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Abstract

Analysis of bispectral difference plays a critical role in

various applications that involve rays propagating in a light

absorbing medium. In general, the bispectral difference

is obtained by subtracting signals at two individual wave-

lengths captured by ordinary digital cameras, which tends

to inherit the drawbacks of conventional cameras in dy-

namic range, response speed and quantization precision. In

this paper, we propose a novel method to obtain a bispec-

tral difference image using an event camera with temporally

modulated illumination. Our method is rooted in a key ob-

servation on the analogy between the bispectral photometry

principle of the participating medium and the event gener-

ating mechanism in an event camera. By carefully modulat-

ing the bispectral illumination, our method allows to read

out the bispectral difference directly from triggered events.

Experiments using a prototype imaging system have verified

the feasibility of this novel usage of event cameras in pho-

tometry based vision tasks, such as 3D shape reconstruction

in water.

1. Introduction

Analysis of bispectral difference, i.e. difference of the

absorbance between two individual wavelengths, plays a

critical role in various applications that involve rays propa-

gating in a light absorbing medium, such as water. Since the

absorbance of a medium depends on the wavelength of light

and the medium itself, bispectral analysis of the absorbance

allows to determine some quantities that might serve vari-

ous purposes. For example, in analytical chemistry, a rela-

tive concentration of matter in a mixture is determined from

the bispectral difference [41], and in atmospheric science,
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Figure 1: Abstract of our method. Our system allows to

read out the bispectral difference directly as the number of

events triggered by the temporally modulated illumination,

in which the operations required in the typical system are

conducted by the event camera.

analysis of the bispectral difference is employed to trace

and classify gasses and particles [23].

In general, the bispectral difference is obtained by sub-

tracting signals at the two wavelengths captured by ordinary

digital cameras. A typical system of bispectral photometry

uses a conventional camera, as shown in Fig. 1 (top). Light

at the two wavelengths illuminates a target medium and then

the camera captures transmitted light at each of the wave-

lengths. The logarithms of the captured signals and the sub-

traction of them result in the bispectral difference. Although

the operations in themselves are not complicated, the per-

formance of obtaining the bispectral difference is affected

by the well-known drawbacks of conventional cameras in

dynamic range and quantization precision essentially. Thus,

a specific system is required to resolve these problems.

Recently, event cameras have emerged in robotics and

computer vision. Event cameras do not capture brightness

images at a fixed rate. Instead, each pixel inside an event

camera independently and asynchronously records a tem-
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poral change in brightness as an event. Compared to con-

ventional cameras, event cameras have superior features of

high dynamic range (HDR), high temporal resolution, and

low power consumption. Furthermore, event cameras have

remarkable features inside their electronic circuit, which

have not been deeply delved. In event cameras, first, a light

signal is logarithmically amplified [22, 35]. And then the

signal is temporally differentiated. Finally, an event is trig-

gered when the difference reaches a threshold (Fig. 2). This

mechanism is analogous to the operations in the typical sys-

tem.

In this paper, we propose a novel method to obtain a bis-

pectral difference image using an event camera with tempo-

rally modulated illumination, as shown in Fig. 1 (bottom).

Temporally modulated light at two individual wavelengths

illuminates a target medium. The event camera records a

temporal series of events triggered by the modulated bis-

pectral illumination. The bispectral difference is read out

directly as the number of the events because the operations

required in the typical system are conducted by the event

camera. We develop a prototype imaging system and val-

idate our method in real experiments on depth recovery in

water and turbid medium concentration estimation.

This paper has three major contributions. First, we dis-

cover an interesting analogy between the bispectral pho-

tometry principle of the participating medium and the event

generating mechanism in an event camera. Second, by care-

fully modulating the bispectral illumination, our method al-

lows to read out the bispectral difference directly as the

number of events. Third, the experiments verify the fea-

sibility of the novel usage of event cameras in photometry

based vision tasks, such as 3D shape reconstruction in wa-

ter.

2. Related work

2.1. Bispectral photometry

Bispectral photometry, proposed by Chance [8], uses

two individual wavelengths in spectral photometry which

analyzes exponentially decayed light, unlike traditional

spectrophotometry using a single wavelength. While

the traditional spectrophotometry can handle a transparent

medium only, the bispectral photometry can handle a tur-

bid medium [11]. The bispectral photometry obtains a bis-

pectral difference and analysis of the bispectral difference

allows to determine some quantities of a medium. The bis-

pectral photometry plays an important role in various fields.

