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Figure 1. We propose a deep learning framework to learn a Geodesic PreServing (GPS) feature from RGB images that can produce

accurate dense human correspondences. From left to right, we show the input images, extracted features visualized in color, the intra-

subject correspondences, and the reconstruction of frame 1 using frame 2, the morphing [24, 25] between frames and across subjects, and

the inter-subject correspondences. Please refer to the color legend in the bottom right for the flow directions and magnitudes.

Abstract

In this paper, we address the problem of building dense

correspondences between human images under arbitrary

camera viewpoints and body poses. Prior art either as-

sumes small motion between frames or relies on local de-

scriptors, which cannot handle large motion or visually am-

biguous body parts, e.g., left vs. right hand. In contrast, we

propose a deep learning framework that maps each pixel

to a feature space, where the feature distances reflect the

geodesic distances among pixels as if they were projected

onto the surface of a 3D human scan. To this end, we intro-

duce novel loss functions to push features apart according

to their geodesic distances on the surface. Without any se-

mantic annotation, the proposed embeddings automatically

learn to differentiate visually similar parts and align differ-

ent subjects into an unified feature space. Extensive experi-

ments show that the learned embeddings can produce accu-

rate correspondences between images with remarkable gen-

eralization capabilities on both intra and inter subjects. 1

∗Work done while the author was an intern at Google.
1Project webpage: https://feitongt.github.io/HumanGPS/

1. Introduction

Finding correspondences across images is one of the

fundamental problems in computer vision and it has been

studied for decades. With the rapid development of digi-

tal human technology, building dense correspondences be-

tween human images has been found to be particularly use-

ful for many applications, such as non-rigid tracking and

reconstruction [12, 11, 36, 13], neural rendering [48], and

appearance transfer [62, 57]. Traditional approaches in

computer vision extract image features on local keypoints

and generate correspondences between points with simi-

lar descriptors after performing a nearest neighbor search,

e.g., SIFT [29]. More recently, deep learning methods

[26, 59, 42, 14], replaced hand-crafted components with full

end-to-end pipelines. Despite their effectiveness on many

tasks, these methods often deliver sub-optimal results when

performing dense correspondences search on humans, due

to the high variation in human poses and camera viewpoints

and visual similarity between body parts. As a result, the

existing methods either produce sparse matches, e.g., skele-

ton joints [7], or dense but imprecise correspondences [15].
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In this paper, we propose a deep learning method to

learn a Geodesic PreServing (GPS) feature taking RGB

images as input, which can lead to accurate dense corre-

spondences between human images through nearest neigh-

bor search (see Figure 1). Differently from previous meth-

ods using triplet loss [42, 18], i.e. hard binary decisions,

we advocate that the feature distance between pixels should

be inversely correlated to their likelihood of being cor-

respondences, which can be intuitively measured by the

geodesic distance on the 3D surface of the human scan (Fig-

ure 2). For example, two pixels having zero geodesic dis-

tance means they project to the same point on the 3D surface

and thus a match, and the probability of being correspon-

dences becomes lower when they are apart from each other,

leading to a larger geodesic distance. While the geodesic

preserving property has been studied in 3D shape analy-

sis [43, 23, 33], e.g., shape matching, we are the first to

extend it for dense matching in image space, which encour-

ages the feature space to be strongly correlated with an un-

derlying 3D human model, and empirically leads to accu-

rate, smooth, and robust results.

To generate supervised geodesic distances on the 3D sur-

face, we leverage 3D assets such as RenderPeople [1] and

the data acquired with The Relightables [16]. These high

quality 3D models can be rigged and allow us to gener-

ate pairs of rendered images from the same subject under

different camera viewpoints and body poses, together with

geodesic distances between any locations on the surface.

In order to enforce soft, efficient, and differentiable con-

straints, we propose novel single-view and cross-view dense

geodesic losses, where features are pushed apart from each

other with a weight proportional to their geodesic distance.

We observe that the GPS features not only encode local

image content, but they also have a strong semantic mean-

ing. Indeed, even without any explicit semantic annotation

or supervision, we find that our features automatically dif-

ferentiate semantically different locations on the human sur-

face and it is robust even in ambiguous regions of the human

body (e.g., left hand vs. right hand, torso vs. back). More-

over, we show that the learned features are consistent across

different subjects, i.e., the same semantic points from other

persons still map to a similar feature, without any inter-

subject correspondence data provided during the training.

