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Abstract

Modern lane detection methods have achieved remark-
able performances in complex real-world scenarios, but
many have issues maintaining real-time efficiency, which is
important for autonomous vehicles. In this work, we pro-
pose LaneATT: an anchor-based deep lane detection model,
which, akin to other generic deep object detectors, uses the
anchors for the feature pooling step. Since lanes follow a
regular pattern and are highly correlated, we hypothesize
that in some cases global information may be crucial to
infer their positions, especially in conditions such as oc-
clusion, missing lane markers, and others. Thus, this work
proposes a novel anchor-based attention mechanism that
aggregates global information. The model was evaluated ex-
tensively on three of the most widely used datasets in the liter-
ature. The results show that our method outperforms the cur-
rent state-of-the-art methods showing both higher efficacy
and efficiency. Moreover, an ablation study is performed
along with a discussion on efficiency trade-off options that
are useful in practice. Code and models are available at
https://github.com/lucastabelini/LaneATT.

1. Introduction

Deep learning has been essential for recent advances in

numerous areas, especially in autonomous driving [2]. Many

of the deep learning applications in self-driving cars are

in their perception systems. To be safe around humans,

autonomous vehicles should perceive their surroundings,

including the position of other vehicles and themselves. In

the end, the more predictable a car’s movement is, the safer

it will be for its passengers and pedestrians. Thus, it is

important for autonomous vehicles to know each lane’s exact

position, which is the goal of lane detection systems.

Lane detection models have to overcome various chal-

lenges. In a real-world scenario, models should be robust to

several adverse conditions, such as extreme light and weather.

Moreover, lane markings can be occluded by other objects

(e.g., cars), which is extremely common for self-driving cars.

Some approaches, such as polynomial regression models,

may also suffer from a data imbalance problem caused by

the long-tail effect since cases with sharper curves are less

common. Besides, the model not only has to be robust but

also efficient. In several applications, lane detection must

perform in real-time, or faster to save processing power for

other systems, a requirement that many models struggle to

cope with.

There are numerous works in the literature that tackle this

problem. Before the advent of deep learning, several meth-

ods used more traditional computer vision techniques, such

as Hough lines [4, 1]. More recently, focus has shifted to

deep learning approaches with the advance of convolutional

neural networks (CNNs) [17, 11, 18]. In this context, the lane

detection problem is usually formulated as a segmentation

task, where, given an input image, the output is a segmen-

tation map with per-pixel predictions [17]. Although recent

advances in deep learning have enabled the use of segmenta-

tion networks in real-time [22], various models struggle to to

achieve real-time performance. Consequently, the number of

backbone options for segmentation-based methods is rather

limited. Hence, some recent works have proposed solutions

in other directions [13, 23]. Apart from that, many other

issues are common in works on lane detection, such as the

need for a post-processing step (usually a heuristic), long

training times, and a lack of publicly available source code,

which hinders comparisons and reproducibility.

In this work, we present a method for real-time lane

detection that is both faster and more accurate than most

state-of-the-art methods. We propose an anchor-based single-

stage lane detection model called LaneATT. It uses a novel

anchor-based feature pooling method that enables the use

of a lightweight backbone CNN while maintaining high

accuracy, contrary to an existing method [13]. A novel

anchor-based attention mechanism to aggregate global infor-

mation is also proposed. Extensive experimental results are

shown on three benchmarks (TuSimple [24], CULane [17]

and LLAMAS [3]), along with a comparison with state-of-

the-art methods, a discussion on efficiency trade-offs, and an

ablation study of our design choices. In summary, our main

contributions are:
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• A lane detection method that is more accurate than

existing state-of-the-art real-time methods on a large

and complex dataset;

• A model that enables faster training and inference times

than most other models (reaching 250 FPS and almost

an order of magnitude less multiply-accumulate opera-

tions (MACs) than the previous state-of-the-art);

• A novel anchor-based attention mechanism for lane

detection which is potentially useful in other domains

where the objects being detected are correlated.