In analytical chemistry, the relative concentration or amount

of matter in a mixture is determined from the bispectral dif-

ference [41, 51, 31, 17]. In atmospheric science, the bis-

pectral difference is often used to trace and classify par-

ticles and gases [10, 23, 21, 26, 34], estimate cloud pa-

rameters [37], and determine the amount of water vapor

in air [13, 49]. In medical science, analysis of the bispec-

tral difference is applied for determining the concentration

of hemoglobin in blood [45], assaying chemicals [18, 16],

estimating the water concentration in human cornea [33],

and improving imaging with optical coherence tomogra-

phy [38, 47]. In computer vision, the bispectral difference

also allows to reconstruct the 3D shape of an object in a

known medium [6, 3]. Basically, the bispectral photometry

employs ordinary digital cameras with the operations, as de-

scribed in Fig. 1 (top), or a single pixel probe including an

analog logarithmic amplifier which requires scanning to ob-

tain a bispectral difference image. On the other hand, our

method using an event camera, whose each pixel includes

analog logarithmic amplifier and differentiator, can obtain

a bispectral difference image based on the analogy between

the bispectral photometry principle and the event generating

mechanism.

2.2. Eventbased methods

Event cameras, such as Dynamic Vision Sensor [22]

and Asynchronous Time-based Image Sensor [35], inde-

pendently and asynchronously record temporal changes in

brightness as events on each pixel. In robotics and com-

puter vision, event cameras have been applied to detect and

track feature points for object tracking [9, 15, 27], visual

odometry [52, 5], 3D reconstruction [39, 2, 53], and simul-

taneous localization and mapping (SLAM) [19]. In order to

apply event cameras for conventional computer vision tech-

niques, such as classification [42], there have also been a

lot of work to reconstruct a brightness image [4, 24, 29] or

a video [32, 36] from events. These methods also achieve

reconstruction of HDR and high-speed video frames which

cannot be captured by conventional cameras [48]. Recently,

recognitional tasks have been handled with event cameras.

Since event cameras do not capture a brightness image,

as described above, conventional deep learning techniques

based on images cannot be directly applied for event data.

In response, event-based learning using sparse event se-

quences [46, 40, 14] have ably managed the event data.

These event-based methods rely on the well known fea-

tures of event cameras: HDR, high temporal resolution,

and low power consumption. However, event cameras also

have other remarkable features inside their electronic cir-

cuit, which have not been deeply delved. This work is the

first challenge to bring out the hidden features towards the

novel usage of event cameras in photometry based analysis.

2.3. Temporal synchronization

In general, active sensing systems require temporal syn-

chronization between sensors and light sources. A major

system based on the temporal synchronization is Time-of-

flight (ToF) cameras which are often used for obtaining

depth images [28, 1]. ToF cameras read out correlations
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between emitted and reflected light signals under tempo-

rally modulated illumination. Each pixel inside a ToF cam-

era has multiple capacitors, synchronized to the modulated

light signals. The capacitors store electric charges individu-

ally at different times. Another application using ToF cam-

era is material analysis, such as material classification using

distorted temporal correlations due to subsurface scatter-

ing [44] and visualization of spectral difference using tem-

porally modulated multispectral illumination [20]. Also, a

ToF camera with temporally modulated bispectral illumina-

tion allows to discriminate the dichroism in a scene, such

as red and blue [7]. However, each pixel inside a ToF cam-

era differentiates signals in analog form without logarithmic

amplifiers. ToF cameras are, therefore, not applicable to

the bispectral photometry requiring logarithmic operations.

Instead, event cameras are applicable by using temporally

modulated illumination.

Another major system based on the temporal synchro-

nization is structured light systems, such as [30]. While

a projector illuminates a scene with structured patterns, a

camera captures the scene. Structured light systems are

often used for 3D shape reconstruction and light transport

analysis. There has been a structured light method using an

event camera with laser scanning [25]. This method relies

on the well known features of event cameras, such as HDR

and high temporal resolution, to reconstruct the 3D shape

of highly dynamic objects under strong ambient illumina-

tion. On the other hand, this work brings out the hidden

features inside an event camera and utilizes them for pho-

tometry based analysis.