In summary, we propose to learn an embedding that

significantly improves the quality of the dense correspon-

dences between human images. The core idea is to use the

geodesic distance on the 3D surface as an effective supervi-

sion and combine it with novel loss functions to learn a dis-

criminative feature. The learned embeddings are effective

for dense correspondence search, and they show remark-

able intra- and inter-subjects robustness without the need of

any cross-subject annotation or supervision. We show that

our approach achieves state-of-the-art performance on both
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Figure 2. Core idea: we learn a mapping from RGB pixels to a

feature space that preserves geodesic properties of the underlying

3D surface. The 3D geometry is only used in the training phase.

intra- and inter-subject correspondences and that the pro-

posed framework can be used to boost many crucial com-

puter vision tasks that rely on robust and accurate dense

correspondences, such as optical flow, human dense pose

regression [15], dynamic fusion [36] and image-based mor-

phing [24, 25].

2. Related Work

In this section, we discuss current approaches in the lit-

erature for correspondence search tasks.

Hand-Crafted and Learned Descriptors. Traditional ap-

proaches that tackle the matching problem between two

or more images typically rely on feature descriptors [30,

5, 52, 40] extracted on sparse keypoints, which nowadays

are still popular for Structure-From-Motion or SLAM sys-

tems when computational budget is limited. More recently,

machine learning based feature extractors are proposed for

image patches by pre-training on classification tasks [26],

making binary decision on pairs [17, 61, 54] or via a triplet

loss [59, 4, 32, 51, 31, 18]. Recently, Schuster et al. [42]

proposed an architecture with stacked dilated convolutions

to increase the receptive field. These methods are designed

for generic domain and do not incorporate domain specific

knowledge, e.g., human body in our case. When the do-

main is given, a unified embedding can be learned to align

objects within a category to enforce certain semantic prop-

erties [14, 50, 49, 53]. The resulting intra-domain corre-

spondences are arguably better than previous approaches.

While most of methods are built purely on RGB images, 3D

data are used to either as the input [56], provide cycle con-

sistency [65], or create normalized label space [53]. In con-

trast, our method is designed specifically for human corre-

spondences, takes only color images as input, and enforces

informative constraints from the 3D geometry according to

the geodesic distance on the human surface.

Direct Regression of Correspondences. Orthogonal ap-

proaches to correspondence search aim at regressing di-

rectly the matches between images. Examples of this trend
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are optical flow methods that can estimate dense correspon-

dences in image pairs. Early optical flow methods are often

built with hand-crafted features and formulated as energy

minimization problems based on photometric consistency

and spatial smoothness [20, 6, 55].

More recently, deep learning methods have become pop-

ular in optical flow [10, 21, 22, 47] and stereo matching

[60, 8, 63], where they aim at learning end-to-end corre-

spondences directly from the data. PWC-Net [45] and Lite-

FlowNet [21] incorporate ideas from traditional methods

and present a popular design using a feature pyramid, warp-

ing and a cost volume. IRR-PWC [22] and RAFT [47]

present iterative residual refinements, which lead to state-

of-the-art performance. These methods aim at solving the

generic correspondence search problem and are not de-

signed specifically for human motion, which could be large

and typically non-rigid.

Human Correspondences. There are plenty of works

studying sparse human correspondences by predicting body

keypoints describing the human pose in images [38, 37, 7].

For dense correspondences, many works rely on an under-

lying parametric model of a human, such as SMPL [27],

and regress direct correspondences that lie on the 3D model.

This 3D model shares the same topology across different

people, hence allowing correspondences to be established

[58, 15, 66]. DensePose [15] is the first method showing

that such correspondences are learnable given a sufficiently

large training set, although it requires heavy labor to guar-

antee the labeling quantity and quality. Follow up work re-

duces the annotation workload using equivariance [35] or

simulated data [66], and extend DensePose to enable pose

transfer across subjects [34].

Differently from previous approaches, we show how to

learn human specific features directly from the data, with-

out the need of explicit annotations. Our approach learns

an embedding from RGB images that follows the geodesic

properties of an underlying 3D surface. Thanks to this, the

proposed method can be applied to full body images, per-

forms robustly to viewpoint and pose changes, and surpris-

ingly generalizes well across different people without using

any inter-subject correspondences during the training.

