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Abstract

Tracking humans in crowded video sequences is an

important constituent of visual scene understanding.

Increasing crowd density challenges visibility of humans,

limiting the scalability of existing pedestrian trackers to

higher crowd densities. For that reason, we propose to

revitalize head tracking with Crowd of Heads Dataset

(CroHD), consisting of 9 sequences of 11,463 frames with

over 2,276,838 heads and 5,230 tracks annotated in diverse

scenes. For evaluation, we proposed a new metric, IDEucl,

to measure an algorithm’s efficacy in preserving a unique

identity for the longest stretch in image coordinate space,

thus building a correspondence between pedestrian crowd

motion and the performance of a tracking algorithm. More-

over, we also propose a new head detector, HeadHunter,

which is designed for small head detection in crowded

scenes. We extend HeadHunter with a Particle Filter and

a color histogram based re-identification module for head

tracking. To establish this as a strong baseline, we com-

pare our tracker with existing state-of-the-art pedestrian

trackers on CroHD and demonstrate superiority, especially

in identity preserving tracking metrics. With a light-weight

head detector and a tracker which is efficient at identity

preservation, we believe our contributions will serve useful

in advancement of pedestrian tracking in dense crowds. We

make our dataset, code and models publicly available at

https://project.inria.fr/crowdscience/

project/dense-crowd-head-tracking/.

1. Introduction

Tracking multiple objects, especially humans, is a cen-

tral problem in visual scene understanding. The intricacy

of this task grows with increasing targets to be tracked and

remains an open area of research. Alike other subfields in

Computer Vision, with the advent of Deep Learning, the

task of Multiple Object Tracking (MOT) has remarkably

advanced its benchmarks [12, 24, 25, 37, 42, 61] since its

Figure 1. Comparison between head detection and full body de-

tection in a crowded scene from CroHD. HeadHunter detects 36

heads whereas Faster-RCNN [48] can detect only 23 pedestrians

out of 37 present in this scene.

inception [21]. In the recent past, the focus of MOTChal-

lenge benchmark [13] has shifted towards tracking pedes-

trians in crowds of higher density. This has several appli-

cations in fields such as activity recognition, anomaly de-

tection, robot navigation, visual surveillance, safety plan-

ning etc. Yet, the performances of trackers on these bench-

mark suggests a trend of saturation1. Majority of online

tracking algorithms today follow the tracking-by-detection

paradigm and several research works have well-established

object detector’s performance to be crucial in tracker’s per-

formance [3, 5, 11]. As the pedestrian density in a scene

increases, pedestrian visibility reduces with increasing mu-

tual occlusions, leading to reduced pedestrian detection as

visualized in Figure 1. To tackle these challenges yet track

humans efficiently in densely crowded environments, we

rekindle the task of MOT with tracking humans by their

distinctly visible part - heads. To that end, we propose a

new dataset, CroHD, Crowd of Heads Dataset, comprising

9 sequences of 11,463 frames with head bounding boxes an-

notated for tracking. We hope that this new dataset opens

1https://motchallenge.net/results/MOT20/
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up opportunities for promising future research to better un-

derstand global pedestrian motion in dense crowds.

Supplementing this, we develop two new baseline meth-

ods on CroHD, a head detector, HeadHunter and a head

tracker, HeadHunter-T. We design HeadHunter peculiar

for head detection in crowded environments, distinct from

standard pedestrian detectors and demonstrate state-of-the-

art performance on an existing head detection dataset.

HeadHunter-T extends HeadHunter with a Particle Filter

framework and a light-weight re-identification module for

head-tracking. To validate HeadHunter-T to be a strong

baseline tracker, we compare it with three published top per-

forming pedestrian trackers on the crowded MOTChallenge

benchmark, evaluated on CroHD. We further perform com-

parisons between tracking by head detection and tracking

by body detection to illustrate the value of our contribution.

To establish correspondence between a tracking algo-

rithm and pedestrian motion, it is necessary to understand

the adequacy of various trackers in successfully represent-

ing ground truth pedestrian trajectories. We thus propose

a new metric, IDEucl to evaluate tracking algorithms based

on their consistency in maintaining the same identity for the

longest length of a ground truth trajectory in the image co-

ordinate space. IDEucl is compatible with our dataset and

can be extended to any tracking benchmark, recorded with

a static camera.

