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Abstract

Semantic image synthesis, translating semantic lay-

outs to photo-realistic images, is a one-to-many mapping

problem. Though impressive progress has been recently

made, diverse semantic synthesis that can efficiently pro-

duce semantic-level multimodal results, still remains a chal-

lenge. In this paper, we propose a novel diverse seman-

tic image synthesis framework from the perspective of se-

mantic class distributions, which naturally supports diverse

generation at semantic or even instance level. We achieve

this by modeling class-level conditional modulation param-

eters as continuous probability distributions instead of dis-

crete values, and sampling per-instance modulation param-

eters through instance-adaptive stochastic sampling that

is consistent across the network. Moreover, we propose

prior noise remapping, through linear perturbation param-

eters encoded from paired references, to facilitate super-

vised training and exemplar-based instance style control at

test time. Extensive experiments on multiple datasets show

that our method can achieve superior diversity and compa-

rable quality compared to state-of-the-art methods. Code

will be available at https://github.com/tzt101/

INADE.git

1. Introduction

Image synthesis has recently seen impressive progress,

particularly with the help of generative adversarial networks

(GANs) [8]. Besides stochastic approaches that generate

high-quality images from random latent variables [18, 19],

conditional image synthesis is attracting equal or even more

attention due to the practical advantages of its controllabil-

ity. The conditional input, to guide the synthesis, can be of

various forms, including RGB images, edge/gradient maps,

semantic labels, etc. In this work, semantic image synthesis

*Corresponding author.

is one particular task that aims to generate a photo-realistic

image from a semantic label mask. In particular, we fur-

ther explore its diversity and controllability without loss of

generation quality. Some samples are shown in Figure 1.

Previous works [15, 41] propose solutions within the

general image-to-image translation framework, which di-

rectly feeds the semantic mask into the encoder-decoder

network. For higher quality, some recent methods [30,

50, 36] adopt spatially-varying conditional normalization to

avoid the loss of semantic information due to conventional

normalization layers [40]. Although proven successful in

synthesizing certain types of content, these methods lack

controllability over the generation diversity, which is par-

ticularly important for such a one-to-many problem. Some

methods [49, 43] attempt to yield multimodal results by in-

corporating variational auto-encoder (VAE) or introducing

noises. However, these methods only support global image-

level diversity. To obtain finer-grained controllability, a re-

cent work [51] proposes to use group convolution for differ-

ent semantics to achieve semantic-level diversity. However,

it is computationally expensive and difficult to be extended

to support diversity at the instance level.

In this paper, we attempt to achieve controllable diversity

in semantic image synthesis from the perspective of seman-

tic probability distributions. The intuition is to treat each

semantic class as one distribution, so that each instance of

this class could be drawn from this distribution as a discrete

sample. Following this idea, we propose a novel semantic

image synthesis framework, which is naturally capable of

producing diverse results at semantic or even instance level.

Specifically, our method contains three key ingredients.

Firstly, we propose variational modulation models (§ 3.2)

that extend discrete modulation parameters to class-wise

continuous probability distributions, which embed diverse

styles of each semantic category in a class-adaptive manner.

Secondly, based on the variational models built per normal-

ization layer, we further develop an instance-adaptive sam-

pling method (§ 3.3) that achieves instance-level diversity
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Figure 1. Semantic-level (left three columns) and Instance-level

(right two columns) multimodal images generated by the proposed

method. Text of each column indicates which semantic class or

instance will be changed in the following results.

by stochastically sampling modulation parameters from the

variational models. We harmonize the sampling across the

network via consistent randomness and a learnable trans-

formation function for each normalization layer. Finally, to

more efficiently embed the instance diversity to the mod-

ulation models, we propose prior noise remapping (§ 3.4)

that transforms the noise samples with perturbation param-

eters encoded from arbitrary references. We adopt this

step to facilitate supervised training and enable test-time

reference-based style guidance. Inspired by [30, 38, 37],

the proposed method is called INADE (INstance-Adaptive

DEnormalization).

To evaluate the proposed method, we conduct extensive

experiments on multiple datasets, including Cityscapes [3],

ADE20K [47], CelebAMask-HQ [23, 17, 29], and Deep-

Fashion [28]. Both quantitative and qualitative results show

that our method significantly outperforms state-of-the-art

methods by achieving much better instance-level diversity

while keeping comparable generation quality.