3. Preliminaries

3.1. Bispectral photometry principle

According to the Beer-Lambert law [43], light intensity

transmitted through a medium follows an exponential de-

cay, as below;

Lo(λ) = Li(λ) exp(−α(λ)), (1)

where λ denotes a wavelength of light, Li(λ) and Lo(λ) are

incident and outgoing light intensities at the wavelength,

respectively, and α(λ) is the spectral absorbance of the

medium. The spectral absorbance is determined with an

extinction cross section µ(λ), a number concentration c of

the medium, and an optical path length l, as below;

α(λ) = µ(λ)cl. (2)

A bispectral difference ∆α(λ1, λ2), which is a difference

of the absorbances between two individual wavelengths λ1

and λ2, is calculated from Eq. (1), as follows;

∆α(λ1, λ2) = α(λ1)− α(λ2) (3)

= lnLo(λ2)− lnLo(λ1), (4)

log

ON

OFF

Photoreceptor Differentiator Comparators

(b) (c) (d)(a)

Positive

Negative

Figure 2: Electronic circuit of each pixel inside an event

camera. (a) Received light in the time domain. (b) Log-

arithmically amplified signal. (c) Differential signal with

resets. (d) Triggered events.

where the incident light intensities at both the wavelengths

are assumed to be identical, e.g., Li(λ1) = Li(λ2). A rela-

tionship is derived from Eq. (2) and Eq. (3), as below;

∆α(λ1, λ2) = (µ(λ1)− µ(λ2))cl (5)

= Lc (6)

= Cl, (7)

where L := (µ(λ1)− µ(λ2))l and C := (µ(λ1)− µ(λ2))c.
In analytical chemistry, once the constant L is determined

with a known optical path length, such as a cuvette size,

the concentration c in mixture solution can be reconstructed

from Eq. (6). Also, once the constant C is determined with a

known concentration, such as water, the optical path length

l can be reconstructed from Eq. (7), which has been applied

for 3D shape reconstruction in water.

3.2. Event generating mechanism

The electronic circuit of each pixel inside an event cam-

era mainly consists of three parts [22, 35]: photoreceptor,

differentiator, and comparators, as shown in Fig. 2. The

photoreceptor converts light into an electrical signal with

logarithmic amplification, as shown in Fig. 2 (left). This is

expressed as below;

Sa(x, t) = lnSp(x, t), (8)

where Sp(x, t) denotes the electrical signal at a pixel x at a

time t and Sa(·) is the amplified signal. The differentiator

calculates a temporal difference. It consists of a capacitor

and an integral circuit, as shown in Fig. 2 (middle). The

capacitor differentiates the amplified signal and the integral

circuit accumulates it. The integral circuit is reset when

comparators triggers an event. Thus, a differential signal

∆Sa(·) output from the differentiator is expressed as below;

∆Sa(x, t) = Sa(x, t)− Sa(x, τ(t)) (9)

= lnSp(x, t)− lnSp(x, τ(t)), (10)
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where τ(t) denotes a time when the previous event is trig-

gered before the time t. The comparators trigger a posi-

tive or negative event, when the differential signal gets over

thresholds, as shown in Fig. 2 (right). The thresholds for the

positive and negative events are assumed to be identical in

this paper. This thresholding is formulated by a ternariza-

tion function, as below;

T (∆Sa(x, t), h) =











+1, ∆Sa(x, t) ≥ h

0, ∆Sa(x, t) ∈ (−h, h)

−1, ∆Sa(x, t) ≤ −h

(11)

where h is the threshold whether to trigger an event.

4. Event-based bispectral photometry

We propose event-based bispectral photometry to obtain

a bispectral difference image using an event camera with

temporally modulated illumination, as shown in Fig. 1 (bot-

tom). The key observation is the analogy between the bis-

pectral photometry principle of the participating medium, as

described in Eq. (4), and the event generating mechanism in

an event camera. It is required for the temporal difference,

as described in Eq. (10), to be converted into a spectral dif-

ference via temporally modulated bispectral illumination so

that the event camera allows to read out the bispectral dif-

ference.

