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École Polytechnique Fédérale de Lausanne

and Swiss Institute of Bioinformatics

freyr.sverrisson@epfl.ch

Jean Feydy∗

Imperial College London

jfeydy@ic.ac.uk

∗equal contribution

Bruno E. Correia
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Abstract

Proteins’ biological functions are defined by the geomet-

ric and chemical structure of their 3D molecular surfaces.

Recent works have shown that geometric deep learning can

be used on mesh-based representations of proteins to iden-

tify potential functional sites, such as binding targets for

potential drugs. Unfortunately though, the use of meshes as

the underlying representation for protein structure has mul-

tiple drawbacks including the need to pre-compute the input

features and mesh connectivities. This becomes a bottleneck

for many important tasks in protein science.

In this paper, we present a new framework for deep

learning on protein structures that addresses these limita-

tions. Among the key advantages of our method are the com-

putation and sampling of the molecular surface on-the-fly

from the underlying atomic point cloud and a novel efficient

geometric convolutional layer. As a result, we are able to

process large collections of proteins in an end-to-end fash-

ion, taking as the sole input the raw 3D coordinates and

chemical types of their atoms, eliminating the need for any

hand-crafted pre-computed features.

To showcase the performance of our approach, we test it

on two tasks in the field of protein structural bioinformat-

ics: the identification of interaction sites and the prediction

of protein-protein interactions. On both tasks, we achieve

state-of-the-art performance with much faster run times and

fewer parameters than previous models. These results will

considerably ease the deployment of deep learning methods

in protein science and open the door for end-to-end differ-

entiable approaches in protein modeling tasks such as func-

tion prediction and design.

1. Introduction

Proteins are biomacromolecules central to all living or-

ganisms. Their function is a determining factor in health

and disease, and being able to predict functional proper-

ties of proteins is of the utmost importance to developing

novel drug therapies. From a chemical perspective, pro-
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(a) Folding and design. (b) Interacting surfaces.

Figure 1: Three major problems in structural biology.

(a) Protein design is the inverse problem of structure predic-

tion. (b) Two interacting proteins represented as an atomic

point cloud (left) and as a molecular surface (right) that

abstracts out the internal fold (shown semi-transparently).

Protein surfaces display a number of geometric (e.g. con-

cave and convex regions) and chemical (e.g. charges) fea-

tures. Identifying their binding is a complex problem that

can be addressed with geometric deep learning.

teins are polymers composed of a sequence of amino acids

(Fig. 1.a). This sequence determines the structural con-

formation (fold) of the protein, and the structure in turn

determines its function. In a folded protein, hydrophobic

(water-repelling) residues typically cluster within the core

of the protein, while hydrophilic (water-attracting) residues

are exposed to water solvent on its surface. The properties

of this surface dictate the type and the strength of the inter-

actions that a protein can have with other molecules (Fig.

1.b). Analysing this complex 3D object is therefore a fun-

damental problem in biology: models for protein structures

can be used to understand the possible interactions between

a protein and its environment, and consequently predict the

functions of these macromolecules in living organisms.

Since proteins are predominant drug targets, the study

of their interactions with other molecules is a key problem

for fundamental biology and the pharmaceutical industry.

Classical drugs are small molecules designed to bind to a

protein of interest, with a binding site that usually has no-

ticeable ‘pocket-like’ structure. Targets with flat surfaces

that exhibit no pockets have long been a challenge for drug

developers and are often deemed ‘undruggable’. The possi-

bility of addressing such targets with specifically designed
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protein molecules (known as biological drugs or ‘biolog-

ics’) is a fast emerging field in drug-development holding

the promise to provide novel therapeutic strategies for many

important diseases (e.g. cancer, viral infections).

Deep learning methods have increasingly been applied to

a broad range of problems in protein science [22], with the

particularly notable success of DeepMind’s AlphaFold to

predict 3D protein structure from sequence [38]. Recently,

Gainza et al. [21] introduced MaSIF, one of the first con-

ceptual approaches for geometric deep learning on protein

molecular surfaces allowing to predict their binding. The

main limitations of MaSIF stem from its reliance on pre-

computed meshes and handcrafted features, as well as sig-

nificant computational time and memory requirements.

Main contributions. In this paper, we present dMaSIF

(differentiable molecular surface interaction fingerprinting),

a deep learning approach to identify interaction patterns on

protein surfaces that addresses the key drawbacks of MaSIF.