In summary, this paper makes the following contributions

(i) We present a new dataset, CroHD, with annotated pedes-

trian heads for tracking in dense crowd, (ii) We propose a

baseline head detector for CroHD, HeadHunter, (iii) We de-

velop HeadHunter-T, by extending HeadHunter as the base-

line head tracker for CroHD, (iv) We propose a new metric,

IDEucl, to evaluate the efficiency of trackers in representing

a ground truth trajectory and finally, (v) We demonstrate

HeadHunter-T to be a strong baseline by comparing with

three existing state-of-the-art trackers on CroHD.

2. Related Work

Head Detection Benchmarks: The earliest benchmarks

in head detection are [29, 46, 62, 64], which provide ground

truth head annotations of subjects in Hollywood movies.

In the recent past, SCUT-Head [47] and CrowdHuman

dataset [52] provide head annotations of humans in crowded

scenes. Head detection is also of significant interest in the

crowd counting and analysis literature [32]. Rodriguez et

al. [50] introduced the idea of tracking by head detection

with their dataset consisting of roughly 2200 head annota-

tions. In the recent years, there has been a surge in research

works attempting to narrow the gap between detection and

crowd counting [39, 51, 41, 69] which attempts to halluci-

nate pseudo head ground truth bounding boxes in crowded

scenes.

Head Detection Methods: Fundamentally, the task of

head detection is a combination of multi-scale and contex-

tual object detection problem. Objects at multiple scales

are detected based on image pyramids [30, 47, 55, 56, 66]

or feature pyramids [26, 38, 70]. The former is compu-

tationally intensive task requiring multiple forward passes

of images while the latter generates multiple pyramids in a

single forward pass. Contextual object detection has been

widely addressed in the literature of face detection, such

as [14, 43, 60] who show improved detection accuracy by

using convolutional filters of larger receptive size to model

context. Sun et al. [58] employ such a contextual and scale-

invariant applied to head detection.

Tracking Benchmarks and Metrics: The task of Multi-

ple Object Tracking (MOT) is to track an initially unknown

number of targets in a video sequence. The first MOT

dataset for tracking humans were the PETS dataset [21],

soon followed by [1, 16, 24, 25]. Standardization of MOT

benchmarks were later proposed in [37] and since then, it

has been updated with yearly challenges with increasingly

crowded scenes [13, 42]. Recently, the TAO dataset [12]

was introduced for Multi-object tracking, which focuses on

tracking 833 object categories across 2907 short sequences.

Our dataset pushes the challenge of tracking in crowded en-

vironments with pedestrian density reaching 346 humans

per frame. Other relevant pedestrian tracking dataset in-

clude [8, 9, 61].

To evaluate algorithms on MOTChallenge dataset, classical

MOT metrics [63] and CLEAR MOT metrics [4] have been

de facto established as standardised way of quantifying per-

formances. The CLEAR Metric proposes two important

scores MOTA and MOTP which concisely summarise the

classical metrics based on cumulative per frame accuracy

and precision of bounding boxes respectively. Recently,

Ristani et al. [49] propose the ID metric, which rewards a

tracker based on its efficiency in preserving an identity for

the longest duration of the Ground Truth trajectory.

Tracking Algorithms: Online Multi-object tracking al-

gorithms can be summarised into: (i) Detection, (ii) Motion

Prediction, (iii) Affinity Computation and, (iv) Association

steps. R-CNN based networks have been common choice

for the detection stage due to the innate advantage of pro-

posal based detectors over Single-Stage detection methods

[31]. Amongst online Multiple Object Tracking algorithm,

Chen et al. [10] use Particle Filter framework and weigh the

importance of each particle by their appearance classifica-

tion score, computed by a separate network, trained inde-

pendently. Earlier works such as [7, 33] use Sequential Im-

portance Sampling (SIS) with Constant Velocity Assump-

tion for assigning importance weight to particles. Henschel

et al. [28] demonstrated the the limitation of single object

detector for tracking and used a head detector [57] in tan-

dem with the pedestrian detector [48]. However, in the re-

cent past, research works in MOT have attempted to bridge
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Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

Figure 2. Depiction of a frame per each scene from our Crowd of Heads Dataset, CroHD. The top row shows frames from the training set

while the bottom row illustrates frames from the test set. Scene 5 is kept exclusive for the test set.

the gap between tracking and detection through a unified

framework [3, 18, 19, 35, 40, 61]. Most notable amongst

them is Tracktor [3], who demonstrated that an object de-

tector alone is sufficient to predict locations of targets in

subsequent frames, benefiting from the high-frame rates in

video.

