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Abstract

Coordinate-based neural representations have shown

significant promise as an alternative to discrete, array-

based representations for complex low dimensional signals.

However, optimizing a coordinate-based network from ran-

domly initialized weights for each new signal is inefficient.

We propose applying standard meta-learning algorithms to

learn the initial weight parameters for these fully-connected

networks based on the underlying class of signals being rep-

resented (e.g., images of faces or 3D models of chairs). De-

spite requiring only a minor change in implementation, us-

ing these learned initial weights enables faster convergence

during optimization and can serve as a strong prior over

the signal class being modeled, resulting in better gener-

alization when only partial observations of a given signal

are available. We explore these benefits across a variety of

tasks, including representing 2D images, reconstructing CT

scans, and recovering 3D shapes and scenes from 2D image

observations.

1. Introduction

Recent work has demonstrated the potential of repre-

senting complex low-dimensional signals using deep fully-

connected neural networks (typically referred to as multi-

layer perceptrons, or MLPs). A coordinate-based neural

representation fθ for a given signal is an MLP (with weights

θ) that is optimized to map from an input coordinate x to the

signal’s value at that coordinate. For example, fθ could map

from 2D pixel coordinates to RGB color values to encode

an image. Unlike a signal stored as a discretely sampled

array of values, a coordinate-based neural representation is

continuous and is not constrained to have a fixed spatial res-

olution. This fact has recently been exploited to design rep-

resentations for 3D shapes (which typically occupy a small

2D subset of 3D space) that do not require cubic storage

complexity, in contrast to 3D voxel grids [22, 24, 27, 34].
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Figure 1. A coordinate-based MLP, illustrated on the left, takes a

coordinate as input and outputs a value at that location. For exam-

ple, the network could take in a pixel coordinate (x, y) and emit

the (R,G,B) color at that pixel as output, thereby representing

a 2D image. The network weights θ are typically optimized via

gradient descent to produce the desired image, as depicted on the

right. However, finding good parameters can be computationally

expensive, and the full optimization process must be repeated for

each new target. We propose using meta-learning to find initial

network weights θ∗0 that allow for faster convergence and better

generalization.

However, one limitation of these neural representations

is that computing network weights θ that reproduce a given

signal typically requires solving an optimization problem

by running many steps of gradient descent. This can take

between seconds (when encoding a small image) and hours

(when solving an inverse problem to recover a high resolu-

tion radiance field, as in NeRF [24]). Common approaches

to address this issue include concatenating a latent vector to

the input coordinate and supervising a single neural network

to represent an entire class of signals [22, 27], or training a

hypernetwork to map from signal observations (or a latent

code) to MLP weights [33, 34]. However, each of these

strategies is restricted to representing only signals within its

learned latent space, potentially limiting its ability to ex-

press previously unseen target signals.

Recent work [32] has shown that optimization-based

meta-learning can dramatically reduce the number of gra-
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dient descent steps required to optimize a neural represen-

tation to encode a new signal in the case of signed dis-

tance fields of 2D and 3D shapes. In this work, we pro-

pose learning the weight initialization for neural represen-

tations across a wide variety of underlying signal types,

such as images, volumetric data, and 3D scenes. We show

that compared to a standard random initialization, using

fixed, learned values for the initial network weights acts

as a strong prior that enables both faster convergence dur-

ing optimization and better generalization when only par-

tial observations of the target signal are available. In the

context of using neural representations for 3D reconstruc-

tion from images, a learned initialization specialized to a

particular ShapeNet [2] class allows the network to recover

3D shape from a single image over the course of optimiza-

tion, whereas a standard randomly initialized network fails

unless provided with multiple input views. Given a meta-

training set consisting of observations of different signals

sampled from a fixed underlying class, our setup applies an

optimization-based meta-learning algorithm (MAML [6] or

Reptile [25]) in order to produce initial weights better suited

for representing that specific signal class (e.g., face images

from CelebA [20] or 3D chairs from ShapeNet [2]).

The biggest advantage of our approach is its simplicity.