Our architecture is free of any precomputed features. It

operates directly on the large set of atoms that compose

the protein, generates a point cloud representation for the

protein surface, learns task-specific geometric and chemical

features on the surface point cloud and finally applies a new

convolutional operator that approximates geodesic coordi-

nates in the tangent space. All these computations are per-

formed on the fly, with a small memory footprint. Notably,

we implement all core calculations as reductions of “sym-

bolic matrices”, supported by the recent KeOps library [19]

for PyTorch [31]. These high performance routines let us

design a method which is fully differentiable and an order

of magnitude faster and more memory efficient than MaSIF.

This in turn allows us to make predictions on larger col-

lections of protein structures than was previously practical,

and opens the door to end-to-end protein optimization and

de novo protein design using geometric deep learning.

2. Related works

Deep learning in protein science. Proteins can be repre-

sented in different ways, the 1D amino acid sequence be-

ing the simplest and most abundant source of data. Recent

methods have taken advantage of the wealth of protein se-

quences available in public databases and shown how un-

supervised embeddings borrowed from the field of Natu-

ral Language Processing can improve function prediction

[2, 8, 37]. Deep learning is also becoming a key compo-

nent in many pipelines for protein folding (i.e. inferring the

3D structure from the amino acid sequence) [3, 48, 38, 49].

These methods often predict pair-wise distances and other

geometric relations between different residues to use them

as constraints in later structural refinements. Relations be-

tween amino acids of different proteins have also been pre-

dicted to handle protein-protein interactions [42, 20]. Pro-

tein design can be considered as ‘inverse structure predic-

tion’ (i.e. predict a sequence that will fold into a particular

structure) and has also benefited from deep learning meth-

ods [24]. We refer to [22] for a comprehensive overview.

Surface representations are relevant to the field: they ab-

stract the internal parts of the protein fold which do not con-

tribute to interactions. The Molecular Surface Interaction

Fingerprinting (MaSIF) [21] method pioneered the use of

mesh-based geometric deep learning to predict protein in-

teractions. It was used to classify binding sites for small

ligands, discriminate sites of protein-protein interaction in

surfaces and predict protein-protein complexes.

Nevertheless, in spite of its conceptual importance and

impressive performance, the MaSIF method has significant

drawbacks that limit its practical applications for protein

prediction and design. First, it takes as inputs mesh-based

representations of a protein surface, that must be gener-

ated from the raw atomic point cloud as a preprocessing

step. Second, it relies on hand-crafted chemical and geo-

metric features that must also be pre-computed and stored

on the hard drive. Third, it uses MoNet [30] mesh convo-

lutions on precomputed geodesic patches, which becomes

prohibitively expensive in terms of memory and run time

when working with more than a few thousand proteins.

Deep learning on surfaces and point clouds. Deep

learning on non-Euclidean structured data such as meshes,

graphs and point clouds, known under the umbrella term

geometric deep learning [11], has recently become an im-

portant tool in computer vision and graphics. Instead of

considering geometric shapes as objects in a 3D Euclidean

space and applying standard deep learning pipelines (e.g.

based on 2D views [46], volumetric [39], space partitioning

[36, 44, 40] and implicit representations [14]), geometric

deep learning seeks to develop a non-Euclidean analogy of

filtering and pooling operations. Boscaini et al. [27] pro-

posed the first geometric CNN-like architecture (Geodesic

CNN) based on intrinsic local charting on meshes. Follow-

up works improved on these results using patch operators

based on anisotropic diffusion (ACNN [10]), Gaussian mix-

tures (MoNet [30]), splines [17], graph message passing

(FeastNet [43]), equivariant filters [32, 15], and primal-dual

mesh operators [29]. We refer to [33] for a recent survey.

