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Figure 1: We present the task of 3D mirror plane prediction and depth refinement. First, we annotate several popular RGBD

datasets (Matterport3D [6], ScanNet [7], NYUv2 [32]) with 3D mirror planes. Our benchmarks show that both existing

RGBD dataset ‘ground truth’ raw depth data, and state-of-the-art depth estimation and depth completion methods exhibit

dramatic errors on mirror surfaces. We propose an architecture for 3D mirror plane estimation that refines depth estimates

and produces more reliable reconstructions (compare left and right depth and point cloud pairs from NYUv2 [32] dataset).

Abstract

Despite recent progress in depth sensing and 3D recon-

struction, mirror surfaces are a significant source of errors.

To address this problem, we create the Mirror3D dataset:

a 3D mirror plane dataset based on three RGBD datasets

(Matterpot3D, NYUv2 and ScanNet) containing 7,011 mir-

ror instance masks and 3D planes. We then develop Mir-

ror3DNet: a module that refines raw sensor depth or esti-

mated depth to correct errors on mirror surfaces. Our key

idea is to estimate the 3D mirror plane based on RGB input

and surrounding depth context, and use this estimate to di-

rectly regress mirror surface depth. Our experiments show

that Mirror3DNet significantly mitigates errors from a va-

riety of input depth data, including raw sensor depth and

depth estimation or completion methods.

1. Introduction

Recent years have seen much progress in 3D recon-

struction methods. It is now possible to acquire 3D re-

constructions of interiors with high quality geometry and

texture. However, these reconstructions fail spectacularly

when used in environments with mirrors and glass, both of

which are prevalent in indoor spaces.

The fragility of many reconstruction methods is due to

a reliance on accurate active depth sensing. Commodity

sensors such as the Microsoft Kinect and Intel RealSense

employ active infrared or time of flight depth sensing which

requires strong signal return from sensed surfaces. Unfor-

tunately, highly glossy and reflective surfaces such as mir-

rors cause either no signal return or highly unreliable depth

estimates. Though it may seem that reflectors are a ‘cor-

ner case’ with few affected pixels, the resulting errors are

catastrophic to reconstruction algorithms, leading to loss of

camera pose tracking and geometry artifacts (see Figure 1).

Recently, Whelan et al. [34] demonstrated that by de-

tecting mirror planes it is possible to mitigate the above is-

sues and achieve high-quality reconstructions in scenes with

many reflectors. However, their method relies on the use

of an AprilTag [27] attached to a custom camera rig. The

use of such custom hardware is not always feasible. In this

15990



paper, we propose a method for identifying mirrors and es-

timating mirror surface depth on RGBD data collected with

commodity hardware.

Our key idea is to identify mirror regions based on color

information (RGB), model the mirror as a plane and use

an estimated mirror normal and information from the mir-

ror’s surroundings to predict the mirror’s position in 3D.

Our work is related to the recently proposed task of mirror

segmentation in 2D [21, 38]. However, we operate in 3D

and focus on using 3D mirror plane estimates to improve

the reliability of depth data.

To estimate the prevalence of mirrors in 3D environ-

ments and understand the severity of the above reconstruc-

tion issues, we first annotate 3D mirror planes in three pop-

ular RGBD datasets: Matterport3D [6], ScanNet [7], and

NYUv2 [32]. These annotations create ‘true’ ground truth

for observed mirror surfaces that was previously unavail-

able. We find the prominence of mirrors varies between

datasets depending on their acquisition procedure, leading

to a corresponding range of depth data issues and recon-

struction failures. Using this data, we introduce the task

of 3D mirror detection from RGB and RGBD data, and es-

tablish initial benchmark results by: i) applying state-of-

the-art depth estimation and depth completion approaches

to directly estimate mirror depth values; and ii) propose a

simple architecture combining a MaskRCNN [14] module

and a PlaneRCNN [23] module to segment mirror surfaces,

estimate mirror 3D planes and refine mirror surface depth

estimates. Overall, we make the following contributions:

• Introduce the task of 3D mirror plane prediction from

single-view RGB and RGBD data

• Provide 3D mirror plane annotations for three RGBD

datasets (Matterport3D, NYUv2 and ScanNet)

• Establish benchmarks for RGB and RGBD-based 3D

mirror plane prediction, and evaluate depth completion

and depth estimation approaches on the task

• Present Mirror3DNet, an architecture that predicts a

3D mirror normal and mirror segmentation to refine

raw sensor depth or the output of state-of-the-art depth

completion and estimation methods

2. Related work

We summarize related work on mirror detection, 3D

plane estimation, and depth estimation and completion.