2. Related work

Although the first lane detection approaches rely on clas-

sical computer vision, substantial progress on accuracy and

efficiency has been achieved with recent deep learning meth-

ods. Thus, this literature review focuses on deep lane detec-

tors. This section first discusses the dominant approaches,

which are based on segmentation [17, 11, 29, 15] or row-

wise classification [10, 20, 27], and, subsequently, review

solutions in other directions. Finally, the lack of reproducibil-

ity (a common issue in lane detection works) is discussed.

Segmentation-based methods. In this approach, predic-

tions are made on a per-pixel basis, classifying each pixel as

either lane or background. With the segmentation map gen-

erated, a post-processing step is necessary to decode it into

a set of lanes. In SCNN [17], the authors propose a scheme

specifically designed for long thin structures and show its

effectiveness in lane detection. However, the method is

slow (7.5 FPS), which hinders its applicability in real-world

cases. Since larger backbones are one of the main culprits for

slower speeds, the authors of [11] propose a self attention dis-

tillation (SAD) module to aggregate contextual information.

The module allows the use of a more lightweight backbone,

achieving a high-performance while maintaining real-time

efficiency. In CurveLanes-NAS [26], neural architecture

search (NAS) is used to find a better backbone. Although

they achieved state-of-the-art results, their NAS is extremely

expensive computationally (5,000 GPU hours per dataset).

Row-wise classification methods. The row-wise classifi-

cation approach is a simple way to detect lanes based on a

grid division of the input image. For each row, the model

predicts the most probable cell to contain a part of a lane

marking. Since only one cell is selected on each row, this pro-

cess is repeated for each possible lane in an image. Similar

to segmentation methods, it also requires a post-processing

step to construct the set of lanes. The method was first intro-

duced in E2E-LMD [27], achieving state-of-the-art results

on two datasets. In [20], the authors show that it is capable

of reaching high speed, although some accuracy is lost. This

approach is also used in IntRA-KD [10].

Other approaches. In FastDraw [18], the author proposes

a novel learning-based approach to decode the lane struc-

tures, which avoids the need for clustering post-processing

steps (required in segmentation and row-wise classifica-

tion methods). Although the proposed method is shown

to achieve high speeds, it does not perform better than exist-

ing state-of-the-art methods in terms of accuracy. The same

effect is shown in PolyLaneNet [23], where an even faster

model, based on deep polynomial regression, is proposed. In

that approach, the model learns to output a polynomial for

each lane. Despite its speed, the model struggles with the

imbalanced nature of lane detection datasets, as evidenced

by the high bias towards straight lanes in its predictions. In

Line-CNN [13], an anchor-based method for lane detection

is presented. This model achieves state-of-the-art results

on a public dataset and promising results on another that is

not publicly available. Despite the real-time efficiency, the

model is considerably slower than other approaches since it

requires larger backbones (e.g., ResNet-122). In this work,

we propose a novel anchor-based pooling method that allows

the use of lightweight backbones. Moreover, the code is not

public, which makes the results difficult to reproduce. There

are also works addressing other parts of the pipeline of a lane

detector. In [12], a post-processing method with a focus on

occlusion cases is proposed, achieving results considerably

higher than other works, but at the cost of notably low speeds

(around 4 FPS).

Reproducibility. As noted in [23], many of the cited

works do not publish the code to reproduce the results re-

ported [13, 18, 27], or, in some cases, the code is only

partially public [11, 10]. This hinders deeper qualitative

and quantitative comparisons. For instance, the two most

common metrics to measure a model’s efficiency are multi-

ply–accumulate operations (MACs) and frames-per-second

(FPS). While the first does not depend on the benchmark plat-

form, it is not always a good proxy for the second, which is

the true goal. Therefore, FPS comparisons are also hindered

by the lack of source code.

Unlike most of the previously proposed methods that

managed to achieve high speeds at the cost of accuracy, we

propose a method that is both faster and more accurate than

existing state-of-the-art ones. In addition, the full code to re-

produce the reported results is published for the community.