2. Related Work

2.1. Conditional Image Synthesis

Conditional image synthesis aims at generating photo-

realistic images conditioned on different types of input. We

are interested in a special form of it, called semantic image

synthesis, which takes segmentation layouts as input. Many

impressive works have been proposed for this task. The

most representative work, Pix2Pix [15] adopts an encoder-

decoder generator for unified image-to-image translation.

Pix2pixHD [41] improves Pix2Pix by proposing coarse-

to-fine generator and discriminators. Subsequent meth-

ods [32, 27, 39, 45, 37, 50] further explore how to synthe-

size high quality images from semantic masks and achieve

significant improvements. Besides using class-level seman-

tic masks, some works also consider instance-level informa-

tion for image synthesis, since the semantic mask itself does

not provide sufficient information to synthesize instances

especially in complex environments with multiple of them

interacting with each other. Some works [41, 30, 37] ex-

tract boundary information from the instance map and con-

catenate it with the semantic mask. While recent work [6]

proposes to use the instance map to guide convolution and

upsampling layers for better exploiting both semantic and

instance information. Different from these methods, we are

interested in taking full advantage of information from in-

stance maps to achieve instance-level diversity control.

2.2. Diversity in Image Synthesis

Diversity is a core target for image synthesis, which

aims to generate multiple possible outputs from a sin-

gle input image. Early conditional image synthesis net-

works either trained with paired data, like Pix2Pix [15]

and Pix2pixHD [41], or with unpaired data, like Cycle-

GAN [48], DiscoGAN [20] and UNIT [26], are single-

modal. Later, some multimodal unpaired image synthesis

networks [13, 24, 1] are proposed. However, constrained

by the reconstruction loss, the semantic image synthesis

task trained with paired data is more difficult to support

diversity. To tackle this problem, BicycleGAN [49] en-

forces the bijection mapping between the noise vector and

target domain, and DSCGAN [43] proposes a simple reg-

ularization method. More recently, a variational autoen-

coder architecture is used to handle multimodal synthesis

by [30, 37, 27]. However, these multimodal image synthesis

networks only support diversity at the global level. To fur-

ther control the diversity at the semantic level, the method

proposed by [9] builds several auto-encoders for each face

component to extract different component representations.

GroupDNet [51] unifies the generation process in only one

model, but still requires high computing resources, and the

use of group convolution layer makes it difficult to extend to

the instance level. In contrast, we propose a novel instance-

aware conditional normalization framework that allows di-

verse instance-level generation with less overhead.

3. Method

We are interested in the task of semantic image synthesis,

which is defined as to map a semantic mask m ∈ L
H×W
m

to a photo-realistic image o ∈ R
3×H×W . Here, m is

a class-level label map with each pixel representing an

integer index to a pre-defined set of semantic categories

Lm = {1, 2, . . . , Lm}. Each pair of input m and output

o is spatially-aligned and of the same dimension H × W ,
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Figure 2. The illustration diagram of the proposed INstance-Adaptive DEnormalization (INADE). It combines semantic-level distribution

modeling and instance-level noise sampling. IGS denotes the Instance Guided Sampling which is similar to the guided sampling in [37].

so that the synthesized content in o should comply with the

corresponding semantic labels in m.

In addition to this basic formulation [41, 30, 37],

instance-aware semantic image synthesis [6] adopts the in-

stance map p ∈ L
H×W
p as an extra input, which differ-

entiates different object instances sharing a same semantic

label by denoting each individual instance with a unique in-

dex from the instance label set Lp = {1, 2, . . . , Lp} in the

image. By enforcing an identical semantic label within each

instance, pixels belonging to a same instance label lp in p

should always have a same semantic label lm in m. We

represent instance to semantic label mapping as a function

lm = G(lp).
Overall, image synthesis with instance information

can be basically formulated as a function T (m,p) :
(Lm,Lp) → R

3. And feed-forward image translation neu-

ral networks, trained in a supervised manner, can be used to

model this function. In the following, we introduce the pro-

posed method with both the inputs of semantic and instance

maps. When there is no instance label, p degenerates into

m. And the diversity of the synthesized images changes

from the instance level to the semantic level.

