with the same attribute class under λj . For λj with contin-

uous outputs, we create a discretized λ̂j in which we apply

fixed thresholds to divide the output space into classes. For

our work, we apply two thresholds for each program such

that our classes are approximately equal in size.

We apply a shallow decoder g to the learned representa-

tion, and let g = g(qφ(zµ|τ)) represent the decoded repre-

sentation. We then apply the contrastive loss:

Lcntr. =
B
∑

i=1

M
∑

j=1

[

−1

Npos(i,j)

B
∑

k=1

✶i 6=k · ✶λj(τi)=λj(τk)

· log
exp(gi · gk/t)

∑N
l=1 ✶i 6=l · exp(gi · gl/t)

]

,

(4)

where B is the batch size, Npos(i,j) is the number of posi-

tive matches for τi with λj , and t > 0 is a scalar temperature

parameter. Our form of contrastive loss supervised by task

programming is similar to the contrastive loss in [24] su-

pervised by human annotations. A benefit of task program-

ming is that the supervision from programs can be quickly

and scalably applied to unlabelled datasets, as compared to

expert supervision which can be time-consuming. We note

that the unsupervised version of this contrastive loss is stud-

ied in [7], based on previous works such as [29].

3.3.4 Data Augmentation

We can perform data augmentation on trajectory data

based on our expert-provided programs. Given the set of

all possible augmentations, we define Λ to be the subset of

augmentations that are attribute-preserving: that is, for all

λj in the set of programs, λj(τ) = λj(Λm(τ)) for some

augmentation Λm ∈ Λ. An example of a valid augmenta-

tion in the mouse domain is reflection of the trajectory data.

All losses presented above can be extended with data

augmentation, by replacing τ with Λm(τ) in losses. For

contrastive loss, adding data augmentation corresponds to

extending the batch size to 2B, with B samples from the

original and augmented trajectories.

The augmentations we use in our experiments are reflec-

tions, rotations, translations, and a small Gaussian noise on

the keypoints (mouse data only). In practice, we add the

loss for each decoder with and without data augmentation.

4. Experiments

4.1. Datasets

We work with datasets from behavioral neuroscience,

where there are large-scale, expert-annotated datasets from

scientific experiments. We study behavior for the labora-

tory mouse and the fruit fly, two of the most common model

organisms in behavioral neuroscience. For each organism,

we first train TREBA using large unannotated datasets: for

the mouse domain we use an in-house dataset comprised of

approximately 100 hours of recorded diadic social interac-

tions (Mouse100), while for the fly domain we use the Fly

vs. Fly dataset [15] without annotations.

After pre-training TREBA, we evaluate the suitability of

our trajectory representation for supervised behavior clas-

2880

sification (classifying frame-level behaviors on continuous

trajectory data), on three additional datasets:

MARS. The MARS dataset [36] is a recently released

mouse social behavior dataset collected in the same condi-

tions as Mouse100. The dataset is annotated by neurobiol-

ogists on a frame-by-frame basis for three behaviors: sniff,

attack, and mount. We use the provided train, validation,

and test split (781k, 352k, and 184k frames respectively).

Trajectories are extracted by the MARS tracker [36].

CRIM13. CRIM13 [4] is a second mouse social behav-

ior dataset manually annotated on a frame-by-frame basis

by experts. To extract trajectories, we use a version of the

the MARS tracker [36] fine-tuned on pose annotations on

CRIM13. We select a subset of videos from which trajecto-

ries can be reliably detected for a train, validation and test

split of 407k, 96k, and 142k frames respectively. We eval-

uated classifier performance on the same three behaviors

studied in MARS (sniff, attack, mount).

CRIM13 is a useful test of the robustness of TREBA

trained on Mouse100, as the recording conditions in

CRIM13 (image resolution 640 × 480, frame rate 25Hz,

and non-centered cage location) are different from those of

Mouse100 (image resolution 1024× 570, frame rate 30Hz,

and centered cage location).

Fly vs. Fly (Fly). We use the Aggression and Courtship

videos from the Fly dataset [15]. These videos record in-

teractions between a pair of flies annotated on a frame-by-

frame basis for social behaviors by domain experts. Our

train, validation and test split has 1067k, 162k, 322k frames

respectively. We use the trajectories tracked by [15] and

evaluate on all behaviors with more than 1000 frames of an-

notations in the full training set (lunge, wing threat, tussle,

wing extension, circle, copulation).