3. CroHD Dataset

Description: The objective of CroHD is to provide

tracking annotation of pedestrian heads in densely popu-

lated video sequences. To the best of our knowledge, no

such benchmark exists in the community and hence we an-

notated 2,276,838 human heads in 11,463 frames across 9

sequences of Full-HD resolution. We built CroHD upon

5 sequences from the publicly available MOTChallenge

CVPR19 benchmark [13] to enable performance compar-

ison of trackers in the same scene between two paradigms

- head tracking and pedestrian tracking. We maintain the

training set and test set classification of the aforementioned

sequences to be the same in CroHD as the MOTChal-

lenge CVPR19 benchmark. We further annotated 4 new

sequences of higher crowd densities in two new scenar-

ios. The new scenario centers on the Shibuya Train station

and Shibuya Crossing, one of the busiest pedestrian cross-

ings in the world. All sequences in CroHD have a frame-

rate of 25fps and are captured from an elevated viewpoint.

The sequences involve crowded indoor and outdoor scenes,

recorded across different lighting and environmental con-

ditions. This ensures sufficient diversity in the dataset in

order to make it viable for training and evaluating the com-

prehensiveness of modern Deep Learning based techniques.

The maximum pedestrian density reaches approximately

346 persons per frame while the average pedestrian density

across the dataset is 178. A detailed sequence-wise sum-

mary of CroHD is given in Table 1. We split CroHD into

4 sequences of 5740 frames for training and 5 sequences of

5723 frames for testing. They share three scenes in com-

mon, while the fourth scene is disparate to ensure general-

ization of trackers on this dataset. A representative frame

from each sequence of CroHD and their respective training,

testing splits are depicted in Figure 2. We will make our se-

quences and training set annotations publicly available. To

preserve the fairness of the MOTChallenge CVPR19 bench-

mark, we will not release the annotations corresponding to

the test set.

Annotation: The annotation and data format of CroHD

follows the standard guidelines outlined by MOTChallenge

benchmark [13, 42]. We annotated all visible heads of hu-

mans in a scene with the visibility left to the best of dis-

cretion of annotators. Heads of all humans, whose shoulder

is visible were annotated, including the heads occluded by

head coverings such as hood, caps etc. For sequences inher-

ited from MOTChallenge CVPR19 benchmark, the anno-

tations were performed independent of pedestrian tracking

ground truth in order to have no dependencies between the

two modalities. Due to the high frame rate in our video se-

quences, we interpolate annotations in between keyframes

and adjust a track only when necessary.

CroHD constitutes four classes - Pedestrian, Person on Ve-

hicle, Static and Ignore. Heads of statues or human faces on

clothing have been annotated with an ignore label. Heads of

pedestrians on vehicles, wheelchairs or baby transport have

been annotated as Person on Vehicle. Pedestrians who do

not move throughout the sequence are classified as static

persons. Unlike the case of standard MOTChallenge bench-

marks, we observe that overlap between bounding boxes are

minimal since head bounding boxes from an elevated view-

point are almost distinct. Hence, we limit our visibility flag

to be binary - either visible (1.0) or occluded (0.0). We con-

sider a proposal to be a match if the Intersection Over Union

(IoU) with the ground truth is larger than 0.4.
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Name Frames Scenario Tracks Boxes Density

CroHD-01 429 Indoor 85 21,456 50.0

CroHD-02 3,315 Outdoor, night 1,276 733,622 222.0

CroHD-03 1,000 Outdoor, day 811 258,012 258.0

CroHD-04 997 Indoor 580 175,703 176.2

CroHD-11 584 Indoor 133 38,492 65.8

CroHD-12 2,080 Outdoor, night 737 383,677 185.0

CroHD-13 1,000 Outdoor, day 725 257,828 258.0

CroHD-14 1,050 Outdoor, day 562 258,227 246.0

CroHD-15 1,008 Outdoor, day 321 149,821 149.0

Total 11,463 5,230 2,276,838 178

Table 1. Sequence-wise statistics CroHD. Sequences are named

CroHD-XY, with X being either 0 or 1 depending on training set

or testing set respectively. Y denotes the serial number of videos.

(a) Tracker A (b) Tracker B

Figure 3. Identity prediction of two trackers - Tracker A (3a) and

Tracker B (3b) for the same ground truth. A change of color im-

plies an identity switch with both trackers registering 3 switches.

