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Abstract

4D reconstruction and rendering of human activities is

critical for immersive VR/AR experience. Recent advances

still fail to recover fine geometry and texture results with

the level of detail present in the input images from sparse

multi-view RGB cameras. In this paper, we propose Neural-

HumanFVV, a real-time neural human performance capture

and rendering system to generate both high-quality geom-

etry and photo-realistic texture of human activities in ar-

bitrary novel views. We propose a neural geometry gen-

eration scheme with a hierarchical sampling strategy for

real-time implicit geometry inference, as well as a novel

neural blending scheme to generate high resolution (e.g.,

1k) and photo-realistic texture results in the novel views.

Furthermore, we adopt neural normal blending to enhance

geometry details and formulate our neural geometry and

texture rendering into a multi-task learning framework. Ex-

tensive experiments demonstrate the effectiveness of our ap-

proach to achieve high-quality geometry and photo-realistic

free view-point reconstruction for challenging human per-

formances.

1. Introduction

The rise of virtual and augmented reality (VR and AR) to

present information in an immersive way has increased the

demand of the 4D (3D spatial plus 1D time) content gener-

ation. Further reconstructing human activities and provid-

ing photo-realistic rendering from a free viewpoint conve-

niently evolves as a cutting-edge yet bottleneck technique.

Early solutions [27, 28, 58, 9] require pre-scanned tem-

plates or two to four orders of magnitude more time than is

available for daily usages such as immersive tele-presence.

Recently, volumetric approaches have enabled real-time

human performance reconstruction and eliminated the re-

liance of a pre-scanned template model, by leveraging the

RGBD sensors and modern GPUs. The high-end solu-

tions [12, 11, 23, 68] rely on multi-view studio setup to

Figure 1. Our NeuralHumanFVV achieves real-time and photo-

realistic reconstruction results of human performance in novel

views, using only 6 RGB cameras.

achieve high-fidelity reconstruction and rendering in a novel

view but are expensive and difficult to be deployed, while

the low-end approaches [39, 53, 66, 72, 55] adopt the most

handy monocular setup with a temporal fusion pipeline [40]

but suffer from inherent self-occlusion constraint. More-

over, these approaches above rely on depth cameras which

are not as cheap and ubiquitous as color cameras.

The recent learning-based techniques enable robust hu-

man attribute reconstruction [35, 48, 73, 29] using only

RGB input. In particular, the approaches PIFu [48] and

PIFuHD [49] utilize pixel-aligned implicit function to re-

construct clothed humans with fine geometry details, while

MonoPort [29] further enables real-time inference in a novel

view. However, these methods fail to generate compelling

photo-realistic texture due to the reliance of implicit texture

representation. On the other hand, neural rendering tech-

niques [32, 7, 64, 38, 25, 46] bring huge potential for photo-

realistic novel view synthesis. However, existing solutions

rely on per-scene training or are hard to achieve real-time

performance due to the heavy network and the complicated

3D representation. Moreover, few researchers explore to

combine volumetric geometry modeling and photo-realistic

novel view synthesis of human performance in a data-driven

manner simultaneously, especially under the light-weight

multi-RGB and real-time setting.

In this paper, we attack the above challenges and present
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NeuralHumanFVV – a real-time human neural volumetric

rendering system using only light-weight and sparse RGB

cameras surrounding the performer. As illustrated in Fig. 1,

our novel approach generates both high-quality geometry

and photo-realistic texture of human activities in arbitrary

novel views, whilst still maintaining real-time computation

and light-weight setup.

Generating such a human free-viewpoint video by com-

bining volumetric geometry modeling and neural texture

synthesis in a data-driven manner is non-trivial. Our key

idea is to encode the local fine-detailed geometry and tex-

ture information of the adjacent input views into the novel

target view, besides utilizing the inherent global informa-

tion from our multi-view setting. To this end, we first in-

troduce a neural geometry generation scheme to implicitly

reason about the underlying geometry in a novel view. With

a hierarchical sampling strategy along the camera rays in a

coarse-to-fine manner, we achieve real-time detailed geom-

etry inference. Then, based on the geometry proxy above, a

novel neural blending scheme is proposed to map the input

adjacent images into a photo-realistic texture output in the

target view, through efficient occlusion analysis and blend-

ing weight learning. A boundary-aware upsampling strat-

egy is further adopted to generate high resolution (e.g., 1k)

novel view synthesis result without sacrificing the real-time

performance. Finally, we recover the normal information

in the target view using the same neural blending strategy,

which not only enhances the output fine-grained geome-

try details but also combines our neural geometry genera-

tion and texturing blending into a multi-task learning frame-

work. To summarize, our main contributions include:

• We present a real-time human performance rendering

approach, which is the first to reconstruct high quality

geometry and photo-realistic texture results in a novel

view using sparse multiple RGB cameras, achieving

significant superiority to existing state-of-the-arts.

• We propose an efficient neural implicit generation

scheme to recover fine geometry details in the novel

view via a hierarchical and coarse-to-fine strategy.

• We propose a novel neural blending scheme to pro-

vide high-resolution and photo-realistic texture result

as well as normal result to further refine the geometry.

2. Related Work

Human Performance Capture. Markerless human perfor-

mance capture [5, 60] technologies have been widely in-

vestigated to generate human free-viewpoint video or ge-

ometry reconstruction. The high-end approaches require

studio-setup with hundreds of cameras and a controlled

imaging environment [54, 31, 22, 9, 23, 14] to produce

high quality surface motion and appearance reconstruction.

Some recent work only relies on the light-weight and single-

view setup [70, 17, 69] and even enables hand-held cap-

ture [63, 43, 65] or drone-based capture [67]. However,

these methods require the pre-scanned template or naked

human model. Only recently, monocular free-form dynamic

reconstruction methods [39, 15, 72, 66, 55] with real-time

performance have been proposed by combining the volu-

metric fusion [10] and the nonrigid tracking [56, 27, 74]

using RGBD camera. However, these monocular methods

still suffer from the inherent self-occlusion constraint and

cannot capture the motions in occluded regions. The light-

weight multi-view solutions [12, 11, 68] serve as a good

compromising settlement between over-demanding hard-

ware setup and high-fidelity reconstruction but still rely on

3 to 8 RGBD streams as input. Comparably, our approach

enables real-time high-quality geometry and photo-realistic

texture reconstruction in novel views only using 6 RGB

cameras surrounding the performer.

Data-Driven Human Modeling. Early human modeling

approaches [50, 13] formulate the discriminative perfor-

mance capture into a regression or classification problem

using machine learning techniques. With the advent of deep

neural networks, recent approaches obtain various human

attributes successfully from only RGB input. Some re-

cent work [6, 35, 24, 16, 18] learns the skeletal pose and

even human shape prior by using human parametric mod-

els [3, 33]. Various approaches [57, 45, 2, 73] propose to

predict human geometry from a single RGB image by uti-

lizing parametric human model as a basic estimation. Sev-

eral work [20, 42, 36, 48, 49] further reveals the effective-

ness of learning the implicit occupancy directly for textured

geometry modeling and even real-time inference [29]. Be-

sides, researchers [4, 26] propose to fetch the garment or

texture information of the human model. However, these

data-driven human modeling methods still fail to recover

fine geometry and texture results simultaneously with the

level of detail present in the RGB inputs. In contrast, we

explore to combine implicit geometry modeling with novel

view synthesis in a data driven manner for real-time, high-

quality and photo-realistic human performance rendering,

achieving significant superiority to previous methods.

Neural Rendering. The recent progress of neural render-

ing techniques [59, 7, 64, 25] brings huge potential for

constructing neural scene representations [51, 32, 52, 38]

and photo-realistic novel view blending [37, 19, 61, 46].