4.2. Training and Evaluation Procedure

We use the attribute consistency loss (Section 3.3.1) and

contrastive loss (Section 3.3.3) to train TREBA using pro-

grams. With the same programs, we find that different loss

combinations result in similar performance, and that the

combination of consistency and contrastive losses performs

the best overall. The results for all loss combinations are

provided in the Supplementary Material.

For the datasets in the mouse domain (MARS and

CRIM13) we train TREBA on Mouse100, with 10 programs

provided by mouse behavior domain experts. For the Fly

dataset, we train TREBA on the training split of Fly with-

out annotations, with 13 programs provided by fly behavior

domain experts. The full list is in Table 1. We then use

the trained encoder, with pre-trained frozen weights, as a

trajectory feature extractor over T = 21 frames, where the

representation for each frame is computed using ten frames

before and after the current frame.

We evaluate our classifiers, with and without TREBA

features, using Mean Average Precision (MAP). We com-

pute the mean over behaviors of interest with equal weight-

ing. Our classifiers are shallow fully-connected neural net-

works on the input features. To determine the relation-

ship between classifier performance and training set size,

we sub-sample the training data by randomly sampling tra-

jectories (with lengths of 100 frames) to achieve a desired

fraction of the training set size. Sampling was performed to

achieve a similar class distribution as the full training set.

We train each classifier nine times over three different ran-

dom selections of the training data for each training fraction

(1%, 2%, 5%, 10%, 25%, 50%, 75%, 100%). Additional

implementation details are in the Supplementary Material.

4.3. Main Results

We evaluate the data efficiency of our representation

for supervised behavior classification, by training a clas-

sifier to predict behavior labels given both our learned

representation and one of either (1) raw keypoints or

(2) domain-specific features designed by experts. The

TREBA+keypoints evaluation allows us to test the effec-

tiveness of our representation without other hand-designed

features, while the TREBA+features evaluation is closer to

most potential use cases. The domain-specific features for

mice are the trajectory features from [36] and features for

flies are the trajectory features from [4]. The input features

are a superset of the programs we use in Table 1.

Our representation is able to improve the data efficiency

for both keypoints and domain-specific features, over all

evaluated amounts of training data availability (Figure 4).

We discuss each dataset below:

MARS. Our representation significantly improves clas-

sification performance over keypoints alone (Figure 4 A1).

We achieve the same performance as the full baseline train-

ing using only between 1% and 2% of the data. While

this result is partially because our representation contains

temporal information, we can also observe a significant in-

crease in data efficiency in A2 compared to domain-specific

features, which also contains temporal features. Classi-

fiers using TREBA has the same performance as the full

baseline training set with around 5% ∼ 10% of data (i.e.,

10× ∼ 20× improved annotation efficiency).

CRIM13. We test the transfer learning ability of our

representation on CRIM13, a dataset with different image

properties than Mouse100, the training set of TREBA. Our

representation achieves the same performance as the base-

line training with keypoints using around 5% to 10% of the

training data (Figure 4 B1). With domain-specific features,

TREBA uses 50% of the data annotation to have the same

performance as the full training baseline (i.e., 2× improved

annotation efficiency). Our representation is able to gener-

alize to a different dataset of the same organism.

Fly. When using keypoints only, our representation re-

2881

8×10 2
10 1

3×10 1

5×10 1

7×10 1

9×10 1

Er
ro

r (
Lo

g
Sc

al
e)

A1. MARS Keypoints Data Efficiency
Keypoints
Keypoints + TREBA

B1. CRIM13 Keypoints Data Efficiency C1. Fly Keypoints Data Efficiency

10 2 10 1 100

Training Data Fraction (Log Scale)
8×10 2

10 1

3×10 1

5×10 1

7×10 1

9×10 1

Er
ro

r (
Lo

g
Sc

al
e)

A2. MARS Features Data Efficiency
Features
Features + TREBA

10 2 10 1 100

Training Data Fraction (Log Scale)

B2. CRIM13 Features Data Efficiency

10 2 10 1 100

Training Data Fraction (Log Scale)

C2. Fly Features Data Efficiency

Figure 4. Data Efficiency for Supervised Classification. Training data fraction vs. classifier error on MARS (left), CRIM13 (middle)

and fly (right). The blue lines represent performance with baseline keypoints and features, and the orange lines are with TREBA. The

shaded regions correspond to the classifier standard deviation over nine repeats. The gray dotted line marks the best observed classifier

performance when trained on the baseline features (using the full training set). Note the log scale on both the x and y axes.

quires 10% of the data (Figure 4 C1) and for features, our

representation requires 50% of the data (Figure 4 C2) to

achieve the same performance as full baseline training. This

corresponds to 2× improved annotation efficiency.