3.1. Conditional Normalization

Our solution to semantic image synthesis is based on a

novel instance-level conditional normalization method. Be-

fore introducing our method, here we give a brief overview

of the general framework of conditional normalization first.

Let Xi ∈ R
Ci

×Hi
×W i

be the activation tensor to the

i-th normalization layer, where Ci, Hi,W i are the channel

depth, height, and width, respectively. In the channel-wise

normalization framework similar to [14], we can generally

formulate the normalization operations as two steps: In the

normalization step, Xi is normalized to X̂i by channel-

wise mean and standard deviation {µi,σi} ∈ R
Ci

in

the mini-batch containing Xi. Then, the modulation step

scales and translates X̂i with learned modulation param-

eters {γi,βi} ∈ R
Ci

×Hi
×W i

, which are not necessarily

channel-wise constant. Let Y i be the output, for each ele-

ment (k ∈ Ci, x ∈ Hi, y ∈ W i) in the tensor, we have:

X̂i
k,x,y = (Xi

k,x,y − µi
k)/σ

i
k,

Y i
k,x,y = γi

k,x,yX̂
i
k,x,y + βi

k,x,y.
(1)

For conditional normalization [5, 12], the modulation

parameters γi and βi are learned with extra conditions.

Specifically, for semantic image synthesis, the modulation

is usually conditioned on the semantic mask m [30, 37].

3.2. Variational Modulation Model

Conditional normalization (§ 3.1), either spatially-

adaptive [30] or class-adaptive [37], has been proven help-

ful for semantic image synthesis. The semantic-conditioned

modulation is able to largely prevent the ”wash-away” ef-

fect of semantic information caused by repetitive normal-

izations. However, challenges still exist to achieve promis-

ing generation results with semantic-level or even instance-

level diversity, given that normalization is solely condi-

tioned on the semantic map and only global randomness is

used to diversify the image styles [30]. Semantic-level di-

versity is realized by [51] through group convolution, but

using this convolution cuts off the possibility of its exten-

sion to instance-level diversity through instance map. Re-

cent efforts on instance-aware synthesis [41, 6] are majorly

focused on better object boundaries, but not the diversity

and realism of each individual instance. Due to the lack of

proper instance conditioning, existing methods tend to con-

verge instances with the same semantic label into a similar

style, which significantly harms the diversity of generation.

The key to instance-level diversity is a proper combina-

tion of uniform semantic-level distributions that determin-

istically decide the general features of a particular seman-

tic label, and instance-level randomness that introduces al-

lowed diversity covered by the semantic distribution mod-

els. Therefore, we model the modulation parameters as
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Figure 3. The overall framework of the proposed INADE generator, which consists of a remapping encoder E and INADE generator. E is

used to transform the noise sample based on arbitrary references (§ 3.4), while the generator consists of several INADE ResBlks.

parametric probability distributions for each semantic label

lm ∈ L
m, instead of discrete values. With such a, namely,

variational modulation model, given an instance lp ∈ L
p,

instance-level diversity is achievable via sampling modu-

lation parameters from the probability distributions of the

corresponding semantic label G(lp). For the sake of sim-

plicity and efficiency, following [37], we make the modula-

tion parameters spatially-invariant and only depend on the

local instance labels.

Specifically, for each semantic category lm, its channel-

wise modulation parameters are modeled as learnable prob-

ability distributions, which are built for each normalization

layer in the network respectively. Formally, for the i-th
layer with channel depth Ci, we have {ai

γ , b
i
γ ,a

i
β , b

i
β} ∈

R
Lm

×Ci

as the distribution transformation parameters of γ
and β, respectively. All of them are treated as learnable pa-

rameters that are jointly trained with the network. Given

stochastic noise matrices {N i
γ ,N

i
β} ∈ R

Lp
×Ci

from the

same distribution for sampling, the corresponding modula-

tion parameters of one instance label lp in p are:

γi[lp] = ai
γ [G(l

p)]⊗N i
γ [l

p] + biγ [G(l
p)],

βi[lp] = ai
β [G(l

p)]⊗N i
β [l

p] + biβ [G(l
p)],

(2)

where ⊗ represents element-wise multiplication, and [·] ac-

cesses the vector from a matrix in the row-major order.