4. Evaluation Metrics

For evaluation of head detection on CroHD, we fol-

low the standard Multiple Object detection metrics -

mean Average Precision (mAP), Multiple Object Detection

Accuracy (MODA), Multiple Object Detection Precision

(MODP) [23] and mAP COCO respectively. mAP COCO

refers to a stricter metric which computes the mean of AP

across IoU thresholds of {50%, 55%, 60%, . . . , 95%}. For

evaluation of trackers, we adapt the well established Mul-

tiple Object Tracking metrics [4, 49], and extend with the

proposed “IDEucl” metric.

IDEucl: While the event based metrics [4] and iden-

tity based metric (IDF1) [49] are persuasive performance

indicators of a tracking algorithm from a local and global

perspective, they do not quantify the proportion of the

ground truth trajectory a tracker in capable of covering.

Specifically, existing metrics do not measure the propor-

tion of ground truth trajectory in the image coordinate space

a tracker is able to preserve an identity. It is important

to quantitatively distinguish between trackers which are

more effective in tracking a larger portion of ground truth

pedestrian trajectories. This is particularly useful in dense

crowds, for better understanding of global crowd motion

pattern [15]. To that end, we propose a new evaluation

metric, “IDEucl”, which gauges a tracker based on its ef-

ficiency in maintaining consistent identity over the length

of ground truth trajectory in image coordinate space. Al-

beit, IDEucl might seem related to the existing IDF1 metric

which measures the fraction of frames of a ground truth tra-

jectory in which consistent ID is maintained. In contrast,

IDEucl measures the fraction of the distance travelled for

which the correct ID is assigned.

To elucidate this difference, consider the example shown

in Figure 3. Two trackers A and B compute four dif-

ferent identities for a ground truth trajectory G. Tracker

A commits three identity switches in the first 150 frames

while maintaining consistent identity for the remaining 150

frames. Tracker B, on the other hand, maintains consis-

tent identity for the first 150 frames but commits 3 identity

switches in the latter 150 frames. Our metric reports a score

of 0.3 for Tracker A (Figure 3a) and a score of 0.67 for

Tracker B (Figure 3b). Meanwhile, IDF1 and the classical

metric reports a score of “0.5” and “3 identity switches” re-

spectively for both the trackers. Following existing metrics,

Tracker A and Tracker B are considered equally efficient.

They neither highlight the ineffectiveness of Tracker A nor

the ability of Tracker B in covering an adequate portion of

ground truth trajectory with consistent identity. Therefore,

IDEucl is more appropriate for judging the quality of the

estimated pedestrian motion.

Thus, to formulate this metric, we perform a global hy-

pothesis to ground truth matching by constructing a Bipar-

tite Graph G = (U ,V, E), similar to [49]. Two “regular”

nodes are connected by an edge e if they overlap in time,

with the overlap defined by ∆,

∆t,t−1 =

{

1, if δ > 0.5
0, otherwise

(1)

Considering τt, ht to be an arbitrary ground truth and

hypothesis track at time t, δ is defined as,

δ = IoU(τt, ht) (2)

The cost on each edge E ∈ R
N of this graph, M ∈

R
N−1 is represented as the distance in image space between

two successive temporal associations of “regular” node. In

particular, cost of an edge is defined as ,

M =

N
∑

t=1

mt =

{

d(τt, τt−1), if ∆t,t−1 = 1.
0, otherwise

(3)

where d denotes the Euclidean distance in image coordi-

nate space. A ground truth trajectory is assigned a unique

hypothesis which maintains a consistent identity for the

predominant distance of ground truth in image coordi-

nate space. We employ the Hungarian algorithm to solve
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this maximum weight matching problem to obtain the best

(longest) hypothesis. Once we obtain an optimal hypoth-

esis, we formulate the metric C as the ratio of length of

ground truth in image coordinates covered by the best hy-

pothesis,

C =

∑K

i=1
Mi

∑K

i=1
Ti

(4)

Note that this formulation of cost function naturally

weighs the significance of each ground truth track based on

its distance in image coordinate space.

5. Methods : Head Detection and Tracking

In this section, we elucidate the design and working of

HeadHunter and HeadHunter-T.