4.1. Design of temporally modulated illumination

An illumination module emits light at two individual

wavelengths λ1 and λ2, and their modulation functions are

indicated as f1(t) and f2(t), respectively. The modulation

functions are assumed to be cyclic functions, such as sinu-

soidal and triangle waves, and satisfy conditions;

f1(t), f2(t) ≥ 0 ∀t ∈ [0, T ), (12)

f1(t) + f2(t) = 1 ∀t ∈ [0, T ), (13)

f1(t) = 0 ∃t ∈ [0, T ), (14)

f2(t) = 0 ∃t ∈ [0, T ), (15)

where T denotes a temporal period of the modulation func-

tions. The total incident light intensity Ii(t) for both the

wavelengths at a time t into an medium is expressed as fol-

lows;

Ii(t) = Li(λ1)f1(t) + Li(λ2)f2(t). (16)

According to Eqs. (1) and (16), light transmitted through

the medium is expressed as follows;

Io(t) = Li(λ1) exp(−α(λ1))f1(t)

+ Li(λ2) exp(−α(λ2))f2(t), (17)

where Io(t) denotes the total outgoing light intensity. Once

a modulation function for a wavelength is designed, the

other function is automatically determined from Eq. (13).

There are two important times in the modulation functions;

∃t1 ∈ [0, T ) s.t. f1(t) = 1, f2(t) = 0, (18)

∃t2 ∈ [0, T ) s.t. f1(t) = 0, f2(t) = 1, (19)

according to the conditions, Eqs. (13)-(15). At these times,

the outgoing light is expected as;

t = t1 → Io(t1) = Lo(λ1), (20)

t = t2 → Io(t2) = Lo(λ2). (21)

4.2. Reconstruction of bispectral difference

The outgoing light is received by the event camera,

which records events triggered by its temporal change, as;

Sp(t) = Io(t), (22)

in Eqs. (8)-(11). For simplicity, we omit the pixel location

x and it is assumed that the spectral sensitivity of the event

camera at both the wavelengths is identical in this formula-

tion. However, in actual, the spectral sensitivity is not flat,

and thus, a practical way to calibrate that is explained in

Sec. 5.1. From Eqs. (4), (8) and (20)-(22), the bispectral

difference can be expressed as;

∆α(λ1, λ2) = Sa(t2)− Sa(t1). (23)

As described in Sec. 3.2, an event is triggered every time

when a temporal change in the amplified signal gets over

the threshold h. Thus, accumulating the triggered events in

the duration from t1 to t2 allows to reconstruct the bispectral

difference, as follows;

∆α(λ1, λ2) =

∫ t2

t=t1

∆Sa(t)dt (24)

≃

∫ t2

t=t1

hT (∆Sa(t), h)dt (25)

= h(np − nn), (26)

where np and nn are the number of positive and negative

events in the duration. If the modulation function is de-

signed as a monotonically increasing function in the dura-

tion, the triggered events are positive only, e.g., nn = 0,

and the error of the reconstructed bispectral difference lies

in (−h, h), theoretically.

4.3. Shape reconstruction

The bispectral difference can be applied for 3D shape

reconstruction [3]. Both the event camera and the illumi-

nation module are closely located as aiming at the same di-

rection and a target object is sunk in a medium, as shown

in Fig. 3. Emitted light penetrates the medium, reflects off
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the object, and comes back to the camera. In this setup, the

outgoing light intensity is re-formulated as below;

Lo(λ) = g(ω)r(λ)Li(λ) exp(−α(λ)), (27)

where, g(ω) denotes the geometric characteristic of a sur-

face of the object for a solid angle ω and r(λ) is the re-

flectance of the surface at a wavelength λ. The geometric

characteristic does not depend on the wavelength of light.

The wavelengths λ1 and λ2 are carefully selected such that

the reflectances at both the wavelengths are assumed to be

almost identical, e.g., r(λ1) ≃ r(λ2). The incident light

intensities at both the wavelengths are assumed to be identi-

cal, e.g., Li(λ1) = Li(λ2). According to Eqs. (4), (7), (26)

and (27), a distance to the object d is calculated as follows;

d =
h(np − nn)

2C
, (28)

because the light makes a round trip from the system to the

object.