4.4. Model Ablations

We perform the following model ablations to better char-

acterize our approach. In this section, percentage error re-

duction relative to baseline is averaged over all training frac-

tions. Additional results are in the Supplementary Material.

Varying Programmed Tasks. We test the performance

of TREBA trained with each single program provided by

the domain experts in Table 1, and the average, best, and

worst performance is visualized in Figure 5. On average,

representations learned from a single program is better than

using features alone, but using all provided programs fur-

ther improves performance.

For a single program, there could be a large variation in

performance depending on the selected program (Figure 5).

While the best performing single program is close in classi-

fier MAP to using all programs, the worst performing pro-

gram may increase error, as in MARS and CRIM13. We

further tested the performance using more programs.

In the mouse domain, we found that with three ran-

domly selected programs, the variation between runs is

much smaller compared to single programs (Supplementary

Material). With three programs, we achieve comparable av-

erage error reduction from baseline features to using all pro-

grams (MARS: 14.6% error reduction for 3 programs vs.

15.3% for all, CRIM13: 9.2% for 3 programs vs. 9.5% for

all). For the fly domain, we found that we needed seven

programs to achieve comparable performance (20.7% for 7

programs vs. 21.2% for all).

Varying Decoder Losses. When the programmed tasks

are fixed, decoder losses with different combinations of

consistency (Section 3.3.1), decoding (Section 3.3.2), and

contrastive (Section 3.3.3) loss are similar in performance

(Supplementary Material). Additionally, we evaluate the

TREBA framework without programmed tasks, with de-

coder tasks using trajectory generation and unsupervised

contrastive loss. While self-supervised representations are

also effective at reducing baseline error, we achieve the

best classifier performance using TREBA with programmed

tasks (Table 2). Furthermore, we found that training trajec-

tory representations without self-decoding, using the con-

trastive loss from [7, 8], resulted in less effective represen-

tations for classification (Supplementary Material).

Data Augmentation. We removed the losses using the

data augmentation described in Section 3.3.4, and found

that performance was slightly lower for all datasets than

with augmentation. In particular, adding data augmentation

decreases error by 1.2% on MARS, 2.5% on CRIM13, and

5.3% on Fly compared to without data augmentation.

Pre-Training Variations The results shown for MARS

was obtained with pre-training TREBA on Mouse100, a

large in-house mouse dataset with the same image prop-

2882

10 2 10 1 100

Training Data Fraction (Log Scale)

10 1

3×10 1

5×10 1

2 × 10 1

4 × 10 1

Er
ro

r (
Lo

g
Sc

al
e)

MARS Features with Program Variations
Features
Features + TREBA (1 program)
Features + TREBA (10 programs)

10 2 10 1 100

Training Data Fraction (Log Scale)

CRIM13 Features with Program Variations

10 2 10 1 100

Training Data Fraction (Log Scale)

Fly Features with Program Variations

Figure 5. Varying Programmed Tasks. Effect of varying number of programmed tasks on classifier data efficiency. The shaded region

corresponds to the best and worst classifiers trained using a single programmed task from Table 1. The grey dotted line corresponds to the

value where the baseline features achieve the best performance (using the full training set).

Keypoint Error Reduction (%)

Decoder Loss MARS CRIM13 Fly

TVAE 52.2± 4.0 34.7± 1.5 15.4± 2.1

TVAE+
52.6± 3.9 37.4± 2.4 20.9± 1.7

Unsup. Contrast

TVAE+
55.1± 3.0 41.1± 2.1 33.7± 1.2

Contrast+Consist

Features Error Reduction (%)

Decoder Loss MARS CRIM13 Fly

TVAE 13.7± 1.8 8.2± 4.6 11.7± 4.7

TVAE+
14.3± 2.2 8.9± 4.1 16.1± 1.7

Unsup. Contrast

TVAE+
15.3± 2.1 9.5± 3.8 21.2± 4.5

Contrast+Consist

Table 2. Decoder Error Reductions. Percentage error reduc-

tion relative to baseline keypoints and domain-specific features for

training with different decoder losses for TREBA. The average is

taken over all evaluated training fractions.

erties as MARS. Figure 6 demonstrates the effect of vary-

ing TREBA training data amount with TVAE only and with

programs. For both keypoints and features, we observe that

TVAE (MARS) has the largest error. We see that error can

be decreased by either adding more data (features + TVAE

(Mouse100) with 3.9% decrease) or adding task program-

ming (features + Programs (MARS) with 4.4% decrease).