5.1. HeadHunter

As detection is the pivotal step in object tracking, we de-

signed HeadHunter differently from traditional object de-

tectors [20, 48, 65] by taking into account the nature and

size of objects we detect. HeadHunter is an end-to-end two

stage detector, with three functional characteristics. First,

it extracts feature at multiple scales using Feature Pyramid

Network (FPN) [38] using a Resnet-50 [27] backbone. Im-

ages of heads are homogeneous in appearance and often,

in crowded scenes, resemble extraneous objects (typically

background). For that reason, inspired by the head de-

tection literature, we augmented on top of each individual

FPNs, a Context-sensitive Prediction Module (CPM) [60].

This contextual module consists of 4 Inception-ResNet-A

blocks [59] with 128 and 256 filters for 3 × 3 convolution

and 1024 filters for 1 × 1 convolution. As detecting pedes-

trian heads in crowded scenes is a problem of detecting

many small-sized adjacently placed objects, we used Trans-

pose Convolution on features across all pyramid levels to

upscale the spatial resolution of each feature map. Finally,

we used a Faster-RCNN head with Region Proposal Net-

work (RPN) generating object proposals while the regres-

sion and classification head, each providing location offsets

and confidence scores respectively. The architecture of our

proposed network is summarised in Figure 4.

5.2. HeadHunter­T

We extended HeadHunter with two motion models and

a color histogram based re-identification module for head-

tracking. Our motion models consist of Particle Filter to

predict motion of targets and Enhanced Correlation Coeffi-

cient Maximization [17] to compensate the Camera motion

in the sequence. A Particle Filter is a Sequential Monte

Carlo (SMC) process, which recursively estimates the state

of dynamic systems. In our implementation, we represent

the posterior density function by a set of bounding box pro-

posals for each target, referred to as particles. The use

of Particle Filter enables us to simultaneously model non-

linearity in motion occurring due to rapid movements of

heads and pedestrian displacement across frames.

Notation: Given a video sequence I, we denote the

ordered set of frames in it as {I0, · · · , IT−1}, where T is

the total number of frames in the sequence. Throughout the

paper, we use subscript notation to represent time instance

in a video sequence. In a frame It at time t, the active tracks

are denoted by Tt = {b1
t ,b

2
t , . . . ,b

N
t }, where bk

t refers

to bounding box of the kth active track, denoted as bk
t =

(

xk
t
,yk

t
,wk

t
,hk

t

)

. At time t, the ith particle corresponding

to kth track is denoted by p
k,i
t and its respective importance

weight by w
k,i
t . Lt and Nt denote the set of inactive tracks

and newly initialized tracks respectively.

Particle Initialization: New tracks are initialized at

the start of the sequence, I0 from the detection provided

by HeadHunter and at frame It for detection(s) which

cannot be associated with an existing track. A plausi-

ble association of new detection with existing track is re-

solved by Non-Maximal-Suppression (NMS). The impor-

tance weights of each particle are set to be equal at the

time of initialisation. Each particles represent 4 dimen-

sional state space, with the state of each targets modelled as

(xc,yc,w,h, ẋc, ẏc, ẇ, ḣ), where, (xc,yc,w,h) denote

the centroids, width and the height of bounding boxes.

Prediction and Update: At time t > 0, we perform

RoI pooling on the current frame’s feature map, Ft, with the

bounding box of particles corresponding to active tracks.

Each particles’ location in the current frame is then adjusted

using the regression head of HeadHunter, given their loca-

tion in the previous frame. The importance weights of each

particle are set to their respective foreground classification

score from the classification head of HeadHunter. Our pre-

diction step is similar to the Tracktor [3], applied to particles

instead of tracks. Given the new location and importance

weight of each particle, estimated position of kth track is

computed as weighted mean of the particles,

Sk
t =

1

M

M
∑

i=1

w
k,i
t p

k,i
t (5)

Resampling: Particle Filtering frameworks are known

to suffer from degeneracy problems [2] and as a result we

resample to replace particles of low importance weight. M
particles corresponding to kth track are re-sampled when

the number of particles which meaningfully contributes to

probability distribution of location of each head, N̂k
eff

ex-

ceeds a threshold, where,

N̂k
eff =

1
∑M

i=1
(wk,i)2

(6)
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Figure 4. An overview of the architecture of our proposed head detector, Headhunter. We augment the features extracted using FPN

(C4. . . P4) with Context Sensitive feature extractor followed by series of transpose convolutions to enhance spatial resolution of feature

maps. Cls and Reg denote the Classification and Regression branches of Faster-RCNN [48] respectively.

Cost Matching: Tracks are set to inactive when scores

of their estimated state Sa
t falls below a threshold, λreg

nms.