5. Experiments

5.1. Implementation

We implement a prototype imaging system with an event

camera (Prophesee EVK or iniVation DVS346) and an illu-

mination module consists of two light sources, as shown

in Fig. 3. The light sources are collocated to illuminate

a scene uniformly using a beam combiner. As the light

sources, we use laser diodes at wavelengths of 915 and

940 nm (QPhotonics QLD-915-200S and QLD-940-200S,

respectively) for reconstructing distances and shape in wa-

ter. The wavelengths were so selected that reflectances of

target materials at both the wavelengths are regarded as al-

most identical, referred to the work by Asano et al. [3].

Modulation signals to the illumination module are gener-

ated by a signal generator (Rigol DG4062), which also out-

puts synchronization signals to the event camera. In experi-

ments with the typical system, we replace the event camera

with a conventional camera (FLIR BFS-U3-51S5M-C). In

all experiments in this paper, we use triangle waves as the

modulation signals because it is reasonably efficient to gen-

erate the opposite modulation signal by phase shifting, and

it is a monotonically increasing or decreasing function in

a half of its period. Since the incident light intensities are

proportional to the amplitudes of the waves, they have to

be adjusted depending on components in the system. The

frequency of the waves is a considerable factor affecting

the performance of our method, which will be discussed in

Sec. 6.1.

In the experiments in water, a glass tank (GEX Glasste-

rior Cube) is filled with water. The system is also supposed

to be sunk in water but there is less space in the tank and the

devices are not water-proof. Thus, we set the system out

940 nm laser

915 nm laser

Target object

Occluder

Beam combiner

Event camera

Figure 3: Experimental setup. The occluder is used to sup-

press direct specular reflection from the glass wall.

of the tank. Although refraction of light on the boundaries

among air, glass, and water changes the optical path length,

it is geometrically calibrated before all the experiments as

well as [30]. Since the spectral sensitivity of the event cam-

era is not provided and it is not obvious to measure that,

we perform photometric calibration within the whole sys-

tem. In a setup, a spectral standard (X-Rite ColorChecker)

is placed in the glass tank without water and then the am-

plitudes of the modulation signals are adjusted such that no

events is triggered under the modulated illumination. This

process spectrally calibrates the system including the illu-

mination module, the glass tank and the sensitivity of the

event camera. Also, the typical system using the conven-

tional camera is similarly calibrated such that captured in-

tensities of the spectral standard are identical under constant

illumination with each of the light sources.

5.2. Validation

We validate that our method allows to obtain the bis-

pectral difference using the Prophesee EVK. First, we an-

alyze recorded events when a white board is sunk in water

at a distance of 100mm from the wall of the glass tank.

The frequency of the modulation signals is set to 10Hz.

The recorded events show that positive events are mainly

recorded during a half of the period while negative events

are done during another half, as shown in Fig. 4. We record

events for 100 periods of the modulation signals and cal-

culate the average and standard deviation of the number of

recorded positive events per a half of the period, resulting

in 42.0 and 2.1, respectively.

Next, we linearly translate the white board every 10mm
in a range between 10 and 250mm. As explained in

Eq. (28), the bispectral difference is proportional to the dis-

tance. Figure 5 shows the average number of positive events

with its standard deviation as a vertical bar per a half of the

period at each distance. In the range of the distance from

10 to 100mm, the average number of events tends to be lin-

early proportional to the distance. Thus, in that range, the

proposed method can properly obtain the bispectral differ-
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Figure 5: The average number of positive events per a half

of the period at different distances to the white board. The

events were recorded for 100 periods of the modulation sig-

nals. The vertical bar at each point is the range of one sigma

for the 100 measurements.

ence. However, in the range over 110mm, the average num-

ber is neither linear nor proportional to the distance. This

is because light at one of the wavelengths, e.g., 940mm, is

almost absorbed by the water and thus cannot be detected

by the event camera anymore.

Consequently, it is validated that our method allows to

obtain the bispectral difference in a certain range where

light at both the wavelengths is properly detected by the

event camera. We will discuss cases where the frequency of

the modulated signals is varied in Sec. 6.1.