Mirror detection and correction. The challenges of deal-

ing with reflective and transparent surfaces in 3D recon-

struction and robotics have long been recognized. Yang and

Wang [37] proposed a sensor fusion technique for dealing

with LiDAR sensor failures on mirror and glass surfaces.

Käshammer and Nüchter [16] detect mirrors and correct

laser-scanned point clouds based on heuristics using known

mirror dimensions. The general problem of mirror surface

reconstruction is addressed by work on reflectometry. Early

work focuses on the stereo image setting [2], active illumi-

nation hardware setups [3], or single image input but relying

on detecting reflection correspondences of reference target

objects [24]. In recent years, there has been renewed in-

terest in identifying mirrors, glass, and transparent objects

for improved reconstruction [34] and for manipulation in

robotics [33]. Whelan et al. [34] rely on observing the re-

flection of an AprilTag [27] attached to a custom scanner.

Work on mirror detection for uncontrolled RGB images us-

ing deep learning is less explored, with a few recent works.

Yang et al. [38] introduce a network and dataset for identify-

ing mirrors in 2D images, and Lin et al. [21] extend the ear-

lier work by extracting mirror context features to improve

mirror detection. In contrast, we study 3D mirror plane es-

timation in RGBD datasets without relying on custom hard-

ware or other assumptions on the capture setup.

3D plane detection and plane reconstruction. There is re-

cent work on detecting 3D planes from single-view images

using neural networks [22, 23, 36, 40]. Unlike this work,

our focus is not on creating a planar segmentation of the

entire observed scene. We focus specifically on identifying

mirror regions and corresponding 3D planes. Identifying

mirrors in RGB images is challenging, as mirrors contain a

reflection of the environment which can be difficult to dis-

tinguish from non-reflected regions. Mirror detection re-

mains challenging even with RGBD data as mirror depth

values tend to be noisy and unreliable.

Depth estimation and depth completion. Depth esti-

mation and completion are recently popular tasks. Typ-

ically, the term depth estimation is used when the input

is only color (RGB) and has no depth information. The

term depth completion is used when the input is RGBD,

where the D (depth) channel is noisy and may have miss-

ing values. Existing methods for single-view depth esti-

mation [1, 4, 9, 10, 18–20, 25, 30, 39] and depth comple-

tion [15, 26, 28, 31, 41] improve depth prediction for the

entire image, relying on reconstructed 3D mesh data that is

assumed to provide accurate depth. Chabra et al. [5] show

that an exclusion mask for noisy areas such as reflective

surfaces can result in better reconstruction. We leverage

3D mirror plane estimates to improve the accuracy of exist-

ing depth estimation and completion methods. Moreover,

we note that both depth estimation and completion meth-

ods are typically evaluated on ground truth data that does

not account for noise due to mirrors and glass. Widely em-

ployed datasets such as NYUv2[32], Matterport3D[6, 41],

ScanNet [7], and SUN3D [12, 35] have noisy or missing

depth for reflectors (see Figure 1). Thus, these regions are

typically ignored or evaluated with incorrect values as the

ground truth. We contribute ground truth 3D mirror annota-

tions for three RGBD datasets, allowing for correct bench-

marking of mirror surface depth estimation and completion.
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Figure 2: Our human-in-the-loop mirror mask and 3D plane annotation workflow. We leverage an iteratively trained mirror

image classifier to assist a user in rapidly selecting all mirror images in an input image dataset. The images are then annotated

with mirror surface polygon masks. The masks and their corresponding depth images are used to initialize mirror plane

estimates with a RANSAC approach. The user then refines and verifies all 3D mirror plane estimates.