Given an existing framework for test-time optimization of

a neural representation, implementing an outer loop with

MAML or Reptile update steps only requires a few extra

lines of code and a dataset of training examples. Once the

meta-learning phase is complete, the learned initial weights

can be stored and later reloaded in place of a standard net-

work initialization whenever a new signal needs to be en-

coded. This minor implementation change can significantly

alter the behavior of the network during optimization.

2. Related Work

Neural Representations Neural representations have re-

cently risen to prominence as compact representations for

3D shapes. These methods represent shapes as implicit sur-

faces defined as a level set of an MLP network and enable

full object reconstruction from incomplete 3D point cloud

data or depth scans [3, 4, 9, 10, 14, 22, 23, 27]. Later

work combined this idea with various formulations of dif-

ferentiable rendering to recover neural representations of

3D shape using only 2D image observations [18, 19, 24,

26, 34, 37].

Coordinate-based neural networks have also been used

to represent other low-dimensional signals, such as 2D

images, where such networks (when trained via genetic

algorithms) have been referred to as compositional pat-

tern–producing networks [35]. Recent works have shown

that standard ReLU MLPs fail to adequately represent fine

details in these complex low-dimensional signals due to a

spectral bias [28] and address this issue by either replacing

the ReLU activations with sine functions [33] or by lifting

the input coordinates into a Fourier feature space [36]. Our

work makes use of these observations and presents a tech-

nique that enables a coordinate-based MLP to learn from

the process of fitting many signals within a category so that

it can quickly optimize to fit any new signal using fewer

steps and fewer observations.

Meta-learning Meta-learning typically addresses the

problem of few-shot learning, where some examples of a

given task (including training and test data) are used to learn

an algorithm that achieves better performance on new, pre-

viously unseen instances of the same task. A prototypical

example from computer vision is few-shot image classifica-

tion, where a network must learn to differentiate between

new classes at test time based on only a small number of

labeled instances of each class.

Most relevant to this work are optimization-based meta-

learning algorithms such as Model-Agnostic Meta Learn-

ing (MAML) [6] and Reptile [25], as well as various exten-

sions [1, 5, 7, 17, 29]. Given a network architecture for per-

forming a task, these methods use an outer loop of gradient-

based learning to find a weight initialization that allows the

network to more efficiently optimize for new instances of

the underlying task at test time. These methods assume the

use of a standard gradient-based optimization method such

as stochastic gradient descent or Adam [16] at test time,

making them easy to layer on top of existing implementa-

tions, as opposed to more complex methods such as Ravi

et al. [30], which trains a “meta-learner” LSTM network to

perform gradient updates for the underlying task. An ex-

haustive review of meta-learning algorithms is provided in

the survey paper by Hospedales et al. [12].

MetaSDF [32] specifically applies this idea of learning a

weight initialization to the task of fitting neural representa-

tions to represent signed distance fields, and shows that this

strategy achieves much more rapid convergence than stan-

dard approaches such as DeepSDF [27]. Our work applies

meta-learning to neural representations for a wider variety

of underlying signal types and further explores the power of

using initial weight settings as a prior.

3. Overview

We define a finite signal T as a function mapping from

a bounded set C ∈ R
d to R

n, where we refer to elements

x ∈ C as d-dimensional coordinates. Examples include im-

ages (mapping from 2D pixel coordinates to 3D color val-

ues) or volumetric representations for 3D shapes (mapping

from 3D locations to 4D tuples of color and density). A

coordinate-based neural representation fθ for T is a fully

connected neural network with d input and n output chan-

nels whose weights θ are optimized such that fθ matches T

as closely as possible for all coordinates in x ∈ C.
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If direct pointwise observations {(xi, T (xi)}i of the sig-

nal T are available, fθ can be supervised by gradient de-

scent using a simple L2 loss:

L(θ) =
∑

i

‖fθ(xi)− T (xi)‖
2
2 . (1)

Let θ0 denote the initial network weights before any gradi-

ent steps are taken, and let θi denote the weights after i steps

of optimization. Basic gradient descent applies the rule:

θi+1 = θi − α∇θL(θ)|θ=θi , (2)

with a learning rate parameter α, whereas more sophisti-

cated optimizers such as Adam [16] keep track of gradient

moments over time to redirect the optimization trajectory.