3. Proposed method

LaneATT is an anchor-based single-stage model (like

YOLOv3 [21] or SSD [16]) for lane detection. An overview

of the method is shown in Figure 1. It receives as input RGB

images I ∈ R
3×HI×WI taken from a front-facing camera

mounted in a vehicle. The outputs are lane boundary lines

(hereafter called lanes, following the usual terminology in the

literature). To generate those outputs, a convolutional neural
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Figure 1. Overview of the proposed method. A backbone generates feature maps from an input image. Subsequently, each anchor is projected

onto the feature maps. This projection is used to pool features that are concatenated with another set of features created in the attention

module. Finally, using this resulting feature set, two layers, one for classification and another for regression, make the final predictions.

network (CNN), referred to as the backbone, generates a

feature map that is then pooled to extract each anchor’s

features. Those features are combined with a set of global

features produced by an attention module. By combining

local and global features, the model can use information

from other lanes more easily, which might be necessary in

cases with conditions such as occlusion or no visible lane

markings. Finally, the combined features are passed to fully-

connected layers to predict the final output lanes.

3.1. Lane and anchor representation

A lane is represented by 2D-points with equally-spaced

y-coordinates Y = {yi}
Npts−1

i=0 , where yi = i · HI

Npts−1
.

Since Y is fixed, a lane can then be defined only by its x-

coordinates X = {xi}
Npts−1

i=0 , each xi associated with the

respective yi ∈ Y . Since most lanes do not cross the whole

image vertically, a start-index s and an end-index e are used

to define the valid contiguous sequence of X .

Likewise Line-CNN [13], our method performs anchor-

based detection using lines instead of boxes, which means

that lanes’ proposals are made having these lines as refer-

ences. An anchor is a “virtual” line in the image plane

defined by (i) an origin point O = (xorig, yorig) (with

yorig ∈ Y ) located in one of the borders of the image (except

the top border) and (ii) a direction θ. The proposed method

uses the same set of anchors as [13]. This lane and anchor

representation satisfies the vast majority of real-world lanes.

3.2. Backbone

The first stage of the proposed method is feature extrac-

tion, which can be performed by any generic CNN, such

as a ResNet [9]. The output of this stage is a feature map

Fback ∈ R
C′

F×HF×WF from which the features for each

anchor will be extracted through a pooling process, as de-

scribed in the next section. For dimensionality reduction,

a 1 × 1 convolution is applied onto Fback, generating a

channel-wise reduced feature map F ∈ R
CF×HF×WF . This

reduction is performed to reduce computational costs.

3.3. Anchorbased feature pooling

An anchor defines the points of F that will be used for

the respective proposals. Since the anchors are modeled as

lines, the interest points for a given anchor are those that

intercept the anchor’s virtual line (considering the rasterized

line reduced to the feature maps dimensions). For every yj =
0, 1, 2, . . . , HF − 1, there will be a single corresponding x-

coordinate,

xj =

⌊

1

tan θ
(yj − yorig/δback) + xorig/δback

⌋

, (1)

where (xorig , yorig) and θ are, respectively, the origin point

and slope of the anchor’s line, and δback is the backbone’s

global stride. Thus, every anchor i will have its correspond-

ing feature vector aloci ∈ R
CF ·HF (column-vector notation)

pooled from F that carries local feature information (local

features). In cases where a part of the anchor is outside the

boundaries of F, aloci is zero-padded.

Notice that the pooling operation is similar to the Fast

R-CNN’s [8] region of interest (RoI) projection, however,

instead of using the proposal for pooling, a single-stage

detector is achieved by using the anchor itself. Additionally,

the RoI pooling layer (used to generate fixed-size features) is

not necessary for our method. Comparing to Line-CNN [13],

that leverages only the feature maps’ borders, our method

can explore all the feature map, which enables the use of

more lightweight backbones with smaller receptive field.
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3.4. Attention mechanism

Depending on the model architecture, the information

carried by the pooled feature vector ends up being mostly

local. This is particularly the case for shallower and faster

models, which tend to exploit backbones with smaller re-

ceptive fields. However, in some cases (such as the ones

with occlusion) the local information may not be enough to

predict the lane’s existence and its position. To address that

problem, we propose an attention mechanism that acts on the

local features (aloc• ) to produce additional features (aglob• )

that aggregate global information.