Positions of such tracks are predicted following Constant

Velocity Assumption (CVA) and their tracking is resumed

if it has a convincing similarity with a newly detected track.

The similarity, C is defined as

C = α · IoU(Li
t,N

j
t ) + β · d1(Li

t,N
j
t ) (7)

where Li
t and N

j
t are the ith lost track and jth new

track respectively. And, d1 denotes the Bhattacharyya dis-

tance between the respective color histograms in the HSV

space [45]. Once tracks are re-identified, we re-initialize

particles around its new position.

6. Experiments

6.1. HeadHunter

We first detail the experimental setup and analyse the

performance of HeadHunter on two datasets - SCUT-

HEAD [47] and CroHD respectively. For the Faster-RCNN

head of HeadHunter, we used 8 anchors, whose sizes

were obtained by performing K-means over ground truth

bounding boxes from the training set. To avoid overlapping

anchors, they were split equally across the four pyramid

levels, with the stride of anchors given by max(16, s/d)
where s is square-root of the area of an anchor-box and

d is the scaling factor [44]. For all experiments, we used

Online Hard Example Mining [54] with 1000 proposals

and a batch size of 512.

SCUT-Head is a large-scale head detection dataset con-

sisting of 4405 images and 111,251 annotated heads split

across Part A and Part B. We trained HeadHunter for 20

epochs with the input resolution to be the median image

resolution of the training set (1000x600 pixels) and an ini-

tial learning rate of 0.01 halved at 5th, 10th and 15th epochs

respectively. For a fair comparison, we trained HeadHunter

only on the training set of this dataset and do not use any

pre-trained models. We summarize the quantitative com-

parisons with other head detectors on this dataset in Table

2. HeadHunter outperforms other state-of-the-art head de-

tectors based on Precision, Recall and F1 scores.

Methods Precision Recall F1

Faster-RCNN [48] 0.87 0.80 0.83

R-FCN+FRN [47] 0.91 0.84 0.87

SMD [58] 0.93 0.90 0.91

HSFA2Net [53] 0.94 0.92 0.93

HeadHunter (Ours) 0.95 0.93 0.94

Table 2. Comparison between HeadHunter’s and other state-of-

the-art head detectors on the SCUT-Head dataset.

CroHD: We first trained HeadHunter on the combina-

tion of training set images from SCUT-HEAD dataset and

CrowdHuman dataset [52] for 20 epochs at a learning rate

of 0.001. With variations well characterized, pre-training

on large-scale image dataset improves the robustness of

head detection. We then fine-tuned HeadHunter on the

training set of CroHD, for a total of 25 epochs with an

initial learning rate of 0.0001 using the ADAM opti-

mizer [36]. The learning rate is then decreased by a factor

of 0.1 at 10th and 20th epochs respectively.

Ablation: We examined our design choices for Head-

Hunter, namely the use of context module and the anchor

selection strategy by removing them. The head detection

performance of HeadHunter and its variants on CroHD are

summarised in Table 3. We threshold the minimum confi-

dence of detection to 0.5 for evaluation. W/O Cont refers

to the HeadHunter without Context Module. We further re-

moved the median anchor sampling strategy and refer to as

W/O Cont, mAn. We also provide baseline performance

of Faster-RCNN with Resnet-50 backbone on CroHD, the

object detector upon which we built HeadHunter. We fol-

lowed the same training strategy for Faster-RCNN as Head-

Hunter. All variants of HeadHunter significantly outper-

formed Faster-RCNN. Inclusion of the context module and

3870



the anchor initialisation strategy also has a noteworthy im-

pact on head detection.

Method Precision Recall F1 MODA MODP mAP COCO

Faster-RCNN [48] 34.4 42.2 50.1 40.3 30.8 11.2

W/O Cont, mAn 40.9 50.8 57.8 38.1 37.8 14.4

W/O Cont 44.3 57.8 64.5 40.0 42.7 15.0

HeadHunter 52.8 63.4 68.3 50.0 47.0 19.7

Table 3. Summary of various head detector’s performances on the

test set of CroHD.