3. Mirror3D dataset

To enable benchmarking of 3D mirror plane prediction

and surface depth estimation, we create Mirror3D: the first

large-scale dataset of mirror annotations for RGBD im-

ages. We design a human-in-the-loop workflow that en-

ables efficient iterative annotation of mirror masks and mir-

ror 3D planes. Using this workflow, we annotate RGBD

images containing mirrors in three common RGBD datasets

(NYUv2 [32], Matterport3D [6], and ScanNet [7]) to create

an aggregated dataset that contains 7,011 annotated 3D mir-

ror planes in 5,894 RGBD frames.

3.1. Dataset construction

Our annotation workflow consists of three stages: i) mir-

ror image classification, ii) mirror mask annotation, and

iii) mirror plane annotation. Figure 2 shows the overall

pipeline. We first pretrain a ResNet-50 classifier on a seed

dataset of ‘mirror present’ and ‘no mirror present’ RGB im-

ages from Structured3D [42] (roughly half of the images

contained mirrors, approximately 7,000 images total). We

then sort all input RGBD dataset candidate frames by us-

ing the mirror classification score. An annotator confirms

whether images contain a mirror, splitting them into ‘mir-

ror’ and ‘no mirror’ sets in batches of 100 images. As this

verification proceeds through each batch, the classifier is

finetuned on the dataset of newly annotated ‘mirror’ and

‘no mirror’ images to improve the efficacy of the classifica-

tion score sorting whenever less than 20 additional mirror

images are added from a single 100-image batch. The an-

notator was instructed to stop looking for additional mirror

images when less than 5% of a batch contains mirrors. This

first stage was performed by one annotator and took approx-

imately 28 hours in total over 8 batch iterations.

In the second stage, we used the CVAT1 annotation inter-

face to define mirror mask polygons for all mirror images.

The annotators specified two types of mirror mask poly-

gons: a ‘coarse’ mask and a ‘detailed’ mask. The coarse

1github.com/openvinotoolkit/cvat

Matterport3D ScanNet NYUv2 Total

mirror planes 4,662 2,218 131 7,011
RGBD images 3,782 1,987 125 5,894
RGBD panoramas 2,468 – – 2,468
3D scenes 79 282 96 457

Table 1: Summary statistics for our Mirror3D dataset.

mask ignores occluding objects and small mirror protru-

sions, while the detailed mask is a pixel-accurate boundary

of the visible mirror surface in each image. This stage was

performed by four annotators over approximately 67 hours.

The last stage used a 3D interface developed with

Open3D [43] that allows inspection of an initial 3D mir-

ror plane normal estimate obtained by filtering mirror mask

border depth values using RANSAC [11]. The annotators

could check that the plane is correct, refine the 3D plane es-

timate by specifying three plane points on the point cloud

and manually adjusting, or indicate that it is impossible

to define a plane (in cases where the point cloud is ex-

tremely noisy). After the 3D planes are annotated, we gen-

erated turntable videos of the point clouds with the anno-

tated planes from a frontal and top-down view to allow for

quick verification. Planes identified as incorrect were fur-

ther adjusted and corrected. This last stage took a total of

approximately 50 hours of annotation effort by the same ex-

pert annotator who carried out the first stage.

In total, the annotators inspected approximately 30,000
RGBD images to obtain the final 7,011 3D mirror plane an-

notations. The mirror image classification stage took 3s per

image on average. The mirror mask annotation stage took

25s and 57s per mirror instance for coarse mask and de-

tailed mask respectively. Finally, the mirror plane annota-

tion stage takes 20s per mirror instance on average.

3.2. Dataset statistics

At the end of our annotation, we end up with a total of

7,011 mirror 3D plane and instance mask annotations across
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RGBD images from all three source datasets. Table 1 shows

a more detailed breakdown of dataset statistics. We split

this data following the standard training, validation and test

splits of each source dataset. We note that mirrors are found

in roughy 22.9% of Matterport3D panoramas (from a total

of 79 out of 90 Matterport3D residences) and 96 of 464
(20%) NYUv2 scenes, which are relatively high fractions

compared to only 282 out of approximately 1,500 ScanNet

scenes (18.8%). We hypothesize that this is due to the cap-

ture setup and methodology employed by the ScanNet au-

thors who may have avoided scanning scene regions that

contain mirrors. The supplement provides some additional

analysis of the annotated data in terms of mirror region lo-

cation, prominence and distribution across the images.