3. Method

In this section, we introduce our deep learning method

for dense human correspondences from RGB images (Fig-

ure 3). The key component of our method is a feature ex-

tractor, which is trained to produce a Geodesic PreServing

(GPS) feature for each pixel, where the distance between

descriptors reflects the geodesic distance on surfaces of the

human scans. We first explain the GPS feature in detail

and then introduce our novel loss functions to exploit the

geodesic signal as supervision for effective training. This

enhances the discriminative power of the feature descriptors

and reduces ambiguity for regions with similar textures.

3.1. Geodesic PreServing Feature

Our algorithm starts with an image I 2 R
H×W×3 of

height H and width W , where we first run an off-the-shelf

segmentation algorithm [9] to detect the person. Then, our

feature extractor takes as input this image and maps it into a

high-dimensional feature map of the same spatial resolution

F 2 R
H×W×C , where C = 16 in our experiments. The

dense correspondences between two images I1, I2 can be

built by searching for the nearest neighbor in the feature

space, i.e., corr(p) = argminq∈I2
d(p,q), 8p 2 I1, where

d is a distance function defined in the feature space, and

corr(p) is the correspondence for the pixel p from I1 to I2.

In our approach, we constrain the feature for each pixel to

be a unit vector kFI(p)k2 = 1, 8p 2 I and use the cosine

distance d(p,q) = 1� FI1(p) · FI2(q).

Since images are 2D projections of the 3D world, ide-

ally F should be aware of the underlying 3D geometry of

the human surface and be able to measure the likelihood

of two pixels being a correspondence. We find that the

geodesic distance on a 3D surface is a good signal of su-

pervision and thus should be preserved in the feature space,

i.e., d(p,q) / g(p,q), 8p,q 2 (I1, I2), where g(p,q) is

the geodesic distance between the projection of two pixels

p,q to 3D locations on the human surface (Figure 2).

Network Architecture. Theoretically, any network archi-

tecture producing features in the same spatial resolution of

the input image could be used as backbone for our feature

extractor. For the sake of simplicity, we utilize a typical

7-level U-Net [39] with skip connections. To improve the

capacity without significantly increasing the model size, we

add residual blocks inspired by [64]. More details can be

found in supplementary materials.

3.2. Loss Functions

Our model uses a pair of images as a single training ex-

ample. These images capture the same subjects under dif-

ferent camera viewpoints and body poses. Both images are

fed into the network and converted into feature maps. Mul-

tiple loss terms are then combined to compute the final loss

function that is minimized during the training phase.

Consistency Loss. The first loss term minimizes the fea-

ture distance between ground truth corresponding pixels:

Lc(p) =
P

d(p, corr(p)). Note however, that training with

only Lc will lead to degenerative case where all the pixels

are mapped to the same feature.

Sparse Ordinal Geodesic Loss. To prevent this degen-

erative case, previous methods use triplet loss [42, 19] to

increase the distance between non-matching pixels, e.g.
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Figure 3. Learning Human Geodesic PreServing Features. We train a neural network to extract features from RGB images. The learned

embedding reflects the geodesic distance among pixels projected on the 3D surface of the human and can be used to build accurate dense

correspondences. We train our feature extractor with a combination of consistency loss, sparse ordinal geodesic loss and dense intra/cross

view geodesic loss: see text for details.

d(p, corr(p)) ⌧ d(p,q), 8q 6= corr(p). Whereas the gen-

eral idea makes sense and works decently in practice, this

loss function penalizes all the non-matching pixels equally

without capturing their relative affinity, which leads to non-

smooth and imprecise correspondences.

An effective measurement capturing the desired behav-

ior is the geodesic distance on the 3D surface. This distance

should be 0 for corresponding pixels and gradually increase

when two pixels are further apart. To enforce a similar be-

havior in the feature space, we extend the triplet loss by ran-

domly sampling a reference point pr and two target points

pt1 ,pt2 , and defining a sparse ordinal geodesic loss:

Ls = log(1 + exp(s · (d(pr,pt1)� d(pr,pt2))), (1)

where s = sgn(g(pr,pt2) � g(pr,pt1)). This term en-

courages the order between two pixels with respect to a ref-

erence pixel in feature space to be same as measured by the

geodesic distance on the surface, and as a result, a pair of

points physically apart on the surface tends to have larger

distance in feature space.