Adding both more data and task programming results in an

average decrease of 5.7% error relative to TVAE (MARS)

and the lowest average error.

5. Conclusion

We introduce a method to learn an annotation-sample

efficient Trajectory Embedding for Behavior Analysis

(TREBA). To train this representation, we study self-

supervised decoder tasks as well as decoder tasks with pro-

grammatic supervision, the latter created using task pro-

gramming. Our results show that TREBA can reduce anno-

tation requirements by a factor of 10 for mice and 2 for flies.

Our experiments on three datasets (two in mice and one in

fruit flies) suggest that our approach is effective across dif-

ferent domains. TREBA is not restricted to animal behavior

2 × 10 1

3 × 10 1

4 × 10 1

Er
ro

r (
Lo

g
Sc

al
e)

MARS Keypoints with Pre-Training Variations
Keypoints + TVAE (MARS)
Keypoints + TVAE (Mouse100)
Keypoints + Programs (MARS)
Keypoints + Programs (Mouse100)

10 2 10 1 100

Training Data Fraction (Log Scale)

1.2 × 10 1

1.4 × 10 1

1.6 × 10 1

1.8 × 10 1

2 × 10 1

2.2 × 10 1

2.4 × 10 1

Er
ro

r (
Lo

g
Sc

al
e)

MARS Features with Pre-Training Variations
Features + TVAE (MARS)
Features + TVAE (Mouse100)
Features + Programs (MARS)
Features + Programs (Mouse100)

Figure 6. Pre-Training Data Variations. Effect of varying pre-

training data on classifier data efficiency for the MARS dataset.

“TVAE” corresponds to training TREBA with TVAE losses only,

and “Programs” corresponds to training with all programs.

and may be applied to other domains where tracking data is

expensive to annotate, such as in sports analytics.

Our experiments highlight, and quantify, the tradeoff be-

tween task programming and data annotation. The choice

of which is more effective will depend on the cost of anno-

tation and the level of expert understanding in identifying

behavior attributes. Directions in creating tools to facilitate

program creation and data annotation will help further ac-

celerate behavioral studies.

6. Acknowledgements

We would like to thank Tomomi Karigo at Caltech

for providing the mouse dataset. The Simons Foundation

(Global Brain grant 543025 to PP) generously supported

this work, and this work is partially supported by NIH

Award #K99MH117264 (to AK), NSF Award #1918839 (to

YY), and NSERC Award #PGSD3-532647-2019 (to JJS).

2883

References

[1] David J Anderson and Pietro Perona. Toward a science of

computational ethology. Neuron, 84(1):18–31, 2014.

[2] Gordon J Berman, Daniel M Choi, William Bialek, and

Joshua W Shaevitz. Mapping the stereotyped behaviour of

freely moving fruit flies. Journal of The Royal Society Inter-

face, 11(99):20140672, 2014.

[3] Brian Broll, Matthew Hausknecht, Dave Bignell, and Adith

Swaminathan. Customizing scripted bots: Sample efficient

imitation learning for human-like behavior in minecraft.

[4] Xavier P Burgos-Artizzu, Piotr Dollár, Dayu Lin, David J

Anderson, and Pietro Perona. Social behavior recognition in

continuous video. In 2012 IEEE Conference on Computer

Vision and Pattern Recognition, pages 1322–1329. IEEE,

2012.

[5] Adam J Calhoun, Jonathan W Pillow, and Mala Murthy.

Unsupervised identification of the internal states that shape

natural behavior. Nature neuroscience, 22(12):2040–2049,

2019.

[6] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jag-

jeet Singh, Slawomir Bak, Andrew Hartnett, De Wang, Pe-

ter Carr, Simon Lucey, Deva Ramanan, et al. Argoverse:

3d tracking and forecasting with rich maps. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 8748–8757, 2019.