For reconstructing neural scenes, various data representa-

tions have been explored, such as point-clouds [1, 64], vox-

els [51, 32] or implicit representations [52, 38, 30]. How-

ever, dedicated per-scene training is required in these meth-

ods when applying the representation to a new scene. Var-

ious methods [19, 46] learn the mapping of features from

source images to novel target views to avoid per-scene train-

ing, while some recent work [61, 71] further models the
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Figure 2. The pipeline of NeuralHumanFVV. Assuming the video input from six RGB cameras surrounding the performer, our approach

consists of a neural geometry generation stage (Sec. 4.1) and a neural blending stage (Sec. 4.2) to generate live 4D rendering results.

view-dependent effects. However, these methods rely on

heavy networks or complicated 3D proxies which are un-

suitable for real-time applications like immersive telepre-

sense. Chen et al. [7] propose to predict the output tex-

ture using implicit underlying geometry, which enables

continues view generation from monocular image. Re-

searchers [25, 21] also utilize such underlying latent ge-

ometry for novel view synthesis of human performance in

the encoder-decoder manner. However, these approaches

suffer from limited representation ability of a single latent

code for complex human inferior texture output. Besides,

some recent methods [41, 34] combine the neural render-

ing techniques to provide more visually pleasant results

under the traditional RGBD fusion pipeline [12]. Com-

parably, our method is the first to embrace neural blend-

ing into the implicit geometry modeling pipeline under the

light-weight multi-RGB and real-time setting, which en-

ables photo-realistic texture and geometry reconstruction in

novel views.

3. Overview

The proposed NeuralHumanFVV marries implicit volu-

metric modeling with neural texture rendering, which gen-

erates high-quality geometry and photo-realistic texture of

human activities in arbitrary novel views in real-time, and

enables various applications like immersive telepresense.

Fig. 2 illustrates the high-level components of our system,

which takes 6 RGB videos surrounding the performer as in-

put and generates high-quality novel-view synthesis results

in challenging scenarios with various poses, clothing types

and topology changes as output.

Neural Geometry Generation. We first utilize the inherent

geometry prior from our multi-view setting via the shape-

from-silhouette [8] technique. Then, we adopt the pixel-

aligned implicit function [20, 48, 49] to maintain the com-

plete and continues geometry of the scene. Differently, we

further recover the underlying geometry in novel views with

a multi-stage hierarchical sampling strategy along the cam-

era rays which enables both real-time detailed geometry in-

ference and the following neural blending stage (Sec. 4.1).

Neural Blending. The core of our pipeline is to encode

the local fine-detailed geometry and texture information of

the adjacent input views into the novel target view. A novel

neural blending scheme is proposed to map the input adja-

cent images into a photo-realistic texture output in the tar-

get view, through efficient occlusion analysis and blending

weight learning. A boundary-aware upsampling strategy is

further adopted to generate high resolution (e.g., 1k) novel

view synthesis result without sacrificing the real-time per-

formance. We also recover the normal information in the

target view using the same neural blending strategy, which

not only enhances the output fine-grained geometry details

but also formulates our neural geometry and texture gener-

ation in a multi-task learning framework (Sec. 4.2).

4. NeuralHumanFVV Method

4.1. Neural Geometry Reconstruction

Given the six RGB images input at each frame, we in-

troduce a coarse-to-fine multi-stage neural geometry recon-

struction scheme to generate the inherent detailed human

geometry in novel views in real-time, as illustrated in Fig. 3.

Coarse Geometry Generation. Firstly, we extract the

coarse inherent geometry prior from our multi-view setting.

We apply the Shape-from-Silhouette (SfS) [8] algorithm on

the human masks segmented off-the-shelf video segmenta-

tion method to obtain a coarse human shape.

Accelerated Multi-View Implicit Function. We extend

the pixel-aligned implicit function [48, 49] to our multi-

view setting. Such multi-view implicit function (MVIFu)

maintains the complete and continues geometry of the cap-

tured scene, and encodes the human shape priors. Similar to

[48], the implicit function f defines the occupancy of every

3D point X in the space, which is formulated as:

f(φ(X), z(X)) = s : s ∈ [0.0, 1.0],

φ(X) =
1

n

n∑

i

Fi(πi(X)),
(1)

where πi() projects a 3D point into i-th source view; z(X)
is the depth value in the camera coordinate space. The pro-

jected image feature at the pixel coordinate x is formulated
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Figure 3. Illustration of our hierarchical and coarse-to-fine strat-

egy in neural geometry generation. Orange curves are the coarse

geometry surface recovered by SfS; Green curves are the real ge-

ometry. Gray dot line and points are discarded in our hierarchical

sampling algorithm. (a) is the result of coarse reconstruction; (b)

is the result of MVIFu; (c) is the result after refinement.

as Fi(x) = g(Ii(x)), where g denotes a feature extraction

network.