Dense Geodesic Loss. Ls penalizes the order between a

randomly selected pixels pair, which, however, does not

produces an optimal GPS feature. One possible reason

is due to the complexity of trying to order all the pixels,

which is a harder task compared to the original binary clas-

sification method proposed for the triplet loss. In theory,

we could extend Ls to order all the pixels in the image,

which unfortunately is non-trivial to run efficiently during

the training.

Instead, we relax the ordinal loss and define a dense

version of the geodesic loss between one randomly picked

pixel pr to all the pixels pt in the image:

Ld =
X

pt∈I

log (1 + exp(g(pr,pt)� d(pr,pt)) . (2)

This loss, again, pushes features between non-matching

pixels apart, depending on the geodesic distance. It does

not explicitly penalize the wrong order, but it is effective for

training since all the pixels are involved in the loss function

and contribute to the back-propagation.

Cross-view Dense Geodesic Loss. The features learned

with the aforementioned loss terms produces overall ac-

curate correspondence, but susceptible to visually similar

body parts. For example in Figure 6 (top row), the feature

always matches the wrong hand, since it does not capture

correctly the semantic part due to the presence of large mo-

tion. To mitigate this issue, we extend Ld and define it be-

tween pairs of images such that: given a pixel p1 on I1 and

p2 on I2:

Lcd =
X

p2∈I2

log (1 + exp(g(corr(p1),p2)� d(p1,p2)) .

(3)

At its core, the intuition behind this loss term is very

similar Ld, except that it is cross-image and provides the

network with training data with high variability due to view-

point and pose changes. We also tried to add a cross-view

sparse ordinal geodesic loss but found it not improving.
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Frame 1 Frame 2 Wei et al. SDC-Net Ours GT Corr. Wei et al. SDC-Net Ours GT Occlusion

Figure 4. Dense correspondences (visualized as optical flow) built via nearest neighbor search and the predicted visibility masks. Our

results are more accurate, smooth, and free from obvious mistakes when compared to other methods. On the right, we show the visibility

probability map obtained via the distance to the nearest neighbor. Note that our feature successfully captures occluded pixels (i.e., dark

pixels) in many challenging cases. The method is effective for both intra-subjects (rows 1-3) and inter-subjects (row 4).

Total Loss. The total loss function is a weighted sum of the

terms detailed above Lt = wcLc+wsLs+wdLd+wcdLcd.

The weights are set to 1.0, 3.0, 5.0, 3.0 for wc, ws, wd, wcd

respectively. The weight for each term is chosen empiri-

cally such that the magnitude of gradients from each loss is

roughly comparable. To encourage robustness across differ-

ent scales, we compute this loss at each intermediate level

of the decoder, and down-weight the loss to 1

8
. As demon-

strated in our ablation studies, we found this increases the

overall accuracy of the correspondences.

Our whole system is implemented in TensorFlow 2.0 [2].

The model is trained with batch size of 4 using ADAM op-

timizer. The learning rate is initialized at 1 ⇥ 10−4 and re-

duces to 70% for every 200K iterations. The whole training

takes 1.6 millions iterations to converge.

4. Experiments

In this section, we evaluate the GPS features using mul-

tiple datasets and settings. In particular, we compare our

approach to other state-of-the-art methods for correspon-

dence search and show its effectiveness for both intra- and

inter-subjects problems. Additional evaluations and appli-

cations, such as dynamic fusion [36] and image-based mor-

phing [24, 25], can be found in the supplementary materials.

4.1. Data Generation

Since it would be very challenging to fit 3D geometry on

real images, we resort to semi-synthetic data, where pho-

togrammetry or volumetric capture systems are employed

to capture subjects under multiple viewpoints and illumi-

nation conditions. In particular, we generate synthetic ren-

derings using SMPL [27], RenderePeople [1], and The Re-

lightables [16]. These 3D assets are then used to obtain cor-

respondences across views and geodesic distances on the

surface. As demonstrated by the previous work [41, 66],

training on captured models generalizes well on real im-

ages in the wild. A similar idea has been used to create a

fully synthetic dataset for optical flow [10], but in this work

we focus on human images with larger camera viewpoints

and body pose variations. All the details regarding the data

generation can be found in the supplementary material.

4.2. Dense Matching with Nearest Neighbor Search

We first evaluate the capability of the GPS features in

building dense pixel-wise matches via nearest neighbor

search (Section 3.1).