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. ICML, 2020.

[8] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad

Norouzi, and Geoffrey Hinton. Big self-supervised mod-

els are strong semi-supervised learners. arXiv preprint

arXiv:2006.10029, 2020.

[9] John D Co-Reyes, YuXuan Liu, Abhishek Gupta, Ben-

jamin Eysenbach, Pieter Abbeel, and Sergey Levine. Self-

consistent trajectory autoencoder: Hierarchical reinforce-

ment learning with trajectory embeddings. arXiv preprint

arXiv:1806.02813, 2018.

[10] Anthony I Dell, John A Bender, Kristin Branson, Iain D

Couzin, Gonzalo G de Polavieja, Lucas PJJ Noldus, Al-

fonso Pérez-Escudero, Pietro Perona, Andrew D Straw, Mar-

tin Wikelski, et al. Automated image-based tracking and

its application in ecology. Trends in ecology & evolution,

29(7):417–428, 2014.

[11] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsuper-

vised visual representation learning by context prediction. In

Proceedings of the IEEE international conference on com-

puter vision, pages 1422–1430, 2015.

[12] Carl Doersch and Andrew Zisserman. Multi-task self-

supervised visual learning. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 2051–2060,

2017.

[13] SE Roian Egnor and Kristin Branson. Computational analy-

sis of behavior. Annual review of neuroscience, 39:217–236,

2016.

[14] Eyrun Eyjolfsdottir, Kristin Branson, Yisong Yue, and Pietro

Perona. Learning recurrent representations for hierarchical

behavior modeling. ICLR, 2017.

[15] Eyrun Eyjolfsdottir, Steve Branson, Xavier P Burgos-

Artizzu, Eric D Hoopfer, Jonathan Schor, David J Anderson,

and Pietro Perona. Detecting social actions of fruit flies. In

European Conference on Computer Vision, pages 772–787.

Springer, 2014.

[16] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-

supervised representation learning by predicting image rota-

tions. ICLR, 2018.

[17] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan

Misra. Scaling and benchmarking self-supervised visual rep-

resentation learning. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pages 6391–6400,

2019.

[18] Jacob M Graving, Daniel Chae, Hemal Naik, Liang Li, Ben-

jamin Koger, Blair R Costelloe, and Iain D Couzin. Deep-

posekit, a software toolkit for fast and robust animal pose

estimation using deep learning. Elife, 8:e47994, 2019.

[19] Tengda Han, Weidi Xie, and Andrew Zisserman. Video rep-

resentation learning by dense predictive coding. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion Workshops, pages 0–0, 2019.

[20] Katja Hofmann. Minecraft as ai playground and labora-

tory. In Proceedings of the Annual Symposium on Computer-

Human Interaction in Play, pages 1–1, 2019.

[21] Weizhe Hong, Ann Kennedy, Xavier P Burgos-Artizzu,

Moriel Zelikowsky, Santiago G Navonne, Pietro Perona, and

David J Anderson. Automated measurement of mouse social

behaviors using depth sensing, video tracking, and machine

learning. Proceedings of the National Academy of Sciences,

112(38):E5351–E5360, 2015.

[22] Alexander I Hsu and Eric A Yttri. B-soid: An open source

unsupervised algorithm for discovery of spontaneous behav-

iors. bioRxiv, page 770271, 2020.

[23] Mayank Kabra, Alice A Robie, Marta Rivera-Alba, Steven

Branson, and Kristin Branson. Jaaba: interactive machine

learning for automatic annotation of animal behavior. Nature

methods, 10(1):64, 2013.

[24] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,

Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and

Dilip Krishnan. Supervised contrastive learning. arXiv

preprint arXiv:2004.11362, 2020.

[25] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Re-

visiting self-supervised visual representation learning. In

Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition, pages 1920–1929, 2019.

[26] Kevin Luxem, Falko Fuhrmann, Johannes Kürsch, Ste-

fan Remy, and Pavol Bauer. Identifying behavioral struc-

ture from deep variational embeddings of animal motion.

bioRxiv, 2020.

[27] Alexander Mathis, Pranav Mamidanna, Kevin M Cury, Taiga

Abe, Venkatesh N Murthy, Mackenzie Weygandt Mathis,

and Matthias Bethge. Deeplabcut: markerless pose estima-

tion of user-defined body parts with deep learning. Nature

neuroscience, 21(9):1281–1289, 2018.