3.3. Instance-Adaptive Modulation Sampling

Our multimodal synthesis method follows the basic form

of conditional modulation (§ 3.1), but further extends the

conditional inputs to include not just the segmentation mask

m, but also the instance map p and random noises to initi-

ate sampling, as shown in Figure 2. Utilizing our variational

modulation models (§ 3.2), we are able to generate diverse

modulation parameters obeying the same set of probabil-

ity distributions. However, considering that the generation

network contains multiple conditional normalization layers,

a unified sampling solution is still essential to harmonize

all these layers. A straight-forward approach, independent

stochastic sampling for each normalization layer, could po-

tentially introduce inconsistency and cause the diversity to

be severely neutralized. Therefore, in this paper, we pro-

pose an instance-adaptive modulation sampling method that

achieves consistent instance sampling across multiple nor-

malization layers with unequal channel depths.

To initialize, for each layer i, we resize and convert

each input pair of semantic mask m and instance map

p into the one-hot format as M i ∈ B
Lm

×Hi
×W i

and

P i ∈ B
Lp

×Hi
×W i

, respectively, which will then be used

as the conditional inputs to that layer, as shown in Figure 3.

Here, B represents the Boolean domain, and Lm, Lp are the

aforementioned total numbers of semantic/instance labels.

For the sake of simplicity, since scale γi and shift βi are

generated similarly and independently, without loss of gen-

erality, here we take scale γi as the example. The sampling

contains the following steps.

First of all, random samples Nγ ∈ R
Lp

×C0

are inde-

pendently sampled from the standard normal distribution:

Nγ ∼ N (0, 1). We use the same set of random noise

samples Nγ for all instances of normalization layers in

the network, which helps enforce consistent instance styles

throughout the network. Here C0 is a hyper-parameter that

defines the number of the initial sampling channels.

To sample the modulation parameters for each normal-

ization layer i, we translate the initial samples Nγ to

N̂ i
γ with a learnable linear transformation mapping F i

γ :

R
Lp

×C0

→ R
Lp

×Ci

:

N̂ i
γ = F i

γ(Nγ), (3)

where Ci is exactly the channel depth of i-th activations

Xi, so that the output N̂ i
γ ∈ R

Lp
×Ci

assigns a transformed

sample for each instance per each channel, in a spatially-

invariant manner. Thus, the same source of randomness

helps achieve style consistency, while the learnable trans-

formations enforce compatible target dimensions and pre-
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serve certain ability to adapt the samples for each layer.

Finally, given the distribution transformation parameters

ai
γ , b

i
γ and transformed noise samples N̂ i

γ , the scale param-

eters γi are calculated with Equation 2. And similarly for

the shift parameters βi.

3.4. Prior Noise Remapping

While our variational modulation models (§ 3.2) help

achieve instance-level diversity, the noises, sampled regard-

less of instance styles (§ 3.3), can potentially introduce am-

biguities during the supervised training (especially for the

popular perceptual and feature matching losses), since sim-

ilar noise samples can possibly correspond to instances of

distinct styles. This will affect the effective diversity of

generated instances and prohibit the possibility to control

the instance styles with certain references.

In light of this, we propose a prior noise remapping step,

during which a set of linear perturbation parameters are

encoded from given references, to remap the noise sam-

ples while preserving the original distribution, in order to

provide guidance to embed more meaningful instance di-

versity in the modulation models. To achieve this, we

adopt a noise remapping encoder E(r) that translates the

reference image r ∈ R
H×W into four perturbation maps

{ã′

γ , b̃
′

γ , ã
′

β , b̃
′

β} ∈ R
H×W , which are per-pixel linear

transformation parameters, including scale ã and shift b̃,

for both Nγ and Nβ . A instance aware partial convolu-

tion [10, 25] is used to avoid information contamination

between different instances. Based on these dense pertur-

bation maps, we apply an instance average pooling layer

to each of these maps to get the instance-wise perturbation

parameters {ãγ , b̃γ , ãβ , b̃β} ∈ R
Lp

. Take Nγ as an exam-

ple, for an instance label lp ∈ L
p and its occupying pixels

x(lp) = {x|p[x] = lp}, we have

ãγ [l
p] = (

∑
x∈x(lp)ã

′

γ [x])/|x(l
p)|,

b̃γ [l
p] = (

∑
x∈x(lp)b̃

′

γ [x])/|x(l
p)|.