Baseline Methods. We compare to two state-of-the-art de-

scriptor learning methods that use different supervision for
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Methods

Intra-Subject Inter-Subject

SMPL [28] Relightables [16] RenderPeople [1] SMPL [28]

non all non all non all non all

SDC-Net [42] 16.96 33.17 17.79 29.14 20.07 39.95 81.48 96.60

Wei et al. [56] 18.08 30.59 29.54 43.64 34.42 46.23 18.03 31.55

Ours + Full + Multi-scale 7.12 17.51 11.24 18.95 11.91 22.12 8.49 17.99

Ours + triplet 9.14 24.34 13.18 25.59 16.84 29.80 21.08 30.75

Ours + classify 9.73 25.80 15.97 33.03 18.33 34.03 11.21 25.72

Ours + Lc + Ls 8.17 19.31 14.61 21.45 14.51 24.21 12.02 24.51

Ours + Lc + Ls + Ld 7.50 18.00 12.24 19.30 12.41 22.73 9.19 18.61

Ours + Full 7.32 17.57 11.50 19.12 12.29 22.48 8.57 17.87

Ours + Full + Multi-scale 7.12 17.51 11.24 18.95 11.91 22.12 8.49 17.99

Table 1. Quantitative evaluation for correspondences search. We report the average end-point-error (EPE) of non-occluded (marked as non)

and all pixels (marked as all) on four test sets created from different sources of 3D assets. Our model significantly outperforms previous

methods for descriptor learning on all the datasets. The model trained with the proposed loss is better than all the ablation models trained

with other alternatives. We report the results for both intra and inter-subjects.

the learning. 1) SDC-Net [42]: The SDC-Net extracts dense

feature descriptors with stacked dilated convolutions, and

is trained to distinguish correspondences and non-matching

pixels by using threshold hinge triplet loss [3]. 2) Wei et

al. [56]: This method learns to extract dense features from a

depth image via classification tasks on over-segmentations.

For fair comparison, we over segment our human models

and rendered the segmentation label to generated the train-

ing data, i.e. over-segmentation label map. The network is

trained with the same classification losses but takes color

images as the input.

Data and Evaluation Metrics. For each source of human

scans introduced in Section 4.1, we divide the 3D models

into train and test splits, and render image pairs for training

and testing respectively. Additionally, we also generate a

testing set using SMPL to quantitatively evaluate inter sub-

jects performances since the SMPL model provides cross-

subject alignment, which can be used to extract inter-subject

correspondence ground truth.

As for evaluation metrics, we use the standard average

end-point-error (AEPE) between image pairs, computed as

the `2 distance between the predicted and ground-truth cor-

respondence pixels on the image.

Performance on Intra-Subject Data. We first evaluate our

method for intra-subject correspondences. All the meth-

ods are re-trained on three training sets and tested on each

test split respectively. The dense correspondence accuracy

of our approach and two state-of-art methods on the each

test sets are shown in Table 1 (Intra-Subject). Our method

consistently achieves significantly lower error on both non-

occluding and all pixels in all three datasets.

Figure 4 (row 1-3) shows the qualitative results of the

correspondences built between two images, visualized as

flow where hue and saturation indicates the direction and

magnitude (See Figure 1 for color legend). Our method

generates much smooth and accurate correspondences com-

Frame	1 Frame	2 Corr. Warped Frame	1 Frame	2 Corr. Warped

Figure 5. Inter-subject correspondences and warp fields. Note how

our approach correctly preserves the shape of the reference Frame

1 while plausibly warping the texture from Frame 2.

pared to other methods and makes less mistakes for ambigu-

ous body parts, e.g., hands.

Performance on Inter-Subject Data. We also com-

pare our approach on inter-subject data although no ex-

plicit cross-subject correspondences are provided during the

training. The results are shown in Table 1 (Inter-Subject).

SDC-Net [42] does not generalize to inter-subject data since

the triplet loss only differentiates positive and negative pairs

and does not learn any human prior. Wei et al. [56] shows

some generalization thanks to the dense classification loss

but the average end-point-error is much higher compared to

our approach. Comparatively, our method generalizes well

to the inter-subject with error slightly higher, but roughly

comparable to the intra-subject SMPL test set. Figure 4

(row 4) shows qualitative results of inter-subject correspon-

dences. Again our method significantly outperforms other

methods. In Figure 5 we show additional examples where

we also build an image warp using the correspondences to

map one person to another: notice how we preserve the

shape of the body while producing a plausible texture. More

results are presented in supplementary materials.
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Frame 1 Ours Lc + Ls Ours + Lc + Ls + Ld Ours + Full loss
feature distance:                   0.0                                                                   1.0

Frame 2

more similar                                less similar

Figure 6. Distance maps on intra- and inter- subjects, using models

trained with different loss functions. We visualize the feature dis-

tance between the pixel in the left image (marked with a red dot) to

all the pixels in the image on the right. The closest correspondence

is marked with a blue dot. Our full loss provides the best feature

space with less ambiguity, e.g., between left and right hand.