Given a fixed budget of m optimization steps, different ini-

tial weight values θ0 will result in different final weights θm
and signal approximation error L(θm). When emphasizing

the functional dependence of θm on the initial weights and

a particular signal, we will write θm(θ0, T ).

It is often the case that only indirect observations of T are

available, taken through some forward measurement model

M(T,p). For example, if T is a 3D object, M(T,p) could

be a 2D image captured of the object from camera pose p.

In this case, recovering a neural representation for T from

observations {pi,M(T,pi)}i requires solving an inverse

problem by taking gradient steps on a loss that incorporates

the forward model M :

LM (θ) =
∑

i

‖M(fθ,pi)−M(T,pi)‖
2
2 . (3)

If M discards too much information about T or the set of

provided observations is too small, the resulting network fθ
may not match T closely. For example, accurately recover-

ing a 3D object from a single 2D view may not be possible

without strong a priori knowledge of the object’s shape.

3.1. Optimizing initial weights

We assume that we are given a dataset of observations of

signals T from a particular distribution T (e.g., 2D face im-

ages or 3D chairs) and our goal is to find initial weights θ∗0
that will result in the lowest possible final loss L(θm) when

optimizing a network fθ to represent a new, previously un-

seen signal from the same distribution:

θ∗0 = argminθ0ET∼T [L(θm(θ0, T ))] (4)

This problem of trying to learn the initial weights of a

network to serve as a good starting point for gradient de-

scent across a distribution of tasks is addressed by a va-

riety of optimization-based meta-learning algorithms, such

as MAML [6] and Reptile [25].

MAML [6] Given a task T , calculating the weight values

θm(θ0, T ) requires taking m optimization steps, which are

collectively referred to as the inner loop. MAML wraps an

outer loop of meta-learning around this inner loop in order

to learn the initial weights θ0. Each outer loop samples a

signal Tj from T and applies the update rule:

θ
j+1

0 = θ
j
0 − β∇θL(θm(θ, Tj))|θ=θ

j

0

(5)

with meta-learning step size β. This update rule applies gra-

dient descent to the loss on the weights θm(θj0, Tj) resulting

from the inner loop optimization.

Reptile [25] Reptile uses the same meta-learning setup as

MAML but applies a simpler update rule that does not re-

quire calculating second-order gradients:

θ
j+1

0 = θ
j
0 − β(θm(θj0, Tj)− θ

j
0) . (6)

This rule moves the previous weight initialization θ
j
0 in the

direction of the task-optimized weights θm(θj0, Tj).

3.2. Experimental setup

The meta-learning algorithms described previously are

conceptually simple, requiring no changes to the architec-

ture or optimization procedure of a coordinate-based neural

representation when given a new signal to encode at “test

time” (after meta-learning is complete). These algorithms

produce only a set of initial network weights θ∗0 that are

then used as a starting point for gradient descent. Test-time

optimization on new signals is not limited to the same num-

ber of steps m as were used in the inner loop during meta-

learning; indeed, at test time we often observe benefits from

optimizing for significantly more iterations than were used

during the inner loop of the meta-learning algorithm.

MAML is typically able to produce a better initialization

than Reptile given a fixed number of inner loop steps m, but

Reptile can be unrolled for more inner loop steps because

it is less memory-intensive than MAML. For some tasks,

MAML’s limited number of inner loop steps means that it

can only observe a small percentage of the observations of

a target signal. In these cases, we use Reptile to maximize

the number of different observations seen over the course

of the inner loop. Experimentally we find it beneficial to

unroll more steps for more complex tasks.

Each of our experiments involves two phases:

1. Meta-learning, where we use MAML or Reptile in

combination with a training dataset of example tasks

(observations of different signal instances) to optimize

initial network weights for that class of signals, and

2. Test-time optimization, where we use standard

gradient-based optimization to fit the weights of a net-

work to observations of a previously unseen signal

from the same class.
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We aim to answer the following question: how do differ-

ent initial network weight settings influence the ability of a

neural representation to fit to a new signal during test-time

optimization?

4. Results

We present results on 2D image regression, 2D com-

puted tomography (CT) reconstruction, 3D object recon-

struction, and 3D scene reconstruction. For each task,

we demonstrate the benefits of using meta-learned initial

weights optimized to reconstruct a specific class of signals.