Point clouds are often used as a native representation

of 3D data coming from range sensors, and have recently

gained popularity in computer vision in lieu of surface-

based representations. First works on deep learning on point

clouds were based on deep learning on sets [50] (PointNet

[34] and PointNet++ [35]). DGCNN [45] uses graph neu-

ral networks [6] on kNN graphs constructed on the fly to

capture the local structure of the point cloud. Additional

tangent space [40] and volumetric [4] convolution operators

were also considered, see a recent survey paper [23].
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1. MaSIF

2. dMaSIF

atoms
a. surface mesh b. features c. patches d. output

a. points, normals b. features c. coordinates d. output

6 s 20 s 50 s

60 ms 7 ms 0.5 ms 40 ms

165 ms

pre-processing on the fly

Figure 2: Both MaSIF and dMaSIF go through the same steps for interface prediction on protein surfaces. Starting from a raw

atomic point cloud, we compute (a) a representation of the protein molecular surface, (b) geometric and chemical features,

and (c) local coordinate systems; (d) a binding site is then predicted by a geometric convolutional neural network operating

on (quasi-)geodesic patches on the protein surface. MaSIF precomputes steps (a)–(c), whereas we compute them on the fly

600 times faster. For every step, we display average run times per protein for inference on the site prediction task described

in Section 4. Our method results in an accuracy level on par with MaSIF while alleviating the need for pre-calculations and

providing significant speed-up for both inference and training.

(a) Distance. (b) Sampling. (c) Descent.

(d) Cleaning. (e) Sub-sampling. (f) Normals.

Figure 3: Sampling algorithm for protein surfaces.

(a) Given the input protein (encoded as an atomic point

cloud a1, . . . ,aA, in red), its molecular surface is repre-

sented as a level set of the smooth distance function (1) to

the atom centers. (b) To sample this surface, we first gener-

ate a point cloud x1, . . . , xN=AB in the neighborhood of our

protein (in blue): for every atom center, we draw B = 20
points from N (µ = ak, σ = 10Å) and (c) let this random

sample converge towards the target level set by gradient de-

scent on (2) – we use 4 gradient steps with a learning rate

of 1. (d) We then remove points trapped inside the protein:

we keep a sample if the distance function at this location

is close to our target value of r = 1.05 Å within a margin

of 0.10 Å, and if making four consecutive steps of size 1 Å

in the direction of the gradient of the distance function in-

creases it by more than 0.5 Å. (e) We then put all points in

cubic bins of side length 1 Å and keep one average sample

per cell; this ensures that our sampling has uniform density.

(f) Finally, the gradient of the distance function at location

xi is normalized to be used as a normal n̂i.

(a) Raw protein data. (b) Interface. (c) Prediction.

(d) Chem. 1. (e) Chem. 2. (f) K at 1 Å. (g) H at 10 Å.

Figure 4: Illustration on the binding of the 1OJ7 pair.

(a) The Protein Data Bank documents interactions between

proteins 1OJ7 D (right) and 1OJ7 A (left, green). Can we

learn to predict this 3D binding configuration from the un-

registered structures of both proteins? (b) MaSIF tackles

this problem as a surface segmentation problem. The bind-

ing site (red) is the ground truth signal that MaSIF tries

to predict from precomputed chemical and geometric fea-

tures, such as the electrostatic potential. It relies on mesh

convolutions on the preprocessed molecular surface of the

protein. (c) Our method predicts the binding site without

using any precomputed mesh structure or features. We per-

form all computations on an oriented point cloud, generated

from the raw atom coordinates as in Figure 3. Data-driven

chemical features (d-e) as well as Gaussian (f) and mean (g)

curvatures at different scales are computed on the fly and

given as inputs to a fast convolutional architecture that we

describe in Figure 5. Rendering done with ParaView [5].
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3. Our approach

Working with protein surfaces. In the following, we de-

scribe a new efficient end-to-end architecture for geometric

deep learning on protein molecules. The premise of our

work is that protein molecular surfaces carry important ge-

ometric and chemical information that is indicative of the

way they interact with other molecules. Though we show-

case our method on predicting binding properties (arguably,

the most important task in structural biology and drug de-

sign), it is generic and can be trained on other problems –

and in principle, be extended to other biomolecules.

Our method works on successive geometric representa-

tions of a protein, illustrated in Figure 2. The input is pro-

vided as a cloud of atoms {a1, . . . ,aA} ⊂ R
3, with chemi-

cal types in the list [C, H, O, N, S, Se] encoded as one-hot

vectors {t1, . . . , tA} ⊂ R
6. We then represent the surface

of the protein as an oriented point cloud {x1, . . . ,xN} ⊂ R
3

with unit normals n̂1, . . . , n̂N in R
3. We associate feature

vectors f1, . . . , fN to these points and progressively update

them using convolution-like operations; the dimension of

these features varies from 16 (10 geometric + 6 chemical

features as input) to 1 (binding score as output) through-

out our network. Our data comes from the Protein Data

Bank [7], with protein structures that are typically made

up of A = 3K–15K atoms and molecule sizes in the range

30 Å–300 Å (one ångström is equal to 10−10 m); we sample

their surfaces at a resolution of 1 Å to work with N = 6K–

15K points at a time.