Basically, the attention mechanism structure is composed

of a fully-connected layer Latt which processes a local fea-

ture vector aloci and outputs a probability (weight) wi,j for

every anchor j, j 6= i. Formally,

wi,j =











softmax(Latt(a
loc
i ))j , if j < i

0, if j = i

softmax(Latt(a
loc
i ))j−1, if j > i

(2)

Afterwards, those weights are combined with the local fea-

tures to produce a global feature vector of same dimension:

a
glob
i =

∑

j

wi,j a
loc
j . (3)

Naturally, the whole process can be implemented efficiently

with matrix multiplication, since the same procedure is ex-

ecuted for all anchors. Let Nanc be the number of an-

chors. Let Aloc = [aloc0 , . . . ,alocNanc−1]
T be the matrix

containing the local feature vectors (as rows) and W =
[wi,j ]Nanc×Nanc

the weight matrix, wi,j defined in Equa-

tion (2). Thus, global features can be computed as:

Aglob = W Aloc. (4)

Notice that Aglob and Aloc have the same dimensions, i.e.,

Aglob ∈ R
Nanc×CF ·HF .

3.5. Proposal prediction

A lane proposal is predicted for each anchor and consists

of three main components: (i) K + 1 probabilities (K lane

types and one class for “background” or invalid proposal),

(ii) Npts offsets (the horizontal distance between the pre-

diction and the anchor’s line), and (iii) the length l of the

proposal (the number of valid offsets). The start-index (s)

for the proposal is directly determined by the y-coordinate

of the anchor’s origin (yorig, see Section 3.1). Thus, the

end-index can be determined as e = s+ ⌊l⌉ − 1.

To generate the final proposals, local and global informa-

tion are aggregated by concatenating aloci and a
glob
i , produc-

ing an augmented feature vector a
aug
i ∈ R

2·CF ·HF . This

augmented vector is fed to two parallel fully-connected

layers, one for classification (Lcls) and one for regres-

sion (Lreg), which produce the final proposals. Lcls pre-

dicts pi = {p0, . . . , pK+1} (item i) and Lreg predicts

ri =
(

l, {x0, . . . , xNpts−1}
)

(items ii and iii).

3.6. Nonmaximum Supression (NMS)

As usual in anchor-based deep detection, NMS is

paramount to reduce the number of false positives. In the pro-

posed method, this procedure is applied both during training

and test phases based on the lane distance metric proposed

in [13]. The distance between two lanes Xa = {xa
i }

Npts

i=1

and Xb = {xb
i}

Npts

i=1 is computed based on their common

valid indices (or y-coordinates). Let s′ = max(sa, sb) and

e′ = min(ea, eb) define the range of those common indices.

Thus, the lane distance metric is defined as

D(Xa, Xb) =

{

1

e′−s′+1
·
∑e′

i=s′ |x
a
i − xb

i |, e′ ≥ s′

+∞, otherwise.

(5)

3.7. Model training

During training, the distance metric in Equation (5) is

also used to define the positive and the negative anchors.

First, the metric is used to measure the distance between

every anchor (those not filtered in NMS) and the ground-

truth lanes. Subsequently, the anchors with distance (Eq.

5) lower than a threshold τp are considered positives, while

those with distance greater than τn are considered negatives.

Anchors (and their associated proposals) with distance in

between those thresholds are disregarded. The remainder

Np&n are used in a multi-task loss defined as:

L({pi, ri}
Np&n−1

i=0 ) = λ
∑

i

Lcls(pi,p
∗

i )

+
∑

i

Lreg(ri, r
∗

i ),
(6)

where pi, ri are the classification and regression outputs

for the anchor i, whereas p∗

i and r∗i are the classification

and regression targets for the anchor i. The regression loss

is computed only with the length l and the x-coordinates

values corresponding to indices common to both the pro-

posal and the ground-truth. The common indices (between

s′ and e′) of the x-coordinates are selected similarly to the

lane distance (Equation (5)) but with e′ = egt instead of

e′ = min(eprop, egt), where eprop and egt are the end-

indexes for the proposal and its associated ground-truth,

respectively. If the end-index predicted in the proposal eprop
is used, the training may become unstable by converging

to degenerate solutions (e.g., eprop might converge to zero).

The functions Lcls and Lreg are the Focal Loss [14] and

the Smooth L1, respectively. If the anchor i is considered

negative, its corresponding Lreg is equal to 0. The factor λ
is used to balance the loss components.
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Figure 2. LaneATT qualitative results on TuSimple (top row), CU-

Lane (middle row), and LLAMAS (bottom row). Blue lines are

ground-truth, while green and red lines are true-positives and false-

positives, respectively. See more samples in the videos1.