5.3. Evaluations

Distance reconstruction We evaluate the performance of

our method, compared with the existing method using the

conventional camera [3]. Specifically, the accuracy and the

range are evaluated through reconstructing a distance to the

white board, as well as the validation. For comparison, we

employ the iniVation DAVIS 346 including an active pixel

sensor (APS) to capture a conventional brightness frame.

In order to properly compare our method with the existing

method, it is important to use the same silicon photodiode.

We record events under the illumination modulated by 1Hz
triangle waves. And we also capture APS frames with mul-

tiple exposure times:2, 4, 8, 16, 32, 64, 128, 256, 512, and

0 50 80 100 130 150 200 250
Distance [mm]

0

50

100

150

200

250

Re
co

ns
tru

ct
ed

 d
ist

an
ce

 [m
m

]

Ground truth
The existing method (HDR)
Our method (1Hz)

Figure 6: Experimental results of distance reconstruction in

water.

1024ms, to apply the HDR method [12] under the con-

stant illumination with each of the wavelengths. The bis-

pectral difference is reconstructed from the recorded events

by Eq. (26) and calculated from the APS frames by Eq. (4).

According to Eq. (28), the constant C has to be determined

in a case of a known distance. However, selection of the

known distance could affect the evaluation. Thus, we find

the best constant C via a linear fitting. The reconstructed

distances by both our and the existing methods are shown

in Fig. 6. The gray dashed line denotes the ground truth, the

red line the result by our method and the blue line that by

the existing method. When we define a measurable range

of distance as where an error is less than 15mm, that range

of our method is until 130mm while that of the existing

method is until 80mm. The average error of our method

in the measurable range and its standard deviation are 5.6
and 3.3mm, while those of the existing method are 4.3 and

4.0mm, respectively. The accuracy of both the methods is

comparable but the measurable range of our method is way

wider.

3D shape reconstruction The distance reconstruction

can be performed for each pixel. Thus, it is possible to

reconstruct a depth image. The frequency of the modula-

tion signals is set to 1Hz. In this experiment, the Prophesee

EVK is employed because of its high spatial resolution. We

also employ the conventional camera for comparison, be-

cause the Prophesee EVK does not have APS inside. Target

objects are Golf Ball, Plastic Case and 3D Printed Stairs.

Reconstructed depth images are shown in Fig. 7. The im-

ages from left to right are a photograph of the target object,

the depth image reconstructed by ours and its 3D view, and

the depth image reconstructed by the existing method and

its 3D view, respectively. The reconstructed depth images

are masked to reduce meaningless regions in the images and

in the 3D view, smoothed surfaces of the depth are plotted.

The depths are scaled in a range of 0 to 1. The experi-

mental results show that the our method reconstructs the

global 3D shape of the objects. The reconstructed shapes

of the Golf Ball and the 3D Printed Stairs by our method
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Figure 8: Cross-sections of the reconstructed 3D shape of

the 3D Printed Stairs.

look more accurate than that by the existing method, while

the existing method reconstructed a more detailed shape of

the Plastic Case. In further comparison, we pick up the 3D

Printed Stairs, because the geometry is known, to evaluate

the cross-sections of the reconstructed 3D shape. The re-

sult shows that our method allows to reconstruct a better 3D

shape than the existing method, as shown in Fig. 8.

Concentration reconstruction The bispectral difference

can be used to reconstruct concentrations of a medium in

mixture solution, as described in Eq. (6). The system is re-

designed for the event camera to face the illumination mod-

ule across a target medium, as shown in Fig. 9. The iniVa-

tion DAVIS 346 is employed in this experiment to compare

with the existing method. The target medium is a mixture

of water and soy sauce whose concentration is changed ev-

ery 10% from a range in 0 to 100%. The wavelengths of

the light sources are changed into 637 and 850 nm (Thor-

labs HL63142DG and L850P200, respectively) because the

differential absorbance of soy sauce between the two wave-

lengths is large [50]. A plastic container whose geometry is

known is used to store the medium, instead of the glass tank.