For 2D image regression, a meta-learned weight initial-

ization leads to faster convergence and better performance

during test-time optimization. For CT reconstruction, it al-

lows for better reconstruction quality from fewer supervi-

sion views during test-time optimization. For 3D shape re-

construction from images, it allows for faster convergence

at test time and makes single view reconstruction possible.

For Phototourism landmark reconstruction, it can be opti-

mized at test time to transfer the appearance of a single

input image onto the whole landmark, which can then be

rendered from novel camera views.

4.1. Tasks

Here we provide the basic setup for each task. Please see

the supplement for full implementation details.

Image regression A prototypical example of a

coordinate-based neural representation is an MLP op-

timized to represent a 2D image [33, 36] by taking in 2D

pixel coordinates and outputting RGB color values. We

consider four different distributions T : images of faces

(CelebA [20]), natural images (Imagenette [13]), images

of text (Text), and 2D signed distance fields of simple

curves (SDF). Each category contains around ten thousand

examples. Given a sampled image T ∼ T , we provide

all 178 × 178 pixels as observations for optimizing the

network weights θ in the inner loop. Since this task is not

memory constrained, we use MAML to meta-learn the

weights over 2 unrolled gradient steps (separately for each

category T ). In each of these inner loop steps, the entire

image is reconstructed and used to calculate the loss. For

the MLP fθ, we use 5 layers with 256 channels each and

sine function nonlinearities, as in SIREN [34].

CT reconstruction Computed tomography (CT) is a

widely used medical imaging technique that captures pro-

jective measurements of the volumetric density of a target

object. Tancik et al. [36] use a coordinate-based neural rep-

resentation to reconstruct a 2D signal from 1D integral pro-

jections; the underlying MLP fθ takes in a 2D coordinate

and outputs a scalar volume density at that location. Here
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Figure 2. Faster convergence: Examples of optimizing a network

to represent a 2D image from different initial weight settings. The

meta-learned initialization (Meta) is specialized for the class of

human face images but still helps speed up convergence on other

natural images (right). Non-meta-initialized networks take 10 to

20 times as many iterations to reach the same quality as the meta-

initialized network does after only 2 gradient steps (see Table 1).

T is a dataset of 2048 randomly generated 256× 256 pixel

Shepp-Logan phantoms [31], where we provide 2D integral

projections of a bundle of 256 parallel rays from a random

angle as the measurement for each sampled signal T dur-

ing meta-learning. We use Reptile to meta-learn the initial

weights over 12 unrolled gradient steps. We found this to

outperform MAML, which was limited to 3 unrolled steps

due to memory constraints. For the MLP fθ, we use 5 lay-

ers with 256 channels each and ReLU nonlinearities, and we

apply random Fourier features to the input coordinates [36].

View synthesis for ShapeNet [2] objects The goal of

view synthesis is to generate a novel view of a scene from

a set of reference images. Recently, neural radiance fields

(NeRF) [24] proposed a method to accomplish this task

by using a neural representation that predicts a color and

density for any input 3D location and 2D viewing direc-

tion within the scene, along with a differentiable volumetric

rendering model to generate new views from that represen-

tation. This network is optimized to minimize the resid-
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Init. Method 2 Step PSNR ↑ # of iters to match ↓
Standard 10.88 37.92± 6.31
Mean 14.48 25.59± 4.57
Matched 13.73 26.32± 4.17
Shuffled 16.29 25.80± 4.02
Meta 30.37 -

Table 1. Comparison of different initialization methods on an

image regression task using the CelebA dataset. We report re-

construction PSNR after two steps of test-time optimization. The

meta-learned initialization (Meta) significantly outperforms all

other initializations. We also report the average number of iter-

ations necessary to match the accuracy of Meta after two steps.

ual of re-rendering each of the input reference images from

their respective camera poses. In our view synthesis experi-

ments, we use a simplified NeRF model (simple-NeRF) that

maintains the same image supervision and volume render-

ing context. Unlike the original NeRF model, we do not

feed in the viewing direction and we use a single model in-

stead of the two “coarse” and “fine” models used by NeRF.