3.8. Anchor filtering for speed efficiency

The full set of anchors comprises a total of 2,782 anchors.

This elevated number is one of the main factors limiting the

model’s speed. Since a large number of anchors will not

be useful during the training (e.g., some anchors may have

a starting point above the horizon line of all images in the

training dataset), the set’s size can be reduced. To choose

which anchors are going to be disregarded in both training

and test phases, the method measures the number of times

each anchor from the training set is marked as positive (same

criteria as in the training). Finally, only the top-Nanc marked

anchors are kept for further processing (also during test).

4. Experiments

Our method was evaluated on the two most widely used

lane detection datasets (TuSimple [24] and CULane [17])

and on the recently released benchmark (LLAMAS [3]).

An overview of the datasets can be seen in Table 1. This

section starts describing the efficiency metrics and some of

the implementation details. All experiments used the default

metric parameters set by the dataset’s creator, which are the

same used by the related works. The three first subsections

discusses the experimental results for each dataset (including

the dataset description and the evaluation metrics). The two

final subsections address experiments on efficiency trade-

offs and an ablation study on parts.

Dataset Train Val. Test Max. # of lanes

TuSimple [24] 3,268 358 2,782 5

CULane [17] 88,880 9,675 34,680 4

LLAMAS [3] 58,269 20,844 20,929 4

Table 1. Overview of the datasets used in this work.

1http://youtu.be/1f y4A-muMg and http://youtu.be/ghs93acwkBQ

Efficiency metrics. Two efficiency-related metrics are re-

ported: frames-per-second (FPS) and multiply-accumulate

operations (MACs). One MAC is approx. two floating oper-

ations (FLOPs). The FPS is computed using a single image

per batch and constant inputs, so the metric is not dependent

on I/O operations but only on the model’s efficiency.

Implementation details. Except when explicitly indi-

cated, all input images are resized to HI ×WI = 360× 640
pixels. For all training sessions, the Adam optimizer is used

for 15 epochs on CULane and 100 epochs on TuSimple (the

large discrepancy is due to the large difference between the

datasets’ sizes). For data augmentation, a random affine

transformation is performed (with translation, rotation, and

scaling) along with random horizontal flips. Most experi-

ments and all FPS measures were computed on a machine

with an Intel i9-9900KS and an RTX 2080 Ti. The model

parameters were Npts = 72, Nanc = 1000, τp = 15 and

τn = 20. The used datasets do not provide the lane type

(e.g., dashed or solid), thus, we set K = 1 (see Section 3.5).

For more details and parameter values, the code2 can be

accessed, along with each experiment’s configuration.

4.1. TuSimple

Dataset description. TuSimple [24] is a lane detection

dataset containing only highway scenes, a scenario that is

usually considered easier than street scenes. Despite that,

it is one of the most widely used datasets in lane detection

works. All images have 1280× 720 pixels, with at most 5

lanes.

Evaluation metrics. On TuSimple, the three standard met-

rics are false discovery rate (FDR), false negative rate (FNR),

and accuracy. The accuracy is defined as

Acc =

∑

clip Cclip
∑

clip Sclip

, (7)

where Cclip is the number of lane points predicted correctly

in the clip and Sclip is the total number of points in the clip

(or image). For a point prediction to be considered correct,

the prediction has to be within 20 pixels the ground truth.

For a lane prediction to be considered a true positive (for

the FDR and FNR metrics), its number of correct predicted

points has to be greater than 85%. We also report the F1

score (hereafter called F1), which is the harmonic mean of

the precision and the recall.

Results. The results of LaneATT on TuSimple, along with

other state-of-the-art methods, are shown in Table 2 and

in Figure 3 (left side). Qualitative results are shown in Fig-

ure 2 (top row). As demonstrated, accuracy-wise LaneATT is

2https://github.com/lucastabelini/LaneATT
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Figure 3. Model latency vs. F1 of state-of-the-art methods on CULane and TuSimple.