(4)

This remapping encoder, together with the main generator,

forms a variational autoencoder (VAE) [22]. The remapped

noise samples after perturbation are:

Ñγ [l
p] = ãγ [l

p]Nγ [l
p] + b̃γ [l

p], (5)

where KL-Divergence loss [22] is used to enforce a same

normal distribution Ñγ ∼ N (0, 1). These remapped noise

samples are used instead of Nγ during modulation sam-

pling, as described in § 3.3.

During training, the reference r is exactly the ground-

truth paired image. At test time, while initially sampled

noises can be used to achieve random style synthesis by de-

fault, as described in § 3.3, it is also allowed to provide r

as instance references to control the style of the result at the

instance level.

4. Experiments

4.1. Implementation Details

Our INADE generator (Figure 3) follows a similar ar-

chitecture of the SPADE generator [30], but with all the

SPADE layers replaced by the INADE layers. Follow-

ing SPADE [30], the overall loss function consists of four

loss terms: conditional adversarial loss, feature matching

loss [41], perceptual loss [16] and KL-Divergence loss [22].

Details are provided in the supplementary material.

During training, by default, Adam optimizer [21] (β1 =
0, β2 = 0.9) is used with fixed epoch number of 200. The

learning rates for the generator and the discriminator are

set to 0.0001 and 0.0004 respectively, which are gradually

decreased to zero after 100 epochs. Noise C0 has 64 ini-

tialized channels, while the input noise has 256 channels,

same as [30, 27]. All experiments are implemented in Py-

Torch [31] and conducted on TITAN XP GPUs.

4.2. Datasets and Metrics

Datasets. Experiments are conducted on five popular

datasets: Cityscapes [3], ADE20K [47], CelebAMask-

HQ [23, 17, 29], DeepFashion [28], and DeepFashion2.

DeepFashion2 is built from DeepFashion that each image

contains two persons, which is only used for testing. More

details can be found in the supplementary material.

Quality Metrics. To evaluate the result quality, we adopt

two types of metrics following [2, 41, 30, 37]. One is the

Fréchet Inception Distance (FID) [11], which measures the

distance of distributions between results and real images.

The other one is semantic-segmentation-based, which

evaluates the semantic segmentation accuracy on the results

by comparing the predicted masks with the groundtruth

layouts on both mean Intersection-over-Union (mIoU) and

pixel accuracy (accu). State-of-the-art pretrained segmen-

tation models are used for different datasets: DRN [44,

7] for Cityscapes, UperNet101 [42, 4] for ADE20k, and

UNet [34, 35] for CelebAMask-HQ. For DeepFashion, we

use the same UNet-based network but train the model by

ourselves. For fair evaluation, we run the model for 10 times

and report the average scores when noise input is required.

Diversity Metrics. To evaluate the diversity of the results,

we adopt the LPIPS metric as proposed by [46, 33]. Similar

to [51], we also adopt two metrics to measure the semantic-

level diversity (mCSD and mOCD) and expand them to in-

stance level (mISD and mOID). More details can be found

in the supplementary material.

Subjective Metrics. We conduct human evaluations to as-

sess both the quality and the diversity of the methods. For

quality, we ask the volunteers to select the most realistic

one among the results generated by different methods on

the same input. mHE (mean Human Evaluation) denotes

the percentage of results being selected for each method.
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Figure 4. Visual comparison with other multimodal models and two baselines. The results on the left show the performance of class level

diversity while the results on the right are for instance level diversity.

DeepFashion

Label

Ground Truth

BicycleGAN

DSCGAN

pix2pixHD

SPADE

GroupDNet

INADE

CelebAMask-HQ Cityscapes ADE20K

CLADE

SEAN

Figure 5. Qualitative comparison with the state-of-the-art se-

mantic image synthesis methods on four datasets: DeepFashion,

CelebAMask-HQ, Cityscapes and ADE20K.