For view synthesis on objects from the ShapeNet [2]

dataset, we consider three categories T : Chairs, Cars, and

Lamps. We provide 25 128 × 128 pixel reference images

during meta-learning for each 3D object T . The reference

viewpoints are randomly distributed on a sphere and are ori-

ented towards the target object, and each object is oriented

in the canonical coordinate frame. The scenes are lit by a

randomly selected environment map [8] and rendered using

ray tracing. We use Reptile to meta-learn the initial weights

(for each shape category) over 32 unrolled gradient steps.

For the MLP fθ, we use 6 layers with 256 channels each

and ReLU nonlinearities, and apply a positional encoding

to the input coordinates [24].

View synthesis for Phototourism [15] scenes This

dataset consists of thousands of posed tourist photographs

of famous landmarks. Our objective is to use these images

to create an underlying representation that can be explored

and rendered from novel viewpoints with varying lighting

conditions. The primary challenge is the diversity of the

capture conditions: the photos are taken with different light-

ing conditions, camera hardware, camera viewpoint, and

varying transient objects like people and cars. Each under-

lying dataset T for meta-learning θ∗0 consists of images of a

single landmark (Trevi, Sacre Couer, or Brandenburg); the

category is the overall 3D structure of the landmark itself,

and the signal is its particular appearance (resulting from

the time of day, lighting, weather conditions, etc) within a

single photo. If a standard NeRF model is trained directly

on this data, it learns a blurry representation of the scene

that roughly corresponds to the mean of the environmental

conditions. NeRF in the Wild [21] explores these short-

Task

CelebA Imagenette Text SDF

In
it

.

CelebA 30.37 26.44 21.53 36.45

Imagenette 28.51 27.07 22.63 34.80

Text 14.65 15.83 27.85 23.14

SDF 19.80 20.05 17.23 51.73

Table 2. PSNR comparison of four different learned initializa-

tions for image regression. Each row corresponds to an initializa-

tion meta-learned over a different underlying image dataset. The

columns indicate which dataset images are sampled from during

testing. The best initialization for each task (bolded) is the one

specifically optimized on training images drawn from the same

dataset. We observe that initializations transfer better between

more similar datasets (CelebA and Imagenette, both natural im-

ages) and poorly between less similar datasets (the frequency spec-

trum of Text images is unlike that of the other categories).

comings and proposes extensive architectural modifications

to account for the variations. We find that these shortcom-

ings can be addressed to some degree solely with a better

initialization and no architectural changes.

We apply meta-learning to the same simple-NeRF model

from the ShapeNet experiment. The meta-training dataset

for each landmark consists of thousands of images with

varying resolution and intrinsic/extrinsic camera parame-

ters. We use Reptile to meta-learn the initial weights (for

each landmark) over 64 unrolled gradient steps. At test

time, we optimize the simple-NeRF (starting from the initial

weights θ∗0 for that landmark) to reproduce the appearance

of a new image, and then render that simple-NeRF from

other viewpoints. For the underlying MLP fθ, we use 6 lay-

ers with 256 channels each and ReLU nonlinearities, and

apply positional encoding to the input coordinates [24].

4.2. Baselines

As well as a Standard randomly initialized network

(Glorot et al. [11]), we compare to various other initializa-

tion schemes in several of our experimental settings:

• Mean: we optimize a network from scratch such that

its output matches the mean signal ET∼T [T ] from the

current class T .

• Matched: we optimize a network from scratch such

that its output matches the output of a network using

the meta-learned initialization for the current class T .

• Shuffled: we randomly permute the weights (within

each network layer) of the meta-learned initialization

θ∗0 for the current class T .