We stress that unlike most other works for surface pro-

cessing, our method does not rely on mesh structures, kNN

graphs, or space partitioning of any kind. We compute ex-

act interactions between all points of a protein surface ef-

ficiently using the recent KeOps library [13, 19] for Py-

Torch [31] that optimizes a wide range of computations on

generalized distance matrices. 1

3.1. Surface generation

Fast sampling. The surface of a protein can be described

as the level set of a smooth distance function or meta ball

[9] (Figure 3a). To represent the six different atom types

accurately, we associate an atomic radius σk to each atom

ak and define the smooth distance function:

SDF(x) = −σ(x) · log
∑A

k=1
exp(−‖x− ak‖ / σk) , (1)

for any x ∈ R
3, with a stable log-sum-exp reduc-

tion and with σ(x) =
∑A

k=1
exp(−‖x − ak‖)σk /

∑A
k=1

exp(−‖x−ak‖) the average atom radius in a neigh-

borhood of point x.

1The size 5K–20K and dimension 3 of our point clouds appear to be a

sweetspot for KeOps in ‘bruteforce mode’, thanks to contiguous operations

that stream much better on GPUs than the scattered memory accesses of

graph-based and hierarchical methods.

As shown in Figure 3b, we sample the level set surface at

radius r = 1.05 Å by minimizing the squared loss function:

E(x1, . . . ,xN) = 1

2

∑N
i=1

( SDF(xi)− r )2 (2)

on a random Gaussian sample. KeOps allows us to imple-

ment this sampling strategy efficiently on batches of more

than 100 proteins at a time.

Descriptors. Point normals n̂i are computed using the

gradient of the distance function (1). To estimate a local

coordinate system (n̂i, ûi, v̂i), we first smooth this vec-

tor field using a Gaussian kernel with σ ∈ {9, 12} Å, i.e.

use n̂i ← Normalize(
∑N

j=1
exp(−‖xi − xj‖

2/2σ2)n̂j).
We then compute tangent vectors ûi and v̂i using the effi-

cient formulae of [16]. Let n̂i = [x, y, z] be a unit vector,

s = sign(z), a = −1/(s+ z) and b = a x y, then

ûi = [ 1 + sax2, sb,−sx ] , v̂i = [ b, s+ ay2,−y ] . (3)

For each point xi, we then find the 16 nearest atom cen-

ters {ai
1
, . . . ,ai

16
}with types {ti

1
, . . . , ti

16
} encoded as one-

hot vectors in R
6. We compute a vector of chemical features

fi in R
6 by applying a Multi-Layer Perceptron (MLP) to the

vectors [tik, 1/‖xi − aik‖] in R
7, performing a summation

over the indices k = 1, . . . , 16 and applying a second MLP

to the result. As illustrated in Figure 6, using simple MLPs

with a single hidden layer of dimension 12 is enough to

learn rich chemical features, such as the Poisson-Boltzmann

electrostatic potential.

3.2. Quasi­geodesic convolutions on point clouds

Convolutions on 3D shapes. To update the feature vec-

tors fi and progressively learn to predict the binding site of

a protein, we rely on (quasi-)geodesic convolutions on the

molecular surface. This allows us to ensure that our model

is fully invariant to 3D rotations and translations, takes deci-

sions according to local chemical and geometric properties

of the surface, and is not influenced by atoms located deep

inside the volume of a protein. These modelling hypotheses

hold for many protein interaction problems and prevent our

network from overfitting on the few thousands of protein

pairs that are present in our dataset.