For diversity, we expand the metric proposed by [51] to

the instance level. A pair of results, with one random se-

mantic class or instance manipulated, are given to volun-

teers. The percentage of pairs that are judged to be different

in only one area represents the human evaluation, namely

SHE (Semantic Human Evaluation) and IHE (Instance Hu-

man Evaluation). We invite 20 volunteers for evaluation and

the evaluated number of images is 20.

4.3. Quantitative and Qualitative Comparisons

We compare INADE with several SOTA works, in-

cluding quality-oriented (pix2pixHD [41], SPADE [30],

Original image

Reference 
image

Upper clothes Pants 

Upper clothes (right) Upper clothes (left) Pants (right) Pants (left) Hair (right) Hair (left)

(a)

(b)

Change sea to grassOriginal semantic mask and image Add one tree

Original semantic mask and image Change floor to grass Add one lamp

Figure 6. Exemplar applications of the proposed INADE. (a) Re-

sults of our method for reference appearance editing. (b) Applica-

tion of our method for semantic manipulation. The text in the blue

dotted box indicates what is changed or edited each time.

CLADE [38, 37] and SEAN [50]) and diversity-oriented

(BicycleGAN [49], DSCGAN [43], and GroupDNet [51])

methods. For a fair comparison, we directly use the pre-

trained models provided by the authors when available, oth-

erwise train the models by ourselves using the codes and

settings provided by the authors. For SPADE, which has

the strategy for multimodal synthesis, we train the model

with that extra encoder but ignore it when testing its diver-

sity performance (namely VSPADE). Reference images are

not allowed for any of the methods during testing except for

SEAN which requires the reference input.

4.3.1 Multimodal Image Synthesis

Several methods that support multimodal image synthesis

are compared to demonstrate the superior diversity per-

formance of INADE. In additional, we also compare with
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Table 1. Comparison with other multimodal methods on diversity. mHE, SHE and IHE are aforementioned metrics. ↑ and ↓ represent the

higher the better and the lower the better. Bold and underlined numbers are the best and the second best of each metric, respectively.

Methods
DeepFashion DeepFashion2

FID ↓ LPIPS ↑ mCSD ↑ mOCD ↓ mHE ↑ SHE ↑ FID ↓ LPIPS ↑ mISD ↑ mOID ↓ mHE ↑ IHE ↑

BicycleGAN 31.10 0.225 0.0465 0.2014 0.0 4.5 33.46 0.286 0.0500 0.2456 0.0 2,5

DSCGAN 29.79 0.146 0.0404 0.1218 0.0 9.3 48.64 0.199 0.0433 0.1633 0.0 4.8

VSPADE 11.11 0.197 0.0450 0.1665 7.5 6.5 22.29 0.222 0.0390 0.1780 43.7 3.3

GroupDNet 9.72 0.222 0.0453 0.0077 40.0 86.0 22.81 0.281 0.0434 0.0303 8.8 9.3

INADE 9.97 0.225 0.0511 0.0161 52.5 88.3 18.18 0.319 0.0580 0.0187 47.5 82.8

w/o PNR 12.09 0.184 0.0289 0.0138 - - 20.76 0.243 0.0291 0.0189 - -

w/o US 248.33 0.624 0.0730 0.0370 - - 265.63 0.633 0.0748 0.0296 - -

Table 2. Comparison with SOTA methods on result quality. All the numbers are collected by running the evaluation on our machine. Here

M, A, F, and L represent mIoU, accu, FID, and LPIPS, respectively. Note that the L score of SEAN is almost zero even with noise input.

Methods
Cityscapes ADE20K CelebAMask-HQ DeepFashion

M ↑ A ↑ F ↓ L ↑ M ↑ A ↑ F ↓ L ↑ M ↑ A ↑ F ↓ L ↑ M ↑ A ↑ F ↓ L ↑

SPADE 61.38 93.26 51.98 0 36.28 78.13 29.79 0 75.22 94.76 31.40 0 76.76 97.65 11.22 0

pix2pixHD 60.50 93.06 66.04 0 27.27 72.61 45.87 0 76.11 95.67 36.95 0 73.99 97.02 15.27 0