Both the Mean and Matched baselines demonstrate the dif-

ference between having a good initialization in signal space

versus weight space—despite Mean and Matched being ini-

tialized so that the loss against a randomly sampled signal

will be low, they are a worse starting point for gradient de-

scent than the actual meta-learned initial weights. The Shuf-
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Init. PSNR

Method 1 Views 2 Views 4 Views 8 View

Standard 13.63 14.15 16.31 21.49
Mean 14.72 15.39 17.43 25.19
Matched 14.07 15.51 20.25 24.77
Shuffled 13.64 14.17 16.69 22.09
Meta 15.09 18.70 22.00 27.34

Table 3. Comparison of initialization methods on a CT recon-

struction task. Each “view” consists of 256 parallel rays. The

data-dependent prior acquired during meta-learning improves re-

construction quality when fewer views are observed.

fled baseline demonstrates that matching the statistical dis-

tribution of the meta-learned initial weights is not sufficient

for better convergence or generalization. We find that us-

ing the Adam [16] optimizer performs best for all of the

baseline initializations, but that standard stochastic gradient

descent works best for the meta-learned initializations (we

choose the best optimizer and hyperparameters for each task

and initialization using a held-out validation set, see supple-

ment for details).

4.3. Faster convergence

Image regression In Figure 2, we visualize the network

output for a variety of initial weight settings, showing the

output images after 0, 1, and 2 gradient steps of test-time

optimization. The meta-learned initial weights are opti-

mized to represent face images (CelebA [20]). When using

the learned initial weights θ∗0 (Meta), the target image is al-

ready clearly visible after the very first step. In contrast, the

baseline initialization methods take an order of magnitude

more iterations to represent the target image to the same

accuracy (see Table 1). The Mean, Matched, and Shuf-

fled baselines perform better than the completely random

Standard initialization, but still take over ten times as many

iterations to reach the same quality as the meta-initialized

network can after 2 steps. In particular, this demonstrates

that neither matching the image space output nor the sta-

tistical distribution of the meta-learned weights is sufficient

for achieving a similar speedup.

View synthesis for ShapeNet [2] objects In Figure 5, we

plot the image reconstruction accuracy for a held-out test set

of objects from the Chair category. During test-time opti-

mization, 25 views are observed. We find that starting from

the optimized weights θ∗0 allows the network to recover the

chair more quickly compared to the Standard weight initial-

ization. We note that after many steps, both methods end up

at a similar quality.
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Figure 3. Sparse Recovery: Examples of CT reconstructions of

a Shepp-Logan phantom from a sparse set of views. The meta-

learned initial weights encode a data-dependent prior that im-

proves reconstruction in the limited data regime.

4.4. Generalizing from partial observations

Image regression within a category We perform meta-

learning experiments across multiple datasets to determine

the extent that the optimized weight initialization acts as

a class-specific prior. We compare initializations trained

on four different image datasets (CelebA, Imagenette, Text,

and SDF). Table 2 presents a confusion matrix demonstrat-

ing that optimizing the network initialization does in fact

induce a dataset-dependent prior, with each learned initial-

ization generalizing best to the same dataset distribution it

was trained on.

CT reconstruction from sparse views We report the re-

construction quality over a test set of phantoms given vary-

ing numbers of views at test time in Table 3 and visualize

one test example in Figure 3. We observe poor reconstruc-

tions from the Standard initialization when few views are

provided. The meta-learned initializations are consistently

able to match the PSNR of Standard with half as many

views. The Mean initialization is generated by training a

network to reconstruct the mean of the training phantoms. It

is better able to preserve the structure of the phantom com-

pared to Standard but still performs worse than the meta-

learned initializations.
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Figure 4. Single view reconstructions of ShapeNet [2] objects. The simple-NeRF formulation relies on multi-view consistency for

supervision and therefore fails if naively applied to the task of single view reconstruction, as seen in the Standard column. However, if

the model is trained starting from meta-learned initial weights, it is able to recover 3D geometry. The MV Meta initialization has access

to multiple views per object during meta-learning, whereas the SV Meta initialization only has access to a single view per object during

meta-learning. All methods only receive a single input view during test-time optimization.
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Figure 5. Reconstruction quality over the course of training for

models optimized to reconstruct ShapeNet chairs from a set of 25

reference images. The model starting from the meta-learned initial

weights outperforms the network using a standard random initial-

ization throughout training.