4. Mirror3DNet: refining mirror depth

Having constructed our dataset of 3D mirror plane anno-

tations, we would now like to address the task of predicting

3D mirrors from a single-view RGB or RGB-D image, and

using these predictions to improve estimated depth values

on mirror surfaces. Because mirrors are often planar, we

make the simplifying assumption that we can model a mir-

ror using a mirror mask and a mirror plane. We will show

that we can improve depth estimation from RGB-only im-

age input or depth completion results from an RGBD image

using the predicted 3D region and plane. Thus, the input

to our approach is either an RGB image or an RGBD im-

age with missing or incorrect depth for mirrors. The output

is an estimated 3D mirror plane and an RGBD image with

refined depth for the mirror.

Our goal is not to propose a new approach for depth

estimation or depth completion, but rather to benchmark

state-of-the-art approaches for both and demonstrate that we

can leverage a simple mirror-aware architecture to improve

depth output for both families of approaches. To do this, we

propose the Mirror3DNet architecture (see Figure 3). This

architecture uses a Mask R-CNN [14] module and a 3D mir-

ror plane estimation module inspired by PlaneRCNN [23]

to predict mirror masks and planes respectively. A depth

estimation or completion module may be used first to pre-

dict depth values given an input RGB or RGBD image, and

then Mirror3DNet is applied to predict the mirror mask and

mirror plane. We evaluate this architecture’s performance

on depth prediction as well as mirror mask prediction and

mirror normal estimation.

Thus, the overall architecture consists of three modules:

mirror mask segmentation, mirror plane estimation, and

depth estimation or completion. PlaneRCNN uses a warp-

ing loss to enforce consistency of reconstructed 3D planes

from nearby viewpoints. Our problem setting only assumes

a single image input, so we replace the warping loss mod-

ule with a mirror plane estimation module which refines the

depth on the mirror region.

4.1. Mirror mask and plane prediction

In this part of the architecture, we address detection and

segmentation of the mirror surface. To do this, we employ

a mirror classification (MC) branch and a mirror bounding

box regression (MR) branch, as well as an instance segmen-

tation (Seg) branch, all based on the Mask R-CNN module.

We also add an anchor normal classification (AC) branch

and an anchor normal regression (AR) branch after the ROI

pooling layer to predict the mirror plane normal.

Since it is challenging to directly regress the mirror nor-

mal values, these latter two branches follow an approach

similar to PlaneRCNN and decompose the regression into

a classification phase and a residual prediction phase. In

the classification phase we obtain a coarse orientation of

the mirror normal by classifying into one of a few anchor

normal orientations using the AC branch. We use 10 mir-

ror anchor normals from a k-means clustering of all mirror

normals in the annotated Matterport3D training set. During

training, the module predicts one anchor normal for each

positive proposal. For supervision, we assign each mirror

instance to its closest mirror anchor normal.

Given the anchor normal classification we then regress

the residual using the AR branch to form the final normal

vector. The final normal n is the sum of the anchor normal

and the normal residual. The ground truth mirror residual

of an instance is the distance vector between ground truth

mirror and the ground truth mirror anchor normal.

4.2. Depth estimation and completion

As Figure 3 shows, our network architecture accommo-

dates a depth estimation or completion module. The details

of this part depend on the input type. That is, whether we

take an RGB image or RGBD data including noisy depth.

If the input is an RGB image, we first use a depth estima-

tion module to produce an initial depth map estimate. Then

the rest of the Mirror3D architecture refines the depth map

into Dpred. If the input is an RGBD image with a noisy

depth map Dnoisy, we directly carry it forward for refine-

ment through the architecture.