6.2. HeadHunter­T

For the Particle Filtering framework, we used a max-

imum of N=100 particles for each object. The N par-

ticles were uniformly placed around the initial bounding

box. To ensure that particles were not spread immoder-

ately and were distinct enough, we sampled particles from

a Uniform distribution whose lower and upper limit were

((x − 1.5w, y − 1.5h), (x + 1.5w, y + −1.5h)) respec-

tively. Where, x, y, w, h denote the centroid, width and

height of the initial bounding box. For the color based

re-identification, we used 16, 16 and 8 bins for the H, S

and V channels respectively, where the brightness invari-

ant Hue [22] was used instead of the standard Hue. α, β,

which denotes the importance of IoU and color histogram

matching, corresponding to Equation 7 were set to 0.8 and

0.2 respectively. We deactivated a track if it remained inac-

tive for λage = 25 frames or if its motion prediction falls

outside the image coordinates.

We evaluated three state-of-the-art trackers on CroHD,

namely, SORT [5], V-IOU [6] and Tracktor [3] to compare

with HeadHunter-T. We chose methods which do not re-

quire any tracking specific training, whose implementations

have been made publicly available and are top-performing

on the crowded MOTChallenge CVPR19 benchmark [13].

For a fair comparison, we performed all experiments with

head detection provided by HeadHunter, thresholded to a

minimum confidence of 0.6. SORT is an online tracker,

which uses a Kalman Filter motion model and temporally

associates detection based on IoU matching and Hungar-

ian Algorithm. V IOU associates detection based on IoU

matching and employs visual information to reduce track-

ing inconsistencies due to missing detection. Parameters

for V IOU and SORT were set based on fine-tuning on the

training set of CroHD, as discussed in the supplementary

material. We evaluated two variants of Tracktor, with and

without motion model. Tracktor+MM denotes the Tracktor

extended with Camera Motion Compensation [17] and CVA

for inactive tracks. For the two versions of Tracktor, we set

tracking parameters similar to HeadHunter. Table 6.2 sum-

marises the performance of aforementioned methods on the

test set of CroHD. HeadHunter-T outperforms all the other

methods, and furthermore demonstrates superiority in iden-

Method MOTA ↑ IDEucl ↑ IDF1 ↑ MT ↑ ML ↓ ID Sw. ↓

SORT [5] 46.4 58.0 48.4 49 216 649

V IOU [6] 53.4 34.3 35.4 80 182 1890

Tracktor [3] 58.9 31.8 38.5 125 117 3474

Tracktor+MM [3] 61.7 44.2 45.0 141 104 2186

HeadHunter-T 63.6 60.3 57.1 146 93 892

Table 4. Main tracking result comparing the performances of var-

ious state-of-the-art trackers and HeadHunter-T on the test set of

CroHD. The direction of arrows indicate smaller or larger desired

value for the metric.

tity preserved tracking. Although Tracktor [3] is similar to

HeadHunter-T, there is a noticeable difference in its head

tracking performance. We hypothesize the use of Particle

Filter framework, which can handle arbitrary posteriors, as

the reason for improvement. This claim is justified in the

forthcoming section.

6.3. Ablation Experiments

HeadHunter-T: In this section, we analyse the design

choices, in particular, the utility of re-identification module

and Particle Filter of HeadHunter-T on the training set of

CroHD. The results are summarised in Table 5. For varia-

tions in motion model, we removed the Particle Filter and

used simple Camera Motion Compensation, denoted as HT

w/o PF. We also experimented with a reduced number of

particles initialized around the head, with n=10, denoted as

HT + 10F. Introducing Particle Filter noticeably improved

identity preserving scores (IDF1 and IDEucl) for HT + 10F.

Further increasing the number of filters to 100 demonstrated

the best performance. However, using more than 100 fil-

ters resulted in either duplicates or immoderate spreading,

which are undesirable. We removed the re-identification

module, to understand its influence, denoted as w/o ReID.

Although color histogram is a modest image descriptor, yet

it drastically reduced the number of identity switches and

showed superior performance in identity preserving metrics

- IDEucl, IDF1. We also experimented with α and β val-

ues corresponding to the importance of IoU and histogram

matching (Equation 7). We set β to 0.8 and α to 0.2 and

this configuration is denoted as HT + sReID. Surprisingly,

we observed more identity switches and a slight decrease in

performance across other tracking metrics. HeadHunter-T,

our final model, outperformed all the other variants.

Choice of Filter: To further substantiate our choice

of a multi-modal filter, we replaced the Particle Filter of

HeadHunter-T with a Kalman Filter motion model [34].