In practice, geometric convolutional networks combine

pointwise operations of the form f ′i ← MLP(fi) with local

inter-point interactions of the form:

f ′i ←
N∑

j=1

Conv(xi,xj , fj) , (4)

where fi and f ′i denote feature vectors associated to the point

xi and the Conv(xi,xj , fj) operator puts a trainable weight

on the relationship between the points xi and xj . The sum

can possibly be replaced by a maximum or any other reduc-

tion or pooling operation.
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x0x1

x3

x2

n̂1

n̂2

n̂3

n̂0

xi xj

n̂jn̂i

〈n̂i, n̂j〉 = 1

xi xj

n̂jn̂i
〈n̂i, n̂j〉 < 1

(a) Quasi-geodesic distance dij .

pij =
[
(xj − xi)

⊤
]

︸ ︷︷ ︸

delta of positions

·

[

n̂i ûi v̂i

]

qij =
[
(n̂j − n̂i)

⊤
]

︸ ︷︷ ︸

delta of normals

·

[

n̂i ûi v̂i

]

︸ ︷︷ ︸

local coordinate system

Conv(xi,xj , fj)

= Window(dij)
︸ ︷︷ ︸

quasi-geodesic patch

· Filter(pij , qij)
︸ ︷︷ ︸

oriented filter

·fj

xi

n̂i

ûi

v̂i n̂j

xj
pij

(b) Quasi-geodesic convolution. (c) Filter(pij) = p
û

ij .

Figure 5: We use an approximation of the geodesic distance (5) to implement fast quasi-geodesic convolutions on oriented

point clouds. (a) The weighted distance dij between points xi and xj is equal to ‖xi − xj‖ if the unit normal vectors n̂i and

n̂j point towards the same direction, but is larger otherwise. In this example, the points x1, x2 and x3 lay at equal distance

of the reference point x0 in R
3; but since the reference normal n̂0 is aligned with n̂1, orthogonal to n̂2 and opposite to n̂3,

we have d0,1 = ‖x0−x1‖ < 2 · d0,1 = d0,2 < 3 · d0,1 = d0,3. (b) We leverage this behaviour to prevent information leakage

“across the volume” of a protein. We combine a Gaussian window on the weighted distance dij with a parametric “Filter” to

aggregate features fj between neighbors on a protein surface. (c) Our formulae induce local coordinate systems that closely

mimic the structure of genuine geodesic patches – defined here by a Gaussian window of deviation σ = 10 Å. On smooth

surfaces, they enable the computation of “quasi-geodesic” convolutions at a much lower cost than mesh-based methods.

Working with oriented point clouds. Numerous meth-

ods have been proposed to mimic surface operators with

convolution operators on meshes or point clouds – see Sec-

tion 2 and especially [40, 26, 47, 41]. In this work, we lever-

age the normal vectors that are produced by our sampling

algorithm to define a fast quasi-geodesic convolutional layer

that works directly on oriented point clouds. The KeOps li-

brary lets us implement this operation efficiently, without

any offline precomputation on the surface geometry.

As illustrated in Figure 5, we approximate the geodesic

distance between two points xi and xj of a protein surface

with unit normals n̂i and n̂j as:

dij = ‖xi − xj‖ · (2− 〈n̂i, n̂j〉) (5)

and localize our filters using a smooth Gaussian window of

radius σ ∈ {9, 12} Å, w(dij) = exp(− d2ij / 2σ
2). In the

neighborhood of any point xi of the surface, two 3D vectors

then encode the relative position and orientation of neighbor

points xj in the local coordinate system (n̂i, ûi, v̂i):

pij = [pn̂

ij , p
û

ij , p
v̂

ij ] , qij = [qn̂

ij , q
û

ij , q
v̂

ij ] .

Different choices for the trainable “Filter” on these 3D vec-

tors let us encode a wide range of operations. We focus here

on polynomial functions and MLPs instead of the popular

Mixture-of-Gaussian filters [30], but note that this choice

has little impact on the expressive power of our model.

Local orientation, curvatures. We must stress, however,

that the pair of tangent vectors (ûi, v̂i) orthogonal to the

normal n̂i is only defined up to a rotation in the tangent

plane. To work around this problem at a low computa-

tional cost, we follow [28] and orient the first tangent vector

ûi = û(xi) along the geometric gradient ∇û,v̂P (xi) of a

trainable potential P (xi) = Pi = MLP(fi), computed from

the input features using a small MLP. We approximate its

gradient using a derivative of Gaussian filter on the tangent

plane, implemented as a quasi-geodesic convolution:

∇P (xi) ←
1

N

∑N
j=1

w(dij) [p
û

ij , p
v̂

ij ]Pj ∈ R
2 (6)

and then update the tangent basis (ûi, v̂i) using standard

trigonometric formulae.

Local curvatures are computed in a similar fashion [12].