Since extracting the whole human geometry is expen-

sive and unnecessary for real-time immersive application,

the MVIFu in our pipeline only generates geometry explic-

itly in the novel view. Thus, we sample evenly spaced 3D

points from near to far based on the coarse geometry along

each pixel ray with a distance of k in the target view. We

select first two adjacent sample points to define the range

where the depth value of the ray falls. Specifically, let Xa

and Xb be these two points, and sa, sb are their occupancy,

which satisfy z(Xa) < z(Xb) and sa < 0.5, sb ≥ 0.5.

The predicted depth of this pixel x is given by Dm(x) =
z(Xa)+z(Xb)

2 . Moreover, point sampling after Xb can be

early terminated. We also prune unnecessary sample points

on the background pixel rays outside the coarse geometry

generated by SfS algorithm, which inherently contains the

whole performer so as to enable real-time reconstruction.

Depth Fine-tuning. The geometry Dm obtained through

our accelerated MVIFu is still over smooth because of the

depth averaging. In order to recover the geometry details

(e.g. clothes wrinkles), we introduce a hierarchical sam-

pling strategy. Specifically, we introduce a depth fine-

tuning network h which takes the feature of the midpoint

between two selected sample points as input, and outputs

the displacement of depth value:

h(φ(
Xa +Xb

2
)) = o : o ∈ [−1.0, 1.0]. (2)

Here, positions on this segment are mapped from −1.0 to

1.0 linearly, and the refined depth value Dr(x) can be com-

posed with the offset o to encode more geometry details:

Dr(x) = Dm(x) + k ·
o+ 1

2
. (3)

4.2. Neural Blending

We introduce a neural blending pipeline to encode more

local fine-detailed geometry and texture information of the

adjacent input views than traditional image-based rendering

approaches, so as to produce photo-realistic output in the

target view in a data-driven manner, as illustrated in Fig. 4.

Image Warping and Occlusion Analysis. Most of the tex-

ture information in a target view can be recovered by its

only two adjacent input views in our multi-view setting.

Based on this finding, we first generate the depth maps of

the target view (Dr
t ) and the two input views (Dr

1 and Dr
2,

respectively) as described in Sec. 4.1. Then, we use Dr
t to

warp the input image I1 and I2 into the target view, denoted

by I1,t and I2,t. We also warp source view depth maps into

target view and obtain Dr
1,t and Dr

2,t so as to obtain the oc-

clusion map Oi = Dr
i,t −Dr

t (i = 1, 2), which implies the

occlusion information.

Texture Blending Network(TBN). I1,t and I2,t may be

incorrect due to self-occlusion and inaccurate geometry

proxy. Simply blending them will raise strong artifacts.

Thus, we introduce a blending network ΘTBN , which uti-

lizes the inherent global information from our multi-view

setting, and fuse local fine-detailed geometry and texture

information of the adjacent input views with the pixel-wise

blending map W , which can be formulated as:

W = ΘTBN (I1,t, O1, I2,t, O2). (4)

Boundary-Aware Depth Upsampling. For real-time per-

fomance, depth maps are generated at low resolution

(256×256). Aiming to photo-realistic rendering, we need to

upsample both the depth map and blending map to 1K reso-

lution. However, naı̈ve upsampling will cause severe zigzag

effect near the boundary due to depth inference ambiguity.

Thus, we propose a boundary-aware scheme to refine the

human boundary area on the depth map. Specifically, we

use bilinear interpolation to upsample Dr
t . Then a erosion

operation is applied to extract boundary area. Depth values

inside boundary area are recalculated by using the pipeline

as described in Sec. 4.1 and form D̂r
t at 1K resolution. Then

we warp the original high resolution input images into the

target view with D̂r
t to obtain ˆIi,t. To this end, our final

texture blending result is formulated as:

Ir = Ŵ · ˆI1,t + (1.0− Ŵ ) · ˆI2,t, (5)

where Ŵ is the high resolution blending map upsampled by

bilinear interpolation directly.