While both Kalman Filter and Particle Filter are recursive

state estimation algorithms, Kalman Filter assumes the

system to be linear with Gaussian noise [2] while Particle

Filter’s multimodal posterior distribution enables it to

model states of nonlinear systems. We replaced the

Particle Filter with a four state Kalman Filter to model the
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Method MOTA ↑ IDEucl ↑ IDF1 ↑ MT ↑ ML ↓ ID Sw. ↓

HT w/o PF 60.6 40.1 43.9 200 102 3652

HT + 10F 63.3 58.2 56.3 214 98 1534

HT w/o ReID 59.5 57.7 57.5 225 91 1411

HT + sReID 59.1 57.8 58.3 225 91 1280

HT + KF 63.4 53.8 55.9 214 93 2451

HeadHunter-T 64.0 61.5 58.5 225 91 1247

Table 5. Illustration of ablation studies of HeadHunter-T (denoted

as HT) on the training set of CroHD. The direction of arrows indi-

cate small or large desired metric values.

inter-frame displacement of bounding boxes with CVA.

The four states are x, y centroid coordinates, the height and

aspect ratio of bounding boxes respectively, similar to the

SORT [5]. The performance of this tracker, denoted as HT

+ KF is summarised in Table 5. HeadHunter-T with Particle

Filter demonstrates superior performance than its Kalman

Filter variant with respect to all the tracking metrics

reported and in particular, we observe major improvement

in-terms of IDEucl metric. Motion of heads along with

the pedestrian displacement induces non-linearities in the

position of bounding boxes. Although pedestrian motion

in general is non-linear, this issue is exacerbated with the

small size of head bounding boxes. Hence, using a multi-

modal posterior state estimation is necessary to address the

perceptible impact of non-linear motion. We remark this to

be the reason behind improvement in performance while

using a Particle Filter in comparison to the Kalman Filter.

Figure 5. Comparison between HeadHunter-T and state-of-the-

art trackers on common sequences of CroHD and MOTChallenge

benchmark [13]. s-MOTA, s-IDF1, s-MT are scaled version of

MOTA, IDF1 and Most Tracked (MT) metrics respectively.

Comparison across paradigm : We compare pedes-

trian and head tracking performances on the common se-

quences between CroHD and MOTChallenge CVPR19

dataset. The sequence being the same ensures that track-

ers are evaluated on full body and head bounding boxes

of the same pedestrians in the scene. For this compar-

ison, we chose published state-of-the-art methods on the

aforementioned dataset, namely, Tracktor++ [3], V IOU,

DD TMA [68] and HAM HI [67]. We performed com-

parison in-terms of MOTA, IDF1, MT (Mostly Tracked in

percentage) metrics. Since we used a different object de-

tector than the rest, a straightforward comparison between

performance metrics would not be fair. Hence, for each

sequence, we measure the ratio of aforementioned perfor-

mance metrics with their object detector’s MODA score to

obtain the scaled scores - s-MOTA, s-IDF1 and s-MT. The

scaled scores, averaged across five common sequences are

illustrated in Figure 5. Our approach substantially outper-

forms other methods indicating that tracking by head de-

tection is more suited for tracking in environments involv-

ing high pedestrian density where preserving identity is im-

portant. It is also worthy to note that HeadHunter uses a

ResNet-50 backbone in contrast to a Resnet-101 backbone

used by other methods. Furthermore, Tracktor++, HAM HI

and DD TMA all use Deep Networks for extracting appear-

ance features, while HeadHunter-T uses a color histogram

based appearance feature. By compromising our tracking

space (size of bounding box) to avoid mutual occlusion, we

observe notable performance gain and significantly reduce

the computation cost. This suggests that tracking by head

detection paradigm is more desirable for real-time tracking

applications focused on identity preservation.

7. Conclusion

To advance algorithms to track pedestrians in dense

crowds, we introduced a new dataset, CroHD, for track-

ing by head detection. To further quantify the efficacy of

a tracker in describing pedestrian motion, we introduced

a new metric, IDEucl. We developed two new baseline

methods, HeadHunter, HeadHunter-T for head detection

and head tracking on CroHD respectively. We demonstrated

HeadHunter-T to be consistently more reliable for identity

preserving tracking applications than existing state-of-the-

art trackers adapted for head tracking. Additionally, the

adequacy of HeadHunter-T’s performance with a modest

computational complexity, opens up opportunities for fu-

ture research focused on tracking methods adapted for low

computational complexity and real-time applications. We

also hope that CroHD will serve useful in contiguous fields,

such as Crowd Counting and Crowd Motion Analysis.
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