We use quasi-geodesic convolutions with Gaussian win-

dows of radii σ that range from 1 Å to 10 Å and quadratic fil-

ter functions to estimate the local covariances Cov
û,v̂
σ,i (p,p)

and Cov
û,v̂
σ,i (p,q) of the point positions and normals as

2 × 2 matrices in the tangent plane (ûi, v̂i). With λ =
0.1 Å a small regularization parameter, the 2 × 2 shape

operator at point xi and scale σ is then approximated as

Sσ,i = (λ2 Id2×2 + Cov
û,v̂
σ,i (p,p))

−1Cov
û,v̂
σ,i (p,q), which

allows us to define the Gaussian Kσ,i = det(Sσ,i) and mean

Hσ,i = trace(Sσ,i) curvatures at scale σ.
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Trainable convolutions. Finally, the main building block

of our architecture is a quasi-geodesic convolution that re-

lies on a trainable MLP to weigh features in a geodesic

neighborhood of the local reference point xi. We turn a

vector signal fi ∈ R
F into a vector signal f ′i ∈ R

F with:

f ′i ←
∑N

j=1
w(dij)MLP(pij) fj (7)

where MLP is a neural network with 3 input units, H = 8
hidden units, ReLU non-linearity and F = 16 outputs.

3.3. End­to­end convolutional architecture

Overview. We chain together the operations introduced in

the previous sections to create a fully differentiable pipeline

for deep learning on protein surfaces, illustrated in Figure 2.

As a brief summary:

1. We sample surface points and normals as in Figure 3.

2. We use the normals n̂i to compute mean and Gaussian

curvatures at 5 scales σ ranging from 1 Å to 10 Å.

3. We compute chemical features on the protein surface

as described in Section 3.1. Atom types and inverse

distances to surface points are passed through a small

MLP with 6 hidden units, ReLU non-linearity and

batch normalization [25]. Contributions from the 16

nearest atoms to a surface point xi are summed to-

gether, followed by a linear transformation to create

a vector of 6 scalar features.

4. We concatenate these chemical features to the 5 + 5

mean and Gaussian curvatures to create a full feature

vector of size 16.

5. We apply a small MLP on this vector to predict orien-

tation scores Pi for each surface point. We then orient

the local coordinates (n̂i, ûi, v̂i) according to (6).

6. We apply successive trainable convolutions (7), MLPs

and batch normalizations on the feature vectors fi.

The numbers of layers, the radii of the Gaussian win-

dows and the number of units for the MLPs are task-

dependent and detailed in the Supplementary Material.

7. As a final step for site identification, we apply an MLP

to the output of the convolutions to produce the final

site/non-site binary output. For interaction prediction,

we compute dot products between the feature vectors

of both proteins to use them as interaction scores be-

tween pairs of points.

Asymmetry between binding partners. When trying to

predict binding interactions for protein pairs, we process

both interacting proteins identically up to the convolutional

step. We then introduce some asymmetry by passing each

one of the two binding partners through a separate convo-

lutional network. This allows the network to find comple-

mentary (instead of similar) regions on both surfaces, such

as convex bulges and concave pockets. We note that MaSIF

encoded such an asymmetry by inverting the sign of the pre-

computed features on one of the two surfaces.

4. Experimental Evaluation

Benchmarks. We test our method on two tasks intro-

duced in [21]. The tasks come from the field of structural

bioinformatics and deal with predicting how proteins inter-

act with each other.

Binding site identification: we try to classify the surface of a

given protein into interaction sites and non-interaction sites.

Interaction sites are surface patches that are more likely

to mediate interactions with other proteins: understanding

their properties is a key problem for drug design and the

study of protein interaction networks. The identification of

the interaction site is unaware of the binding partner.

Interaction prediction: we take as inputs two surface

patches, one from each protein involved in a complex, and

predict if these locations are likely to come into close con-

tact in the protein complex. This task is key to prediction

tasks like protein docking, i.e. predicting the orientation of

two proteins in a complex.

Dataset. The dataset comprises protein complexes gath-

ered from the Protein Data Bank (PDB) [7]. We use the

training / testing split of [21], which is based on sequence

and structural similarity and was assembled to minimize the

similarity between structures of the interfaces in the train-

ing and testing set. For site identification, the training and

test sets include 2958 and 356 proteins, respectively; 10%

of the training set is reserved for validation. For interaction

prediction, the training and test sets include 4614 and 912

protein complexes, respectively, with 10% of the training

set used for validation.