Occluded Pixels As mentioned in Section 3, our fea-

ture space learns to preserve the surface geodesic distance,

which is a measurement of the likelihood of the corre-

spondence. If a pixel cannot find a matching that is close

enough in the feature space, it is likely that the pixel is

not visible (i.e., occluded) in the other view. Inspired

by this, we retrieve a visibility mask via the distance of

each pixel to the nearest neighbor in the other image, i.e.,

dnn = minq∈I2 d(p,q), 8p 2 I1. Specifically, the visibil-

ity is defined as 1�dnn for SDC-Net and our method using

cosine distance, and 1−dnn

2000
for Wei et al. using `2 distance.

Figure 4 (Right) visualizes the visibility map, i.e., dark pix-

els are occluded. Our method effectively detects occluded

pixel more accurately than the other methods. More details

can be found in supplementary material.

4.3. Ablation Study

In this section, we study the effect of each loss term

for learning the GPS features. We add Ls, Ld, Lcd grad-

ually into the training and show the performance of cor-

respondences through nearest neighbor search in Table 1

(bottom half). For reference, we also train our feature ex-

tractor with losses from SDC-Net [42] and Wei et al. [56]

for a strict comparison on the loss only (see “Ours+triplet”

and “Ours+classify”). Training with our loss is more effec-

tive than the baseline methods, and the error on all the test

sets, both intra- and inter-subject, keeps reducing with new

loss terms added in. This indicates that all the loss terms

contributes the learning of GPS feature, which is consistent

with our analysis (Section 3.2) that the loss terms improve

the embeddings from different aspects.

To further analyse the effect of each loss term, we visu-

alize the feature distance from one pixel in frame 1 (marked

by a red dot) to all the pixels in frame 2 (red dot is the

ground-truth correspondence) in Figure 6. The blue dots

Figure 7. Results on real images. HumanGPS generalizes in the

wild and provides accurate correspondences across subjects. The

correspondences (column 5) successfully warp frame 2 to frame 1

for both intra- and inter-subject cases (column 6).

show the pixel with lowest feature distance, i.e., the pre-

dicted matching. Training with Ls does not produce clean

and indicative distance maps. Adding Ld improves the per-

formance, but the feature is still ambiguous between visu-

ally similar parts, e.g., left and right hand. In contrast, the

feature trained with all the losses produces the best distance

map, and multi-scale supervision further improves the cor-

respondence accuracy as shown in Table 1 (last row).

4.4. Generalization to Real Images

Our model is fully trained on semi-synthetic data ac-

quired with high-end volumetric capture systems (e.g., Ren-

derPeople [1] and The Relightables [16]), which help to

minimize the domain gap. In this section, we assess how

our method performs on real data. To our knowledge,

there is no real dataset with ground-truth dense correspon-

dences for evaluation. Thus, we compute the cycle con-

sistency across frames on videos in the wild. Specifically,

given three frames from a video, we calculate correspon-

dences among them, cascade matching I1!I2 and I2!I3
and measure the average end-point-error (AEPE) to the ones

calculated directly with I1!I3. We collected 10 videos of

moving performers. The avg. cycle consistency errors of

SDC-Net, Wei et al. and ours are 17.53, 22.19, and 12.21
respectively. Also, we show the qualitative results on real

images from [46]. As shown in Figure 7, our method gen-

eralizes reasonably to the real data, producing an accurate

feature space, correspondences, as well as warped images
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Methods

Intra-Subject Inter-Subject

SMPL [28] Relightables [16] RenderPeople [1] SMPL [28]

non all non all non all non all

PWC-Net [45] 4.51 13.27 3.57 10.01 9.57 18.74 20.06 28.14

PWC-Net* 3.89 12.82 3.42 9.39 7.91 16.99 19.21 23.77

PWC-Net + GPS 2.73 10.86 2.99 9.01 6.89 14.72 12.08 17.92

RAFT [44] 3.62 12.30 3.27 11.65 6.74 15.90 45.47 53.09

RAFT* 3.24 12.82 2.79 11.39 5.62 14.79 57.82 66.04

RAFT + GPS 2.13 10.12 2.27 10.52 3.95 12.68 10.76 17.61

Table 2. Quantitative evaluation on dense human correspondences via SoTA optical flow networks - PWC-Net [45] and RAFT [47]. On

both architecture, integrating with our GPS feature achieve the best performance. See text for the ∗ models.

using the correspondences. For additional results and eval-

uation on annotated sparse keypoints, please see Figure 1

and the supplementary material.