To estimate the 3D mirror plane we need to combine the

mirror mask and mirror normal estimates from the previous

stage with a depth offset d for the plane. Since depth val-

ues on the mirror surface itself are missing or unreliable, we

rely on mirror border regions which are often non-reflective

materials and significantly more reliable. Thus, we compute

the average depth of points that fall on pixels within a small

offset of the mirror mask border. Given the predicted mirror

segmentation mask, we create a mirror border mask region

by expanding outwards by 50 pixels. This threshold corre-

sponds to roughly 9% of average image dimensions and we

have empirically found it to be reasonable. We then take the

average depth of all points in this mirror mask as the offset

of the mirror plane d.
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Figure 3: Overall diagram showing how the Mirror3DNet architecture can be used for either an RGB image or an RGBD

image input. For an RGB input, we refine the depth of the predicted depth map Dpred output by a depth estimation module.

For RGBD input, we refine a noisy input depth Dnoisy. The Mirror3DNet module predicts a mirror normal n and mirror

mask. Then, by computing an offset depth d based on depth values at the mirror border, we can determine the position and

orientation of the 3D mirror plane, and produce refined output depth values that improve mirror surface depth accuracy.

The Mirror3DNet module is trained under three types

of loss terms: i) mirror segmentation loss, ii) mirror an-

chor normal classification loss, and iii) mirror anchor nor-

mal regression loss. In mirror segmentation, we use a cross-

entropy loss for mirror classification and mirror mask pre-

diction. We use a smooth L1 loss for mirror bounding box

regression, and a cross-entropy loss for mirror anchor nor-

mal classification. For mirror anchor normal regression, we

use a smooth L1 loss. The total loss L is then:

L = CE(ai, a
∗
i ) + SmoothL1(ri, r

∗
i )

+ CE(ci, c
∗
i ) + SmoothL1(bi, b

∗
i ) + CE(mi,m

∗
i )

where ai and a∗i are the predicted and ground truth mirror

anchor normal class, ri and r∗i are the 1×3 predicted mirror

regression vector and ground truth mirror regression vector,

ci and c∗i are the predicted mirror proposal class and ground

truth proposal class, bi and b∗i are the predicted and ground

truth mirror bounding box parameter, mi and m∗
i are the

predicted and ground truth mirror mask.

4.3. Implementation details

We implement our network architecture in PyTorch [29].

We used the Adam [17] optimizer with initial learning rate

set to 10−4, β1 = 0.9 and β2 = 0.999 and without weight

decay. The RestNet-50 [13] backbone was initialized with

weights pretrained on ImageNet [8]. We train our model for

50,000 iteration with batch size 32. We only supervise on

pixels that have a ground truth depth of less than 10 meters.

5. Experiments

5.1. Datasets

We carry out our quantitative and qualitative evaluation

on the NYUv2 and Matterport3D datasets. To show the im-

portance of accurate mirror depth we evaluate against both

original ‘raw depth’ ground truth depth and our annotated

mirror depth. Therefore, we employ the following sets of

depth data in our experiments:

NYUv2-raw: the 1449 annotated RGBD frames from

NYUv2 (795 frames in train and 654 frames in test), cap-

tured with a Kinect depth sensor and exhibiting noise and

missing data on mirror surfaces.

NYUv2-ref: the corrected version of NYUv2-raw, with

mirror surface depth computed using our 3D mirror plane

annotations.

MP3D-mesh: depth rendered from the Matterport3D re-

constructed mesh, as used by Zhang and Funkhouser [41].

MP3D-mesh-ref: the corrected version of the above using

our 3D mirror plane annotations.

5.2. Evaluation metrics

Here, we define the metrics that we use to measure mir-

ror mask and plane prediction, and depth estimation and

completion accuracy.

Depth estimation and completion. We follow the eval-

uation protocol of Zhang and Funkhouser [41], and em-
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ploy root mean squared error (RMSE), relative error

(Rel), and δi. The δi metric denotes the percentage

of predicted pixels where the relative error is less than

a threshold i. Specifically, i is chosen to be equal to

1.05, 1.10, 1.25, 1.252 and 1.253. Here, the larger is i, the

more sensitive the δi metric. Larger values of δi reflect a

more accurate prediction. Since depth estimation methods

are often limited by the size-distance ambiguity in predict-

ing depth values, we also calculate a scale-invariant root

mean squared error (s-RMSE) as introduced by Eigen et al.