The average number of points used to represent a protein

surface is N = 11549±1853 for our generated point clouds,

compared to 6321 ± 1028 points for MaSIF.2 Proteins are

randomly rotated and centered to ensure that methods which

rely on atomic point coordinates do not overfit on their spa-

tial locations.

Baselines. Our main baselines are the MaSIF-site and

MaSIF-search models [21]. For the MaSIF baselines, we

use the pre-trained models and precomputed surface meshes

and input features provided by the authors. Additionally, in

order to show the benefits of our convolutional layer, we

benchmark it against PointNet++ [35] and Dynamic Graph

CNN (DGCNN) [45], two popular state-of-the-art convolu-

tional layers for point clouds.

2This smaller sampling size of MaSIF stems from the large time and

memory requirements of this method, which prohibits the use of finer

meshes.
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Implementation. We implement our architectures with

PyTorch [31] and use KeOps [19] for fast geometric com-

putations. For data processing and batching, we use Py-

Torch Geometric [18]. For the PointNet++ and DGCNN

baselines, we use PyTorch Geometric implementations –

but rely on KeOps symbolic matrices to accelerate the con-

struction of kNN graphs and thus guarantee a fair compari-

son. For the MaSIF baselines, we use the reference imple-

mentation of [21].3 All models are trained on either a sin-

gle NVIDIA GeForce RTX 2080 Ti GPU or a single Tesla

V100. Run times and memory consumption are measured

on a single Tesla V100.

4.1. Surface and input feature generation

Precomputation. A key drawback of MaSIF is its re-

liance on the heavy precomputation of surface meshes

and input features. These computations take a signifi-

cant amount of time and generate large files that must be

stored on disk. For reference, the pre-processed files used

to train the MaSIF networks weigh more than 1TB. In

sharp contrast, our method does not rely on any such pre-

computation. Table 1 compares corresponding run times

for both pipelines: our method is three orders of magnitude

faster than MaSIF for these geometric computations.

Scalability. Our surface generation algorithm scales ben-

eficially with an increasing batch size. In SM we show that

the running time and memory requirement per protein of our

method both decrease significantly when processing dozens

of proteins at time the batch size. This is a consequence of

the increased usage of the GPU cores and the smaller influ-

ence of fixed PyTorch and KeOps overheads.

Moreover, our method of surface generation makes it

easy to experiment with different point cloud resolutions.

Different tasks could benefit from higher or lower resolu-

tion and tuning it as a hyperparameter could have significant

effects on performance. We show the effects of resolution

on time an memory requirements in SM.

Quality of learned chemical features. Another notable

drawback of MaSIF is its reliance on ‘handcrafted’ geo-

metric and chemical features (Poisson-Boltzmann electro-

static potential, hydrogen bond potential and hydropathy)

that must be precomputed and provided as input to the neu-

ral network. In contrast, we do not use any handcrafted de-

scriptors and learn problem-specific features directly from

the underlying atomic point cloud, provided as the sole in-

put of our method. We argue that this information alone

is sufficient to compute an informative chemical and geo-

metric description of the protein surface. To support this

3Since MaSIF is implemented in TensorFlow [1], small discrepancies

in measurements of memory consumption and running times are possible.

(a) Predicting electrostatics (b) Ablation study.

Figure 6: Our network can compute chemical properties

of the protein surface from the underlying atomic point

cloud. (a) Predicted Poisson-Boltzman electrostatic poten-

tial vs. the ground truth. Correlation cofactor r=0.83 and

RMSE=0.16. (b) Ablation study showing how chemical and

geometric features affect the performance in predicting in-

teraction sites (ROC-AUC).

Computation MaSIF Ours

Surface generation 6.11±6.18 s 59.0±15.2 ms*

Input features 19.69±16.08 s 6.59±1.22 ms*

Local coordinates 50.65±45.15 s 0.46±0.09 ms*

Table 1: Average “pre-processing” time per protein. Our

method is about 1000 times faster than MaSIF and allows

these computations to be performed on the fly, as opposed

to the offline precomputations of MaSIF. *With batches of

128 proteins at a time.

statement, we show in Figure 6 the results of an experiment

where our chemical feature extractor is used to regress the

Poisson-Boltzmann electrostatic potential on surface points.