Method F1 (%) Acc (%) FDR (%) FNR (%) FPS MACs (G)

Source-code unavailable

EL-GAN [7] 96.26 94.90 4.12 3.36 10.0

Line-CNN [13] 96.79 96.87 4.42 1.97 30.0

FastDraw (ResNet-18) [18] 94.59 94.90 6.10 4.70

PointLaneNet [5] 95.07 96.34 4.67 5.18 71.0

[25] 95.80 71.5

R-18-E2E [27] 96.40 96.04 3.11 4.09

R-34-E2E [27] 96.58 96.22 3.08 3.76

Source-code available

SCNN [17] 95.97 96.53 6.17 1.80 7.5

Cascaded-CNN [19] 90.82 95.24 11.97 6.20 60.0

ENet-SAD [11] 95.92 96.64 6.02 2.05 75.0

[20] (ResNet-18) 87.87 95.82 19.05 3.92 312.5

[20] (ResNet-34) 88.02 95.86 18.91 3.75 169.5

PolyLaneNet [23] 90.62 93.36 9.42 9.33 115.0 1.7

LaneATT (ResNet-18) 96.71 95.57 3.56 3.01 250 9.3

LaneATT (ResNet-34) 96.77 95.63 3.53 2.92 171 18.0

LaneATT (ResNet-122) 96.06 96.10 5.64 2.17 26 70.5

Table 2. State-of-the-art results on TuSimple. For a fairer comparison, the FPS of the fastest method ([20]) was measured on the same machine

and conditions as our method. Additionally, all metrics for this method were computed using the official source code, since only the accuracy

was available in the paper. The best and second-best results across methods with source-code available are in bold and underlined, respectively.

on par with other state-of-the-art methods. However, it is

also clear that the results in this dataset are saturated (high-

values) already, probably because its scenes are not complex

and the metric is permissive [23]. This is evidenced by the

small difference in performance across methods, in contrast

to results in more complex datasets and less permissive met-

rics (as shown in Section 4.2). Nonetheless, our method is

much faster than others. The method proposed in [20] is

the only with speed comparable to ours. Since the FDR and

FNR metrics were not reported in their work, we computed

them using the published code and reported those metrics.

Although they achieved high accuracy, the FDR is notably

high. For instance, our highest FDR is 5.64% (ResNet-122),

whereas their lowest is 18.91%, almost four times higher.

4.2. CULane

Dataset description. CULane [17] is one of the largest

publicly available lane detection datasets, and also one of

the most complexes. All the images have 1640× 590 pixels,

and all test images are divided into nine categories, such as

crowded, night, absence of visible lines, etc.
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Method Total Normal Crowded Dazzle Shadow No line Arrow Curve Cross Night FPS MACs (G)

Source-code unavailable

[28] 73.10 89.70 76.50 67.40 65.50 35.10 82.20 63.20 68.70 24.0

FastDraw (ResNet-50) [18] 85.90 63.60 57.00 59.90 40.60 79.40 65.20 7013 57.80 90.3

PointLaneNet [5] 90.10 71.0

SpinNet [6] 74.20 90.50 71.70 62.00 72.90 43.20 85.00 50.70 68.10

R-18-E2E [27] 70.80 90.00 69.70 60.20 62.50 43.20 83.20 70.30 2296 63.30

R-34-E2E [27] 71.50 90.40 69.90 61.50 68.10 45.00 83.70 69.80 2077 63.20

R-101-E2E [27] 71.90 90.10 71.20 60.90 68.10 44.90 84.30 70.20 2333 65.20

ERFNet-E2E [27] 74.00 91.00 73.10 64.50 74.10 46.60 85.80 71.90 2022 67.90

Source-code available

SCNN [17] 71.60 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10 7.5

ENet-SAD [11] 70.80 90.10 68.80 60.20 65.90 41.60 84.00 65.70 1998 66.00 75

[20] (ResNet-18) 68.40 87.70 66.00 58.40 62.80 40.20 81.00 57.90 1743 62.10 322.5

[20] (ResNet-34) 72.30 90.70 70.20 59.50 69.30 44.40 85.70 69.50 2037 66.70 175.0

ERFNet-IntRA-KD [10] 72.40 100.0

SIM-CycleGAN [15] 73.90 91.80 71.80 66.40 76.20 46.10 87.80 67.10 2346 69.40

CurveLanes-NAS-S [26] 71.40 88.30 68.60 63.20 68.00 47.90 82.50 66.00 2817 66.20 9.0