[9]. The main paper reports a subset of these metrics, with

more complete results found in the supplement.

RMSE:

√

1/|P |
∑

p∈P ‖D∗(p)−D(p)‖
2

where D(p) and

D∗(p) is depth and ground truth depth at point p.

s-RMSE:

√

1/|P |
∑

p∈P ‖D∗(p)− sD(p)‖
2

where s is the

least square root of 1/n
∑

(D∗ − sD)
2
.

Rel: 1/|P |
∑

p∈P
|D∗(p)−D(p)|/D∗(p).

SSIM: the structural similarity index measure,
(2µD∗(p)µD(p)+c1)(2σD∗(p)D(p)+c2)

(

µ2
D∗(p)

+µ2
D(p)

+c1

)(

σ2
D∗(p)

+σ2
D(p)

+c2

) where we have

set c1 = 0.0001, c2 = 0.0009.

δi: percentage of pixels within error range i, where the error

range is defined by max (D
∗(p)/D(p),D(p)/D∗(p)) < i.

All the above metrics are reported separately for depth

points within the ground truth mirror region, points outside

the mirror, and together for all depth points in each frame.

Mirror mask prediction and plane estimation. We adopt

the commonly used mean average precision (mAP) to eval-

uate mirror mask segmentation predictions, and a number

of mirror normal prediction error metrics.

Seg-AP: segmentation AP, with IoU threshold starting from

0.50 to 0.95 at 0.05 steps. The final AP score is the average

over the 10 threshold steps.

AC-AP: the anchor normal classification AP, with same IoU

thresholds as Seg-AP. We use the anchor normal classifica-

tion score to filter positive samples at inference time.

AngErr: the angle between predicted mirror normal and

ground truth mirror normal: arccos (m∗ ·m/|m∗||m|).

AR-L2: the mirror normal L2 error, measuring anchor nor-

mal (AR) regression performance. Calculated from the L2

distance between predicted mirror normal and ground truth

mirror normal:
√

(m
∗

/|m∗| − m/|m|)2

5.3. Qualitative evaluation

Figure 4 shows two qualitative comparison examples.

The top set of visualizations shows the improvements on

NYUv2-raw and NYUv2-ref data using our Mirror3DNet

module to enhance results from several depth estimation

and depth completion approaches. We note that outlier

depth points behind the mirror surface are significantly re-

Seg-AP ↑ AC-AP ↑ AR-L2 ↓ AngErr ↓

Mirror3DNet (ours) 0.271 0.072 0.159 9.10

PlaneRCNN [23] 0.208 0.076 0.194 11.2

Table 2: Evaluation of mirror mask segmentation and mir-

ror normal prediction. The PlaneRCNN [23] baseline is

trained on the NYUv2-ref dataset. We observe that our Mir-

ror3DNet module improves on mask segmentation, and nor-

mal estimation metrics.

RMSE ↓ SSIM ↑

Input Train Method Mirror Other All Mirror Other All

RGBD * Mirror3DNet 0.891 0.077 0.309 0.721 0.984 0.946

RGBD ref saic [31] 1.081 0.074 0.391 0.669 0.928 0.884

RGBD raw saic [31] 1.170 0.077 0.417 0.658 0.926 0.882

RGBD raw saic [31] + Mirror3DNet 0.874 0.095 0.314 0.718 0.922 0.888

RGB ref BTS [19] 0.472 0.351 0.391 0.825 0.832 0.821

RGB ref VNL [39] 6.169 5.804 5.882 0.228 0.203 0.204

RGB raw BTS [19] 0.971 0.315 0.547 0.691 0.856 0.819

RGB raw VNL [39] 3.939 2.265 2.725 0.384 0.629 0.583

RGB raw BTS [19] + Mirror3DNet 0.801 0.317 0.481 0.753 0.856 0.827

RGB raw VNL [39] + Mirror3DNet 3.462 2.262 2.554 0.444 0.628 0.593

Table 3: Depth prediction evaluation on NYUv2-ref dataset,

for images containing mirrors.

duced after using Mirror3DNet (see depth RMSE images

and top-down point cloud visualizations). The improve-

ments are consistent across input depth approach, whether

RGB-based depth estimation is employed or RGBD-based

depth completion is employed. The bottom set of visualiza-

tions shows comparisons on the MP3D-mesh and MP3D-

mesh-ref datasets. This data exhibits fewer depth outliers

due to the input being rendered from a 3D reconstructed

mesh that incorporates manual mirror region correction.