The quality of our predicition suggests that our data-driven

chemical features are of similar quality to the descriptors

used by MaSIF – or better.

We also note the results of an ablation study for chemical

and geometric features, depicted in Figure 6. They suggest

that the concatenation of geometric curvatures to the vector

of learned chemical features does not significantly improve

the performance of the network for the site prediction task:

we will investigate this point in future works.

4.2. Performance

Binding site identification. Results for the identification

of binding sites are summarized in Figures 7–9, which de-

pict ROC curves and tradeoffs between accuracy, time and

memory. We evaluate multiple versions of our architecture

with varying numbers of convolution layers (1 vs 3) and

patch sizes (5, 9, or 15Å). For comparison, we also show

results when our convolutions are replaced by DGCNN and

PointNet++ architectures, all other things being equal.

A first remark is that if we use a single convolution layer

with a Gaussian window of deviation σ = 15 Å, our method

matches the best accuracy of 0.85 ROC-AUC produced by

15278



MaSIF – with 3 successive convolutional layers on patches

of radius 9 Å. In this configuration, our network runs 10

times faster than MaSIF with an average time in the for-

ward pass of 16 ms vs. 164 ms per protein. At the price of a

modest increase of the model complexity (three convolution

layers, and 36 ms on average per protein), we outperform

MaSIF with a 0.87 ROC-AUC, detailed in Figure 7 (solid

curves). Most remarkably, our models all have a small

memory footprint (132 MB/protein), which is 11 times less

than an equivalent MaSIF network (1492 MB/protein), 13

times less than DGCNN (1,681 MB/protein) and 30 times

less than PointNet++ (3,995 MB/protein).

Interaction prediction. With a single convolutional layer

architecture similar to that of MaSIF-search we reach a

slightly higher performance of 0.82 vs. 0.81, as illustrated

in Figure 7 (dashed). We remark that MaSIF-search reaches

this level of accuracy using high dimensional feature vec-

tors with 80 dimensions compared to our 16: understanding

the influence of the number of convolutional “channels” on

the performances of our network for different tasks will be

an important direction for future works.

Note that MaSIF-search also relies on larger patches than

MaSIF-site (12 Å vs. 9 Å), which causes a significant in-

crease of run times to 727 ± 403 ms. On the other hand,

our lightweight method runs in 17.5±6.7 ms and is over 40

times faster at inference time.

5. Conclusion

We have introduced a new geometric architecture for

deep learning on protein surfaces, enabling the prediction

of their interaction properties. Our method is an order of

magnitude faster and more memory efficient than previous

approaches, making it suitable for the analysis of large-

scale datasets of protein structures: this opens the door to

the analysis of entire protein-protein interaction networks

in living organisms, comprising over 10K proteins.

The fact that our pipeline works on raw atomic coordi-

nates and is fully differentiable makes it amenable to gener-

ative tasks, with the possibility of performing a true end-to-

end design of new proteins for diverse biological functions,

namely in terms of the design of binders for specific targets.

This opens fascinating perspectives in drug design, includ-

ing biologics for targeting disease relevant targets (e.g. can-

cer therapy, antiviral) that display flat interaction surfaces

and are impossible to target with small molecules.

More broadly, we believe that our new algorithmic

and architectural ideas for deep learning on 3D shapes

through fast on-the-fly computations on point clouds will

be of general interest to computer vision and graphics

experts. Conversely, we hope that our work will draw the

attention of this community to some of the most important

and promising problems in structural biology and protein
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Figure 7: ROC curves comparing the performance of our

method (blue) and MaSIF (red) on the task of binding

site identification (solid curves) and search of binding part-

ners (dashed). Our approach performs on par with MaSIF,

achieving ROC-AUC of 0.87 (vs. 0.85) in site identifica-

tion, and 0.82 (vs. 0.81) in identifying binding partners.
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Figure 8: Accuracy (site identification ROC-AUC) vs. Run

time (forward pass/protein in ms) of different architectures.

Models are identified by the convolutional operator used,

number of convolutional layers, and the value of σ used for

the Gaussian window. PointNet++ models are identified by

the radius of the neighborhood and DGCNN models by the

number of nearest neighbours.
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Figure 9: Accuracy (site identification ROC-AUC) vs.

Memory footprint (MB/protein) of different architectures.
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