CLADE 60.44 93.42 50.62 0 35.43 77.37 30.48 0 75.37 95.05 33.54 0 75.63 97.33 12.76 0

SEAN 56.22 92.28 50.43 0 32.65 76.58 28.11 0 75.94 95.03 24.30 0 76.28 97.46 7.37 0

BicycleGAN 30.47 78.26 59.87 0.122 5.33 42.68 77.49 0.443 65.98 89.77 35.73 0.362 73.09 96.75 31.10 0.225

DSCGAN 43.70 87.80 50.84 0.216 8.07 58.10 82.30 0.324 75.98 95.08 52.83 0.198 75.92 96.97 29.79 0.146

GroupDNet 59.20 92.78 41.12 0.073 26.09 73.07 39.11 0.177 76.13 95.21 29.39 0.309 76.19 97.48 9.72 0.222

INADE 61.02 93.16 38.04 0.248 34.96 78.51 29.60 0.400 74.08 94.31 22.55 0.365 76.27 97.44 9.96 0.225

two ablation baselines: w/o US (without Unified Sampling,

§3.3) and w/o PNR (without Prior Noise Remapping, §3.4).

w/o US means that the noise for each INADE layers are

sampled independently, while w/o PNR means that the

PNR is not used during training. The quantitative results

on the DeepFashion dataset are summarized in Table 1.

In general, INADE achieves superior performance re-

garding both quality and diversity compared to previous

methods. For single-subject images in the DeepFashion

dataset, our method exhibits better performance than Bicy-

cleGAN, DSCGAN, and VSPADE in terms of FID, and is

comparable to GroupDNet. While for multiple-subject im-

ages (DeepFashion2), INADE shows the lowest FID.

In terms of diversity, our method achieves the best

scores on metrics including overall measurement (LPIPS)

and semantic-level/instance-level metrics (mCSD/mISD).

As for mOCD, methods only support image-level diver-

sity, such as BicycleGAN, DSCAN, and VSPADE, produce

much more unwanted changes outside the instance area.

Although both being relatively low, INADE is higher than

GroupDNet, which is because GroupDNet uses group con-

volution to prevent premature fusion between features of

different classes, while INADE uses conventional convolu-

tion for more consistent combinations. For mOID, as the

only method that supports instance-wise control, INADE

easily gets the best score. More analysis of mOID and

mOCD can be found in the supplementary material.

As for subjective evaluations, our method also outper-

forms others on both semantic- and instance-level cases.

Compared to the two ablation baselines, we find that

both prior noise remapping and unified sampling play indis-

pensable roles in our method. Removing prior noise remap-

ping (w/o PNR) leads to ambiguities during the supervised

training, which seriously affects the quality and diversity of

synthesized results. Independently sampling (w/o US) for

each normalization destroys the consistency of information

and significantly degenerates the generation result.

The qualitative comparisons are shown in Figure 4. Al-

though all methods support multimodal synthesis, the qual-

ity by BicycleGAN and DSCGAN is not satisfactory. VS-

PADE achieves good visual quality, but does not support

semantic- or instance-level control. GroupDNet is capable

of changing the appearance of a specific semantic class (re-

sults on the left), but tends to generate identical style for

different cloth instances (results on the right). On the con-

trary, INADE supports both fine-grained multimodal con-

trols with high visual fidelity. As for the ablation baselines,

we notice that removing PNR significantly decreases the

quality, while the whole task fails without US.

4.3.2 Semantic Image Synthesis

The quantitative comparisons against semantic image syn-

thesis methods are summarized in Table 2.

Compared to methods that don’t support multimodal (i.e.

0 LPIPS), especially SEAN which has additional reference

image input, INADE has an advantage or near the best on al-

most all metrics. It seems that SPADE has slight advantage

in segmentation metrics, but INADE still shows its overall

superiority when considering FID score and visual results.
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Table 3. Comparison with other semantic image synthesis methods on model complexity and efficiency. All the numbers are collected by

running the evaluation on Titan XP. Here P and T denote the number of generator parameters and inference run time, respectively.