CurveLanes-NAS-M [26] 73.50 90.20 70.50 65.90 69.30 48.80 85.70 67.50 2359 68.20 33.7

CurveLanes-NAS-L [26] 74.80 90.70 72.30 67.70 70.10 49.40 85.80 68.40 1746 68.90 86.5

LaneATT (ResNet-18) 75.09 91.11 72.96 65.72 70.91 48.35 85.49 63.37 1170 68.95 250 9.3

LaneATT (ResNet-34) 76.68 92.14 75.03 66.47 78.15 49.39 88.38 67.72 1330 70.72 171 18.0

LaneATT (ResNet-122) 77.02 91.74 76.16 69.47 76.31 50.46 86.29 64.05 1264 70.81 26 70.5

Table 3. State-of-the-art results on CULane. Since the images in the “Cross” category have no lanes, the reported number is the amount of

false-positives. For a fairer comparison, we measured the FPS of the fastest method ([20]) under the same machine and conditions as ours.

The best and second-best results across methods with source-code available are in bold and underlined, respectively.

Evaluation metrics. The only metric is the F1, which is

based on the intersection over union (IoU). Since the IoU

relies on areas instead of points, a lane is represented as a

thick line connecting the respective lane’s points. In par-

ticular, the dataset’s official metric considers the lanes as

30-pixels-thick lines. If a prediction has an IoU greater than

0.5 with a ground-truth lane, it is considered a true positive.

Results. The results of LaneATT on CULane, along with

other state-of-the-art methods, are shown in Table 3 and

in Figure 3 (right side). Qualitative results are shown in Fig-

ure 2 (middle row). We do not compare to the results shown

in [12], as the main contribution is a post-processing method

that could easily be incorporated to our method, but the

source-code is not public. Moreover, it is remarkably slow

(less than 10 FPS, as reported in their work), which makes

the model impractical in real-world applications. In this con-

text, LaneATT achieves the highest F1 while maintaining a

high efficiency (+170 FPS) on CULane, a dataset with highly

complex scenes. Compared to [20], our most lightweight

model (with ResNet-18) surpasses their largest (with ResNet-

34) by almost 3% of F1 while being much faster (250 vs.

175 FPS on the same machine). Additionally, in “Night”

and “Shadow” scenes, our method outperforms all others,

including SIM-CycleGAN [15], specifically designed for

those scenarios. These results demonstrate both the efficacy

and the efficiency of LaneATT.

4.3. LLAMAS

Dataset description. LLAMAS [3] is a large lane detec-

tion dataset with over 100k images. The annotations were

not manually made, instead, they were generated using high

definition maps. All images are from highway scenarios.

The evaluation is based on the CULane’s F1, which was

computed by the author of the LLAMAS benchmark since

the testing set’s annotations are not public.

Results. The results of LaneATT on LLAMAS, along with

PolyLaneNet’s [23] results, are shown in Table 4. Qualita-

tive results are shown in Figure 2 (bottom row). Since the

benchmark is recent and only PolyLaneNet provided the

necessary source code to be evaluated on LLAMAS, it is the

only comparable method. As evidenced, LaneATT is able to

achieve an F1 greater than 90% in all three backbones. The

results can also be seen in the benchmark’s website3.

Method F1 (%) Prec. (%) Rec. (%)

PolyLaneNet [23] 88.40 88.87 87.93

LaneATT (ResNet-18) 93.46 96.92 90.24

LaneATT (ResNet-34) 93.74 96.79 90.88

LaneATT (ResNet-122) 93.54 96.82 90.47

Table 4. State-of-the-art results on LLAMAS.

3https://unsupervised-llamas.com/llamas/benchmark splines
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Modification F1 (%) FPS MACs (G) TT (h)

Nanc = 250 68.68 196 17.3 5.7

Nanc = 500 75.45 190 17.4 6.4

Nanc = 750 75.80 181 17.7 7.8

Nanc = 1000 76.66 171 18.0 11.1

Nanc = 1250 75.91 156 18.4 11.5

HI ×WI = 180× 320 66.74 195 4.8 4.3

HI ×WI = 288× 512 75.02 186 11.5 7.3

HI ×WI = 360× 640 76.66 171 18.0 11.1

Table 5. Efficiency trade-offs on CULane using the ResNet-34

backbone. “TT” stands for training time in hours.