Despite this, the Mirror3DNet module still improves depth

accuracy on the mirror surface, in particular for RGB-based

depth estimation approaches.

5.4. Quantitative evaluation

Mirror 3D plane prediction. We first quantify the im-

provements introduced by our Mirror3DNet architecture

over a baseline PlaneRCNN module for predicting the mir-

ror 3D plane. Table 2 reports overall quantitative metrics for

the NYUv2-ref dataset. We see that the Mirror3DNet mod-

ule leads to improved mirror mask segmentation and plane

normal estimates. Please refer to the supplement for addi-

tional results reporting a set of ablation experiments that we

use to choose the mirror anchor normal count and the mirror

border width.

Mirror depth refinement. We conducted a series of ex-

periments to quantify the improvements in depth value pre-

diction offered by our Mirror3DNet architecture, and sum-

marize overall trends here. Please refer to the supplement

for additional results and metrics. We used three different

datasets as the ground truth for the purposes of the evalu-
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Figure 4: Visualizations of depth frames, depth errors against ground truth (RMSE mapped to colormap), and resulting

3D point clouds (PC) for NYUv2 (top) and Matterport3D (bottom). We compare the output depth from state-of-the-art

RGB-based depth estimation approaches (bts [19], vnl [39]) and an RGB-based depth completion approach (saic [31]). We

contrast the outputs from these approaches when trained directly on the corrected datasets which leverage our 3D mirror

plane annotations (NYUv2-ref and MP3D-mesh-ref), against output of the approaches when trained on the uncorrected

original datasets (NYUv2-raw and MP3D-mesh-ref), and against outputs after refinement using our Mirror3DNet module.

Overall, we observe that mirror depth errors are significantly reduced, as seen by the reduced RMSE error in mirror regions,

and the reduced prominence of depth outlier points.

ation reported here: NYUv2-ref, NYUv2-raw, and MP3D-

mesh-ref. Results with the first dataset (NYUv2-ref) treated

as the ground truth are in Table 3. These results show how

far from the ‘correct ground truth’ the various depth estima-

tion and prediction methods are, and how much of an im-

provement Mirror3DNet can provide. We note that methods

trained on the corrected NYUv2-ref depth have significantly

better performance on mirror area depth prediction. The

Mirror3DNet module also helps improve depth accuracy for

mirrors significantly when applied to methods trained on

NYUv2-raw, which would be the practical input at capture

time.

We can contrast the above set of results against the re-

sults reported in Table 4, where the ground truth is assumed

to be the original, uncorrected NYUv2-raw dataset. Here,

we can make the observation that evaluating on raw depth

as ground truth gives a different (and inaccurate) ranking of

methods compared to the corrected ground truth in NYUv2-
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RMSE ↓ SSIM ↑

Input Train Method Mirror Other All Mirror Other All

RGBD * Mirror3DNet 0.414 0.036 0.179 0.885 0.995 0.974

RGBD ref saic [31] 0.201 0.042 0.085 0.846 0.935 0.919

RGBD raw saic [31] 0.102 0.042 0.054 0.862 0.933 0.920

RGBD raw saic [31] + Mirror3DNet 0.484 0.070 0.216 0.788 0.929 0.901

RGB ref BTS [19] 1.024 0.355 0.538 0.644 0.833 0.796

RGB ref VNL [39] 5.238 5.798 5.741 0.264 0.204 0.209

RGB raw BTS [19] 0.962 0.316 0.452 0.621 0.858 0.821

RGB raw VNL [39] 3.113 2.254 2.491 0.433 0.633 0.599

RGB raw BTS [19] + Mirror3DNet 1.098 0.318 0.510 0.624 0.857 0.817

RGB raw VNL [39] + Mirror3DNet 2.902 2.252 2.716 0.438 0.631 0.598

Table 4: Depth prediction evaluation on NYUv2-raw

dataset, for images containing mirrors.