Methods
Cityscapes ADE20K CelebAMask-HQ DeepFashion

P (M) FLOPs (G) T (s) P (M) FLOPs (G) T (s) P (M) FLOPs (G) T (s) P (M) FLOPs (G) T (s)

SPADE 93.05 281.54 0.065 96.50 181.30 0.042 92.54 141.32 0.035 92.21 137.99 0.032

pix2pixHD 182.53 151.32 0.038 182.90 99.30 0.041 182.47 72.17 0.023 182.44 69.91 0.020

CLADE 67.90 75.54 0.035 71.40 42.20 0.024 67.32 42.15 0.022 66.98 42.15 0.019

SEAN 330.41 681.75 0.507 - - - 266.90 346.27 0.165 223.23 342.89 0.135

BicycleGAN 54.80 18.40 0.011 54.80 18.40 0.006 54.80 18.40 0.006 54.80 18.40 0.006

DSCGAN 54.00 18.14 0.018 54.00 18.14 0.010 54.00 18.14 0.010 54.00 18.14 0.010

GroupDNet 76.50 463.61 0.224 68.33 383.00 0.088 145.29 225.53 0.090 96.32 291.61 0.062

INADE 77.39 75.25 0.048 90.89 42.19 0.035 85.12 42.18 0.030 84.63 42.92 0.026

Compared to existing multimodal methods, INADE

leads all metrics. In terms of quality (e.g. mIoU, acc,

and FID), BicycleGAN and DSCGAN are much lower

than ours on all datasets. GroupDNet achieves similar or

slightly better performance on CelebAMask-HQ and Deep-

Fashion datasets, but has a significant gap on more compli-

cated scenes such as Cityscapes and ADE20K. This demon-

strates the superiority of the proposed method on synthe-

sizing complex scenes. The LPIPS score shows that all

these methods are able to generate multimodal images to

some extent. BicycleGAN gets higher scores than ours on

some datasets, but is not able to do high-quality synthe-

sis. GroupDNet shows good performance on person-related

tasks, but falls into strong bias when dealing with complex

scenes which greatly restricts its performance. Therefore,

considering both quality and diversity, our method achieves

the best overall performance.

Qualitative comparisons on these four datasets are shown

in Figure 5. In general, the images generated by INADE

are more realistic than others on various datasets, which is

consistent with the quantitative results.

4.3.3 Computational and Model Complexity

In this section, we analyze the computational and model

overhead of different methods. The quantitative results

(generator networks only) are summarized in Table 3.

BicycleGAN and DSCGAN share a similar small

network architecture with the least parameters, FLOPs

(floating-point operations per second), and run-time cost.

However, the quality of the synthesized images is far from

satisfactory. CLADE seems to get a good trade-off between

performance and efficiency, but still falls short of INADE

in terms of overall performance and functionality. Com-

pared to all other methods, INADE achieves the smallest

network (parameters and FLOPs), as well as one of the

fastest run-time performance. Specifically, compared with

GroupDNet, the only method that can achieve semantic-

level diversity, our method provides control over both se-

mantic and instance levels with much less overhead, intro-

ducing 82% ∼ 89% fewer FLOPs and 59% ∼ 79% less

inference time compared with GroupDNet.

4.4. Applications

Thanks to its superior capability of controllable diverse

synthesis, INADE can be used in many image editing appli-

cations. Here we show two examples as follows.

Reference appearance editing. With the noise remapping

mechanism described in § 3.4, we can extract the instance-

wise style from an arbitrary reference image. This makes it

possible for INADE to perform reference-based editing to

different parts of an image at the instance level. As shown

in Figure 6 (a), we can change the appearance of hairstyles,

tops, and pants to match the reference.

Semantic manipulation. Similar to most existing seman-

tic image synthesis methods, INADE also supports seman-

tic manipulation. We show some examples in Figure 6 (b),

such as changing the semantic class to an object, or insert

a new semantic object into the image. And more creative

editing results can be achieved by modifying the semantic

mask and the instance map.

5. Conclusion

In this paper, we focus on multimodal image synthe-

sis and propose a novel diverse semantic image synthe-

sis method based on instance-aware conditional normaliza-

tion. Different from previous works, we learn the class-wise

probability distributions and perform instance-wise stochas-

tic sampling to generate the per-instance modulation param-

eters. Our method improves the network’s ability to model

semantic categories and make it easier to synthesize diverse

images at semantic- or instance-level without scarifying the

visual fidelity.
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