4.4. Efficiency tradeoffs

Being efficient is crucial for a lane detection model. In

some cases, it might even be necessary to trade some ac-

curacy to achieve the application’s requirement. In this ex-

periment, some of the possible trade-offs are shown. In

particular, different settings of image input size (HI ×WI )

and number of anchors (Nanc, as described in Section 3.8).

The results are shown in Table 5. They show that the num-

ber of anchors can be reduced for a slight improvement in

terms of efficiency without a large F1 drop. However, if

the reduction is too large, the F1 starts to drop considerably.

Moreover, if too many anchors are used, the efficacy can also

degrade, which might be a consequence of unnecessary an-

chors disturbing the training. The results are similar for the

input size, although the MACs drops are larger. The largest

impact of both the number of anchors and the input size is

on the training time. During the inference, the proposals are

filtered (using a confidence threshold) before the NMS pro-

cedure. During the training, there’s no such filtering. Since

the NMS is one the main bottlenecks of the model, and its

running time depends directly on the number of objects, the

number of anchors has a much higher impact on the training.

4.5. Ablation study

This experiment evaluates the impact of each major part

(one at a time) of the proposed method: anchor-based pool-

ing, shared layers, focal loss, and the attention mechanism.

The results are shown in Table 6. The first row comprises

the results for the standard LaneATT, while the following

rows show the results for slightly modified versions. In the

second row, the anchor-based pooling was removed and the

same procedure to select features of Line-CNN [13] was

used (i.e., only features from a single point in the feature

map were used for each anchor). In the third one, instead of

using a single pair of fully-connected layers (Lreg and Lcls)

for the final prediction, three pairs (six layers) were used,

one pair for each boundary (left, bottom, or right). That is,

all anchors starting in the left boundary of the image had its

proposals generated by the same pair of layers LL
reg and LL

cls

Model F1 (%) FPS Params. (M)

LaneATT (ResNet-34) 76.68 171 22.13

− anchor-based pooling 64.89 188 21.39

− shared layers 75.45 142 22.34

− focal loss 75.54 171 22.13

− attention mechanism 75.78 196 21.37

Table 6. Ablation study results on CULane.

and similarly for the bottom (LB
reg and LB

cls) and the right

(LR
reg and LR

cls) boundaries. In the fourth one, the Focal Loss

was replaced with the Cross Entropy, and in the last one, the

attention mechanism was removed.

The massive drop of performance when the anchor-based

pooling procedure is removed shows its importance. This

procedure enabled the use of a more lightweight backbone,

which was not possible in Line-CNN [13] without a large

performance drop. The results also show that a layer for

each boundary of the image (as done in [13]) is not only un-

necessary, but also detrimental to the model’s efficiency. Fur-

thermore, using the Focal Loss instead of the Cross Entropy

was also shown to be beneficial. Besides, it also eliminates

the need for one hyperparameter (the number of negative

samples to be used in the loss computation). Finally, the

proposed attention mechanism is another modification that

significantly increases the model performance.

5. Conclusion

We proposed a real-time single-stage deep lane detection

model that outperforms state-of-the-art models, as shown

by an extensive comparison with the literature. The model

is not only effective but also efficient. On TuSimple, the

method achieves the second-highest reported F1 (a differ-

ence of only 0.02%) while being much faster than the top-F1

method (171 vs. 30 FPS). On CULane, one of the largest and

most complex lane detection datasets, LaneATT establishes

a new state-of-the-art among real-time methods in terms of

both speed and accuracy (+4.38% of F1 compared to the

state-of-the-art method with a similar speed of around 170

FPS). Moreover, LaneATT achieves over 93% of F1 on LLA-

MAS for all three backbones evaluated. To achieve those

results, along with other modifications, a novel anchor-based

attention mechanism was also proposed. The ablation study

showed that this addition increased the model’s performance

(F1 score) significantly compared to the gains obtained by

the literature in recent years. Additionally, some efficiency

trade-offs that are useful in practice were also shown.
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