Neural Normal Refinement. We apply networks intro-

duced in [49] on the input RGB images to inference its

normal maps. Then, the normal information in the target

view is restored via the same neural blending strategy. The

blended normal map Nt can further enable the geometry
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Figure 4. Illustration of our neural blending scheme, which encodes the local fine-detailed geometry and texture information of the adjacent

input views into the novel target view.

refinement. Specifically, we introduce a normal refinement

network ΘNRN to infer the displacement of the target depth

map from Nt and D̂r
t , as illustrated in Fig. 4.

4.3. Data and implementation Details

The key of our NeuralHumanFVV is to train the neural

networks in Sec. 4.1 and Sec.4.2 properly, including the fea-

ture extractor g, continuous implicit function f , depth fine-

tuning network h, as well as our TBN ΘTBN and NRN

ΘNRN . Specifically, g is a U-Net [47] and outputs a 64

channels feature maps. f represented by MLPs has the same

structure in [48] but the network dimension is further re-

duced for real-time performance, while h has the same net-

work architecture, only with a different activation function

of the last layer replaced by hyperbolic tangent. Besides,

both our TBN ΘTBN and NRN ΘNRN adopt the U-Net

structure.

We utilize 1820 scans from Twindom [62] and augment

the dataset by rigging the 3D model to add more challeng-

ing poses, so as to enhance the generation ability of our

networks. We fix the six input camera views as a rig sur-

rounding the performer, and sample 180 virtual target views

on a sphere. Note that all the 3D models locate on the cen-

tral regions of the sphere and all the cameras face towards

the model. Our training dataset contains the RGB images,

normal maps and depth maps for all the views and models.

For the training of g and h in our MVIFu module, we

only use the six input camera views in our dataset, and fol-

low the training procedure similar to previous work [48]

Then, we train our depth fine-tuning network h using the

corresponding pair-wised data provided by the MVIFu.

For the training of our texture blending network ΘTBN ,

we set out to apply a multi-task learning scheme so as to

enable more robust blending weight learning. The training

objective is to make both the blended texture and normal

map as close as possible to the ground truth, as these two

tasks share the same blending map in our ΘTBN . To this

end, the loss function includes a appearance term and a nor-

mal term with perceptual loss:

Lrgb =
1

n

n∑

j

(‖Ijr − I
j
gt‖

2
2) + ‖ϕ(Ijr )− ϕ(Ijgt)‖

2
2),

Lnorm =
1

n

n∑

j

(‖N j
t −N

j
gt‖

2
2) + ‖ϕ(N j

t )− ϕ(N j
gt)‖

2
2),

L = λ · Lrgb + (1.0− λ) · Lnorm,

(6)

where Igt and Ngt are the ground truth RGB images and

normal maps; ϕ(·) denotes the output features of the third-

layer of pretrained VGG-19.

Our normal refinement network (NRN) ΘNRN need to

be adapted to real data, which means we cannot supervise

the network training using the same synthetic dataset. Thus,

we introduce a self-supervise learning scheme where all the

training inputs are collected from the real data generated in

our pipeline. The objective is to minimize the loss function:

L =
1

n

n∑

j

‖∇(
ˆ

D
r,j
t +ΘNRN (N j

t ,
ˆ

D
r,j
t ))−N

j
t ‖

2
2 (7)

where ∇(·) is the operator which calculates the normal map

from input depth map.

5. Experimental Results

In this section, we evaluate our NeuralHumanFVV

method on a variety of challenging scenarios. We run our
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Figure 5. The geometry and texture results of our NeuralHumanFVV on several sequences, including “spiderman”, “ironman”, “undress-

ing”, “floral dress”, “basketball” and “backpack” from the upper left to lower right.

experiments on a PC with 3.7 GHz Intel i7-8700k CPU

32GB RAM, and Nvidia GeForce RTX3090 GPU. With the

live stream data from six RGB cameras, our system gen-

erates high-quality geometry and texture results in novel

views at 12 fps to enable various interactive immersive ap-

plications. The whole pipeline costs approximate 80 ms per

frame, where the neural geometry generation takes 64 ms

and 16 ms for the neural blending stage. Fig. 5 demon-

strates several results of our NeuralHumanFVV, which can

generate free-view high quality geometry and texture results

simultaneously. Noted that our approach can handle human

object interaction scenarios with topology changes, such as

playing basketball, carrying bag and removing clothes.