4.5. HumanGPS with End-to-end Networks

In this section, we show that our HumanGPS features

can be integrated with state-of-art end-to-end network ar-

chitectures to improve various tasks.

Integration with Optical Flow. We integrate our features

to the state-of-the-art optical flow methods PWC-Net [45]

and RAFT [47]. Both methods consist of a siamese feature

extractor and a follow-up network to regress the flow. We

attach an additional feature extractor and pre-train it with

our losses to learn our GPS features. The GPS features are

then combined with the output of the original feature extrac-

tor by element-wise average and then fed into the remaining

layers of the network to directly regress a 2D flow vector

pointing to the matching pixel in the other image.

The quantitative evaluation is presented in Table 2. All

the methods are trained on our training sets. To compare

under the same model capacity, we also train both methods

with the additional feature extractor but without our loss

functions (marked with ∗). Our GPS features benefits the

correspondence learning on both SOTA architectures con-

sistently over all test sets. We also train PWC-Net to output

an additional layer to predict the occlusion mask, and again

the model trained with GPS features consistently outper-

forms all the baselines (see supplementary materials).

Integration with DensePose. Our GPS features automati-

cally maps features extracted from different subjects to the

same embedding, and thus can benefit cross-subject tasks

like dense human pose regression [15]. To show this, we

pre-train a GPS feature extractor on our datasets, attach

two more MLP layers, and fine-tune on DensePose-COCO

dataset [15] to regress the UV coordinates. To make sure the

model capacity is comparable with other methods, we use

the backbone of previous methods for feature extraction,

i.e., a ResNet-101 FCN in DensePose [15], and Hourglass in

Slim DensePose [35]. To focus on the matching accuracy,

we adopt their same evaluation setup, where ground truth

bounding box is given; percentages of pixels with geodesic

Methods Accuracy

5 cm 10 cm 20 cm

DP ResNet-101 FCN [15] 43.05 65.23 74.17

DP ResNet-101 FCN* [15] 51.32 75.50 85.76

SlimDP HG - 1 stack [35] 49.89 74.04 82.98

Our ResNet-101 FCN 49.09 73.12 84.51

Our ResNet-101 FCN* 53.01 76.77 87.70

Our HG - 1 stack 50.50 75.57 87.18

Table 3. Quantitative evaluation for dense human pose regression

on DensePose COCO dataset [15]. Following [15], we assume

ground-truth bounding box is given and calculate percentage of

pixels with error smaller than thresholds. We also compare models

trained on full image and only foreground (marked by ∗).

error less than certain thresholds are taken as the metric; and

evaluate on DensePose MSCOCO benchmark [15].

Table 3 shows the comparison with previous work. Fol-

lowing DensePose [15], we also train our model with

their network backbone on full image and only foreground

(marked as *). Our method consistently achieves better per-

formance than previous methods on various setting with dif-

ferent network backbones. Note that the UV coordinates are

estimated via only two layers of MLP, which indicates that

the GPS features are already effective at mapping different

subjects to the same embedding. Please see supplementary

material for qualitative results.

5. Conclusion

We presented a deep learning approach to build Hu-

manGPS, a robust feature extractor for finding human corre-

spondences between images. The learned embedding is en-

forced to follow the geodesic distances on an underlying 3D

surface representing the human shape. By proposing novel

loss terms, we show that the feature space is able to map

human body parts to features that preserve their semantic.

Hence, the method can be applied to both intra- and inter-

subject correspondences. We demonstrate the effectiveness

of HumanGPS via comprehensive experimental results in-

cluding comparison with the SOTA methods, ablation stud-

ies, and generalization studies on real images. In future

work, we will extend HumanGPS to work with more ob-

ject categories and remove the dependency of a foreground

segmentation step.
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