RMSE ↓ SSIM ↑

Input Train Method Mirror Other All Mirror Other All

sensor-D * * 2.605 0.901 1.268 0.215 0.762 0.669

mesh-D * * 0.631 0.000 0.177 0.794 1.000 0.970

RGBD (sensor-D) * Mirror3DNet 1.542 0.897 1.136 0.586 0.798 0.744

RGBD (mesh-D) * Mirror3DNet 0.428 0.016 0.150 0.881 0.998 0.978

RGBD mesh-ref saic[31] 0.308 0.316 0.358 0.861 0.899 0.899

RGBD mesh saic[31] 0.984 0.320 0.595 0.692 0.909 0.864

RGBD mesh Mirror3DNet + saic [31] 0.786 0.321 0.553 0.786 0.908 0.870

RGB mesh-ref BTS[19] 0.572 0.634 0.658 0.788 0.776 0.769

RGB mesh-ref VNL[39] 1.364 1.410 1.408 0.620 0.630 0.623

RGB mesh BTS[19] 1.142 1.033 1.097 0.669 0.757 0.733

RGB mesh VNL[39] 1.400 1.432 1.429 0.456 0.440 0.421

RGB mesh BTS[19] + Mirror3DNet 1.156 1.034 1.092 0.746 0.757 0.739

RGB mesh VNL[39] + Mirror3DNet 1.390 1.424 1.423 0.612 0.475 0.470

Table 5: Depth prediction evaluation on MP3D-mesh-ref

dataset, for images containing mirrors.

ref. Not surprisingly, the ranking on NYUv2-raw gives an

edge to the methods that were trained on the raw depth. This

is however, a misleading result, as the ‘assumed to be cor-

rect ground truth’ is highly inaccurate for mirror regions.

Lastly, in Table 5 we can see results using the MP3D-

mesh-ref dataset as the ground truth. The overall trends

remain the same, but we note that on this data there are

less pronounced differences in performance (i.e. it is still

better to train on refined depth). We hypothesize that this

is due to mesh cleanup and post-processing relying on

human-provided annotation of some reflective and trans-

parent surfaces. In other words, the Matterport reconstruc-

tion pipeline that was used to produce the mesh from which

MP3D-mesh data is rendered already incorporates a degree

of mirror surface correction. While this annotation is not

explicitly specified by the Matterport3D dataset, the mesh

reconstruction itself makes use of it, and the rendered mesh

depth will thus have cleaner depth than without human in-

tervention. Our goal with Mirror3DNet is to automate this

depth refinement so that human intervention is not required

at capture time or mesh reconstruction post-processing.

5.5. Limitations and future work

Our mirror depth refinement approach is a simple first

step but it is subject to several limitations that suggest fu-

ture work directions. Firstly, we assume planar mirrors and

use a fixed border width to estimate the mirror depth offset.

Both are assumptions that should can be lifted using more

advanced mirror detection approaches. Moreover, in this

paper we only focused on using 3D mirror plane estimates

to refine depth values at the mirror surface. Observations

of reflected objects in mirrors can be leveraged to further

improve reconstruction of other surfaces beyond the mirror.

The estimated 3D mirror planes can also be used to create

more realistic rendered visuals from 3D reconstructions, by

simulating reflections and light propagation from the mirror

surfaces.

6. Conclusion

In this paper, we tackled the problem of 3D mirror plane

prediction and mirror depth refinement. We created Mir-

ror3D: a large-scale dataset of 3D mirror plane annotations

based on three popular RGBD datasets which we use to ob-

tain corrected ground truth depth on mirror surfaces. Using

this data, we develop Mirror3DNet: a mirror depth refine-

ment architecture that can be used to refine depth estimation

or depth completion output. Our experiments show that mir-

ror depth errors in popular RGBD datasets are prevalent,

and that treating existing depth data as ground truth can

misrepresent depth prediction method performance. More-

over, we show that our Mirror3DNet architecture helps to

improve mirror depth estimates from depth estimation and

depth completion approaches, significantly mitigating 3D

reconstruction artifacts due to mirror surfaces.
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