Thus, the spectral calibration within the whole system is

performed again. The bispectral difference is reconstructed

using Eq. (26) and then the constant L is determined via a

linear fitting, as well as the distance reconstruction. Recon-

structed concentrations are shown in Fig. 9, where the gray

line denotes the ground truth, the red line the result by our

method and the blue line that by the existing method. When

a measurable range of concentration is defined as where an

error is less than 15%, the range of our method is until 70%
while that of the existing method is until 40%. The average

error and its standard deviation by our method in the mea-

surable range are 3.6% and 4.0%, and those by the existing

method are 5.2% and 3.1%, respectively. The average error

by our method is smaller than that by the existing method,

and the measurable range of our method is way wider, as

well as the evaluation in the distance reconstruction.
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Figure 9: Experimental results of the concentration estima-

tion of soy sauce.

6. Discussion and limitations

6.1. Frequency of modulation signals

The frequency of modulation signals seriously affects the

performance of our method. A pixel inside a practical event

camera has a dead time after triggering an event. During

the dead time, no events can be triggered even if a temporal

change in brightness is sufficiently large. The bandwidth

of a practical event camera limits the number of recordable

events per unit time, i.e., an event rate. When brightness

globally changes, a part of triggered events could be lost

or delayed because of the limited bandwidth. Therefore,

the number of recorded events by a practical event camera

does not always match that by an ideal one. In the dis-

tance reconstruction, once the amplitude of a modulation

signal, e.g., the maximum intensity of light, is determined,

the frequency is an important factor to decide the speed of

change in brightness. In order to analyze the effect of the

frequency, we demonstrate experiments using the Prophe-

see EVK, where the white board in water is linearly trans-

lated, as well as the validation. The frequency is changed in

1, 5, 10, 15, 20, 25, 30, 60, 120, and 500Hz. The average

numbers of recorded positive events for the various frequen-

cies are shown in Fig. 10. Experimental results show that a

lower frequency allows the event camera to more accurately

record events. This is because a lower frequency makes the

speed of change in brightness slower, which reduces the ef-

fect of the dead time and the limited event rate. Therefore,

a lower frequency allows the performance of our method

to be improved, while it takes a longer time to obtain the

bispectral difference.

6.2. Limitations

There are three limitations on our method. First, the

bandwidth of an event camera, i.e., the event rate, limits the

number of recordable events. Since the temporally modu-

lated illumination in our method generates global changes

in brightness, some events could be lost or delayed. To

avoid this, we limited an illuminated region such that the

0 50 100 150 200 250

Distance [mm]

0

10

20

30

40

50

60

70

80

T
h
e
a
v
er
a
g
e
n
u
m
b
er

o
f
p
o
si
ti
v
e
ev

en
ts

1Hz

5Hz

10Hz

15Hz

20Hz

25Hz

30Hz

60Hz

120Hz

500Hz

Figure 10: The average number of recorded positive events

for various modulation frequencies. The white board is lin-

early translated every 10mm.

event rate became around 10Meps. This limitation could

be resolved once an event camera with a higher event rate is

developed, i.e., iniVation DAVIS 346 (12Meps) vs. Proph-

esee EVK (1066Meps). Second, the current event cam-

eras are unstable for photometry based analysis because of

a large variance of the threshold h. The stability of mea-

surements is important in photometry based analysis. The

variance of stability is seen as the standard deviations in the

validation, as shown in Fig. 5. This might be resolved by

applying a statistical model. Third, we assume that a target

scene is static. Since a dynamic scene itself triggers events,

it is required to separate them from the events triggered by

the modulated illumination. This is a future task to expand

applications of photometry based analysis using event cam-

eras.

7. Conclusion

In this paper, we proposed the event-based bispectral

photometry to obtain a bispectral difference image using an

event camera with temporally modulated illumination. We

discovered the analogy between the bispectral photometry

principle and the event generating mechanism in an event

camera. Our design of the temporally modulated bispec-

tral illumination allows to read out the bispectral difference

directly as the number of events.

This paper verified the feasibility of the novel usage

of event cameras in photometry based vision tasks. The

advantages and limitations of event cameras were cleared

up through the experiments. While event cameras have

the features of HDR and high temporal resolution, varia-

tion in recorded events is significantly large. On the other

hand, this could be a cue for statistical analysis in photom-

etry based vision tasks, e.g., photon density reconstruction.

Event cameras are still an emerging device, which might

have more potential to resolve the existing problems.
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