Single image view synthesis for ShapeNet [2] A simple-

NeRF model with a Standard random initialization relies on

multi-view consistency to reconstruct the appearance of a

3D object. With only a single view, this naı̈ve model is un-

able to recover any meaningful shape. We find that a learned

initialization “bakes in” a class-specific shape prior that en-

ables the recovery of 3D geometry (Figure 4, Table 4). We

can meta-learn an effective weight initialization for single-

view reconstruction by optimizing over a dataset with 25

PSNR

Chairs Cars Lamps

Standard 12.49 11.45 15.47
MV Matched 16.40 22.39 20.79
MV Shuffled 10.76 11.30 13.88
MV Meta 18.85 22.80 22.35

SV Meta 16.54 22.10 20.95

Table 4. Metrics for single image ShapeNet reconstructions using

a simple-NeRF model. See Figure 4 for image examples and §4.4

for experimental details.

training views of each object (MV Meta). We find that this

prior persists even if the meta-training dataset only contains

a single reference image per scene (SV Meta), meaning that

the meta-learning phase has no access to multiview infor-

mation for any particular object.

View synthesis with appearance transfer for Photo-

tourism [15] As described in §4.1, these images have dif-

ferent camera poses and visual appearance (lighting, sky,

etc.) as they are taken by tourists at different times. Our

goal at test time is to explore the landmark from varying

camera viewpoints but rendered with the same appearance

as in a target photograph. In every step of the meta-learning

outer loop, we supervise the simple-NeRF model to match

the appearance of a random photo of the landmark (with

varying pose and appearance). We find that performing test-
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Figure 6. Reconstructions of the Trevi Fountain and Sacre Coeur landmarks from the Phototourism dataset [15]. The meta-learning

algorithm is run over tourist images taken at different locations and times. During the test-time optimization, the neural representation is

trained to recover the input view on the left. The strong prior from the initialization captures the underlying geometry, allowing us to render

views from the camera positions of the images in the top row while retaining the appearance of the input view.

PSNR

Trevi Sacre Coeur Brandenburg

Basic NeRF 17.14 17.59 17.77
Meta 19.35 19.33 19.11

Table 5. Reconstruction results on Phototourism data. Multi-view

data with consistent appearance is not available in this dataset, so

we optimize on one half of an image and report image metrics

on the other half. We compare our Reptile setup (Meta) with a

standard NeRF network trained on all images of the landmark and

then test-time optimized to fit each held-out target image. This is

equivalent to training Reptile with one inner loop gradient step.

time optimization using a single new photograph allows us

to render convincing unobserved viewpoints of the scene

with the same environmental conditions.

In Figure 6, we show results for two landmarks. We test-

time optimize the meta-learned weights for five target im-

ages (shown on the left side of the grid), taking 150 gradient

steps for each image. We then render each of the resulting

simple-NeRF networks from the five different viewpoints

(shown in the row above the grid). The result is an image

from the camera position of the corresponding top row im-

age and matching the appearance of the left column image.

Quantitative evaluation on the Phototourism dataset is

difficult as multiple views with the same environmental con-

ditions do not exist. To overcome this, for Table 5 we op-

timize and evaluate on the same image, by optimizing to

match the appearance of the left half of the image and sub-

sequently evaluating metrics on the right half. For compar-

ison, we train a simple-NeRF model with a standard ran-

dom initialization from scratch on each landmark, then test-

time optimize it to match the left half of each new view be-

fore evaluating it on the right half. This is algorithmically

equivalent to Reptile with one inner optimization step. We

find that unrolling Reptile for 64 inner steps performs better,

producing significantly clearer renderings of the landmark.

5. Conclusion

Our results show that simply modifying a coordinate-

based neural representation’s initial weight values can guide

the network along a significantly better optimization trajec-

tory, without changing the underlying architecture or test-

time optimization procedure. These meta-learned initial

weights can result in faster convergence or act as a strong

prior for representing signals from a given distribution. This

partially ameliorates a major shortcoming of neural repre-

sentations (separately optimizing a network for each new

signal) without limiting their representational power.

There are many additional directions to explore, such

as applying more sophisticated meta-learning algorithms

or more precisely characterizing the geometry of weight

space for these networks. One limitation of our current ap-

proach is that it requires a sizable dataset of example signals

from a target distribution in order to derive beneficial initial

weights. Another shortcoming is that our method still re-

quires some amount of test-time optimization.

As the number of use cases for neural representations

continues to rapidly expand, we believe this work takes an

important step toward understanding the importance of their

initial weights and optimization behavior.
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