5.1. Comparison

In our real testing data, performers act complex motions

with self-occlusion, and dress rich texture clothes, such as

floral skirt and plaid shirt. For thorough comparison, we

compare our NeuralHumanFVV against the state-of-the-art

methods MonoPort [29], Multi-PIFu [48] and Continuous

View Control [7] both in geometry and texture. As shown

in Fig. 6, our approach achieves significantly better tex-

Method MonoPort Multi-

PIFu

Multi-

PIFu*

CVC Ours

RGB 1 95.1±4.8 67.5±3.8 43.7±1.9 98.1±21.9 27.6 ± 1.6

RGB 6 144.8±6.6 66.4±2.2 56.1±2.1 103.1±27.4 26.1 ± 1.2

Table 1. Quantitative comparison of MonoPort [29], Multi-

PIFu [48], Continuous View Control [7] and NeuralHumanFVV.

Multi-PIFu* denotes per-vertex texture mapping using the geom-

etry from Multi-PIFu as input. RGB 1 and RGB 6 respectively

present the MAE in one view and six views.

ture and detailed geometry results even when the garment

is extraordinarily complex. Even applying per-vertex tex-

ture mapping in the geometry from Multi-PIFu [48], image

blurs occur much more frequently in contrast to our results.

Then, we make a quantitative comparison on our real

testing dataset. The mean absolute error (MAE) is adopted

as error metric and we average all MAEs from all images

and frames for overall MAE calculation. Since Mono-

port [29] only takes one image as input, we also evaluate

methods with single camera input (RGB 1), compared with

using all six cameras (RGB 6). As illustrated in Table. 1,

our approach outperforms other methods in all scenarios

6231



Figure 6. Qualitative comparison. (a) Input images. (b-e) are the geometry and texture results from MonoPort [29], Multi-PIFu [48],

Continuous View Control [7] and ours, respectively. Note that the two texture results in (c) corresponds to the implicit texture and per-

vertex texture, respectively.

with distinct differences in overall MAE.

Furthermore, we make a comparison on a synthetic dy-

namic sequence with 600 frames, and generate 90 different

target views to evaluate the MAE. The result is shown in

Fig. 7. Our method can stay lowest MAE in the entire se-

quence.

5.2. Ablation Study

Neural Geometry Generation. Here, we evaluate our neu-

ral geometry generation scheme. As shown in Fig. 8 (b),

the results from SfS [8] only provide coarse geometry priors

since only boundary information are utilized. Our scheme

without the normal refinement in Fig. 8 (c) can generate

mid-level geometry details such as the clothing wrinkles but

still suffers from over-smooth results, especially on the face

regions. In contrast, our approach with full pipeline in Fig. 8

(d) enables high-quality geometry detail generation almost

with the level of details present in the input images.

Neural Texture Blending. We further evaluate our neural

texture blending scheme. In Fig. 9, we compare with our

variations with different texturing schemes using the same

geometry proxy. The per-vertex texturing in Fig. 9 (a) suf-

fers from severe block artifacts, while the offline scheme

using the software AGI [44] in Fig. 9 (b) causes inferior re-

sults in those regions near the stitching seams. And our neu-

ral scheme at low resolution situation in Fig. 9 (c) and the

one without the boundary optimization in Fig. 9 (d) suffer

from over-smooth texture or coarse boundary, respectively.

In contrast, our full neural texture scheme in Fig. 9 (e) en-

ables photo-realistic texture reconstruction in novel views.

For quantitative analysis of the individual components of

NeuralHumanFVV, we utilize two different geometries as

bases and two different texture methods to make a compari-

Figure 7. Quantitative and qualitative comparison on synthe-

sis sequence against NeuralHumanFVV, Multi-PIFu [48], Mono-

Port [29] and Continuous View Control [7].(a) Color image in

ground truth; (b) NeuralHumanFVV; (c) Multi-PIFu; (d)Multi-

PIFu* (e) MonoPort; (f) Continuous View Control; (g)Error

curves. Denote that Multi-PIFu* is the result of per-vertex texture

mapping using the geometry from Multi-PIFu.

son among these four outputs as shown in as Fig. 10. Fig. 10

(a) is from complete NeuralHumanFVV while Fig. 10 (b)

using the geometry from Multi-PIFu, Fig. 10 (c) using the

same geometry as Fig. 10 (a) but per-vertex texture map-

ping, and Fig. 10 (d) is yielded by Multi-PIFu and per-

vertex texture mapping. Not only our image outcome which

has fewer artifacts but also the per-frame mean error for the

three variation of our approach without model completion

in Fig. 10 (e) shows the advancement of our NeuralHuman-

FVV.