[28] Simon RO Nilsson, Nastacia L Goodwin, Jia J Choong,

Sophia Hwang, Hayden R Wright, Zane Norville, Xiaoyu

Tong, Dayu Lin, Brandon S Bentzley, Neir Eshel, et al. Sim-

ple behavioral analysis (simba): an open source toolkit for

2884

computer classification of complex social behaviors in ex-

perimental animals. BioRxiv, 2020.

[29] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-

sentation learning with contrastive predictive coding. arXiv

preprint arXiv:1807.03748, 2018.

[30] AJ Piergiovanni, Anelia Angelova, and Michael S Ryoo.

Evolving losses for unsupervised video representation learn-

ing. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 133–142, 2020.

[31] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya

Sutskever. Improving language understanding by generative

pre-training, 2018.

[32] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason

Fries, Sen Wu, and Christopher Ré. Snorkel: Rapid training

data creation with weak supervision. In Proceedings of the

VLDB Endowment. International Conference on Very Large

Data Bases, volume 11, page 269. NIH Public Access, 2017.

[33] Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel

Selsam, and Christopher Ré. Data programming: Creating

large training sets, quickly. In Advances in neural informa-

tion processing systems, pages 3567–3575, 2016.

[34] Mirco Ravanelli, Jianyuan Zhong, Santiago Pascual, Pawel

Swietojanski, Joao Monteiro, Jan Trmal, and Yoshua Bengio.

Multi-task self-supervised learning for robust speech recog-

nition. In ICASSP 2020-2020 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP),

pages 6989–6993. IEEE, 2020.

[35] Aaqib Saeed, Tanir Ozcelebi, and Johan Lukkien. Multi-task

self-supervised learning for human activity detection. Pro-

ceedings of the ACM on Interactive, Mobile, Wearable and

Ubiquitous Technologies, 3(2):1–30, 2019.

[36] Cristina Segalin, Jalani Williams, Tomomi Karigo, May

Hui, Moriel Zelikowsky, Jennifer J. Sun, Pietro Perona,

David J. Anderson, and Ann Kennedy. The mouse ac-

tion recognition system (mars): a software pipeline for

automated analysis of social behaviors in mice. bioRxiv

https://doi.org/10.1101/2020.07.26.222299, 2020.

[37] Abhinav Shukla, Stavros Petridis, and Maja Pantic. Does

visual self-supervision improve learning of speech represen-

tations? arXiv preprint arXiv:2005.01400, 2020.

[38] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and

Cordelia Schmid. Videobert: A joint model for video and

language representation learning. In Proceedings of the IEEE

International Conference on Computer Vision, pages 7464–

7473, 2019.

[39] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien

Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,

Yuning Chai, Benjamin Caine, et al. Scalability in perception

for autonomous driving: Waymo open dataset. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 2446–2454, 2020.

[40] Ziyu Wang, Josh S Merel, Scott E Reed, Nando de Freitas,

Gregory Wayne, and Nicolas Heess. Robust imitation of di-

verse behaviors. In Advances in Neural Information Process-

ing Systems, pages 5320–5329, 2017.

[41] Alexander B Wiltschko, Matthew J Johnson, Giuliano Iurilli,

Ralph E Peterson, Jesse M Katon, Stan L Pashkovski, Vic-

toria E Abraira, Ryan P Adams, and Sandeep Robert Datta.

Mapping sub-second structure in mouse behavior. Neuron,

88(6):1121–1135, 2015.

[42] Raymond A Yeh, Alexander G Schwing, Jonathan Huang,

and Kevin Murphy. Diverse generation for multi-agent sports

games. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4610–4619, 2019.

[43] Eric Zhan, Albert Tseng, Yisong Yue, Adith Swaminathan,

and Matthew Hausknecht. Learning calibratable policies us-

ing programmatic style-consistency. ICML, 2020.

[44] Eric Zhan, Stephan Zheng, Yisong Yue, Long Sha, and

Patrick Lucey. Generating multi-agent trajectories using pro-

grammatic weak supervision. ICLR, 2019.

[45] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networkss. In Computer Vision

(ICCV), 2017 IEEE International Conference on, 2017.

2885