Camera Number. To evaluate the influence of input views

in our multi-view setting, we compare to the variation of our
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Figure 8. Evaluation of our neural geometry generation. (a) Input

images. (b) Geometry from SfS [8]; (c) Geometry without normal

refinement; (d) Geometry from NeuralHumanFVV.

Figure 9. Qualitative evaluation of our neural texture blending

scheme. (a) Per-vertex texture mapping; (b) AGI[44]; (c) Neu-

ralHumanFVV at 256 × 256 resolution ; (d) NeuralHumanFVV

without boundary optimization; (e) NeuralHumanFVV.

pipeline using various numbers of input camera views. As

shown in Fig. 11, the reconstruction results without enough

camera views suffer from severe geometry and blending ar-

tifacts and the average error increases significantly as the

the camera number decreases. Empirically, the setting with

six cameras serve as a good compromising settlement.

5.3. Limitation

As the first trial to enable real-time and photo-realistic

neural human performance rendering from only sparse RGB

inputs, the proposed NeuralHumanFVV system still own

some limitations. First, inaccuracy of segmentation leads

to incomplete regions in our final synthesized images. Our

texturing results also depend on the input image resolu-

tions. Thin structures like fingers are difficult to reconstruct

due to the input with limited resolution. Besides, our ap-

proach generates plausible geometry detail from RGB im-

ages. But similar to other RGB-based methods, the recov-

Figure 10. Quantitative evaluation. (a-d) The reconstructed results

of ours, w/o neural geometry, w/o neural texture, w/o both.(e) Nu-

merical error curves.

Figure 11. Evaluation of the number input camera views. (a) Cu-

mulative distribution function of the mean absolute error. (b) The

reference capture scene. (c, d, e) Our reconstructed texture results

using six, four and two cameras, respectively.

ered geomegtry details will be physically inaccurate when

the testing images deviate much from the training ones.

6. Conclusion

We have presented a real-time neural performance ren-

dering system to generate high-quality geometry and photo-

realistic textures of human activities in novel views only

using sparse multiple RGB cameras. Our neural geometry

generation benefits inherently from our multi-view setting

and enables efficient and implicit reasoning of underlying

geometry in a novel view. Our neural blending scheme

with occlusion analysis and boundary-aware upsampling

further enables to recover high resolution (e.g., 1k) and

photo-realistic textures without sacrificing the real-time per-

formance. Our experimental results demonstrate the effec-

tiveness of NeuralHumanFVV for high-quality human per-

formance rendering in challenging scenarios with various

poses, clothing types and topology changes. We believe that

our approach is a critical step to virtually but realistic tele-

port human performances, with many potential applications

in VR/AR like gaming, entertainment and immersive telep-

resense.
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Rhodin, Dushyant Mehta, Hans-Peter Seidel, and Christian

Theobalt. Monoperfcap: Human performance capture from

monocular video. ACM Transactions on Graphics (TOG),

37(2):27:1–27:15, 2018.

[71] Zexiang Xu, Sai Bi, Kalyan Sunkavalli, Sunil Hadap, Hao

Su, and Ravi Ramamoorthi. Deep view synthesis from sparse

photometric images. ACM Trans. Graph., 38(4), July 2019.

[72] Tao Yu, Zerong Zheng, Kaiwen Guo, Jianhui Zhao, Qionghai

Dai, Hao Li, Gerard Pons-Moll, and Yebin Liu. Doublefu-

sion: Real-time capture of human performances with inner

body shapes from a single depth sensor. Transactions on

Pattern Analysis and Machine Intelligence (TPAMI), 2019.

[73] Zerong Zheng, Tao Yu, Yixuan Wei, Qionghai Dai, and

Yebin Liu. Deephuman: 3d human reconstruction from a sin-

6236



gle image. In The IEEE International Conference on Com-

puter Vision (ICCV), October 2019.
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