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Abstract

Camera localization aims to estimate 6 DoF camera

poses from RGB images. Traditional methods detect and

match interest points between a query image and a pre-

built 3D model. Recent learning-based approaches encode

scene structures into a specific convolutional neural net-

work (CNN) and thus are able to predict dense coordi-

nates from RGB images. However, most of them require

re-training or re-adaption for a new scene and have dif-

ficulties in handling large-scale scenes due to limited net-

work capacity. We present a new method for scene agnos-

tic camera localization using dense scene matching (DSM),

where a cost volume is constructed between a query image

and a scene. The cost volume and the corresponding co-

ordinates are processed by a CNN to predict dense coordi-

nates. Camera poses can then be solved by PnP algorithms.

In addition, our method can be extended to temporal do-

main, which leads to extra performance boost during testing

time. Our scene-agnostic approach achieves comparable

accuracy as the existing scene-specific approaches, such as

KFNet, on the 7scenes and Cambridge benchmark. This ap-

proach also remarkably outperforms state-of-the-art scene-

agnostic dense coordinate regression network SANet. The

Code is available at https://github.com/Tangshitao/Dense-

Scene-Matching.

1. Introduction

Camera Localization aims to estimate a 6-DoF camera

pose of an image in a known environment. It is an important

module in applications such as mobile navigation, simul-

taneous localization and mapping (SLAM) and augmented

reality (AR). Camera localization methods can be broadly

categorized as regression-based and structure-based. Ear-

lier methods [23, 21, 22, 47] directly regress the camera

poses from images, which are limited by the nature of im-

age retrieval and generally less accurate [41]. In compari-

son, structure-based methods [3, 43, 4, 36, 53, 39, 46] grad-

ually become the trend and solve the problem in two stages:

first, establishing the correspondences between 2D query

image pixels and 3D scene points; second, estimating the

desired camera pose by PnP [18] combined with different

RANSAC [13] algorithms.

According to how they establish the 2D-3D correspon-

dences, the structure-based methods can be further catego-

rized into two classes: 1) sparse feature matching [36, 38,

39, 46]; 2) scene coordinate map regression [3, 43, 4, 53,

24]. The sparse feature matching methods detect and match

handcrafted [27] or CNN-based [10, 38] feature points be-

tween a query image and scene images, which is able to

handle arbitrary scenes. On the other hand, coordinate map

regression methods predict dense 3D coordinates at all im-

age pixels from a random forest [44] or a convolutional neu-

ral network (CNN) [3, 43]. The estimated dense coordinate

maps can be effectively applied to augmented reality and

robotics applications such as virtual object insertion or ob-

stacle avoidance. But these methods are often limited to the

scene where the random forests or CNN is trained.

In this paper, we focus on the coordinate map regression

approach. Recently, instead of encoding specific scene in-

formation in network parameters [44, 3, 43], Yang et.al, pro-

pose the first dense coordinate regression network SANet

for arbitrary scenes [48]. SANet extracts a scene repre-

sentation from some scene images and corresponding 3D

coordinates by 2D-3D matching. In this way, it can be ap-

plied to different scenes without re-training or re-adaption.

However, due to the irregular nature of a scene, SANet ran-

domly selects coordinates within a region using ball query

and leverages PointNet [32] to regress per-pixel 3D coor-

dinates. This operation undermines the pose accuracy and

is computationally-heavy because a shared PointNet is re-

quired to make prediction on each pixel individually.

In order to address this problem, we present a new scene-

agnostic camera localization network exploiting dense

scene matching (DSM), which matches each query image

pixel with the scene via a cost volume. With end-to-end

training, the cost volume explicitly enforces more accu-

rate scene points to have a higher correlation with the input

query pixel. Since the scene structure is irregular, which

makes the number of query-scene correlations different for

each image pixel, we propose a simple yet effective solu-
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Figure 1: Overview of our framework. Our method predicts dense coordinate maps in a coarse-to-fine manner. The DSM

module receives a query image feature map, some scene image feature maps and the corresponding scene coordinates to

predict a dense coordinate map for the query image. This predicted scene coordinates are then used to solve camera poses

with RANSAC and PnP algorithms.

tion to unify the size of all cost volumes: sorting and select-

ing the best K candidates and feed them to a convolutional

neural network for dense coordinate regression. The cost

volume can be further fused with temporal correlations be-

tween consecutive query images during inference, so that

our method can be extended to video localization.

We have evaluated our method on several benchmark

datasets including indoor scenes, 7scenes [44] and large-

scale outdoor scenes, Cambridge [23]. We have shown

DSM achieves state-of-the-art performance among scene-

specific methods including DSAC++ in terms of both pose

accuracy and coordinate accuracy, and outperforms scene-

agnostic methods, e.g. SANet, by a large margin.

2. Related Work

Direct Pose Regression. The prestigious PoseNet [23] and

its varients [23, 22, 5, 21] regress the 6-DoF absolute poses

directly from RGB images. These networks are trained in

a supervised manner on RGB images with known ground

truths by a regression loss of pose errors. Intuitively, these

methods train a network to memorize the poses of all RGB

images in a database. It has been demonstrated in the

work [41] that direct pose regression yields results similar

to pose approximation via image retrieval and the pose ac-

curacy is usually inferior to the structure-based approaches,

which are further classified into the following two cate-

gories.

Sparse Feature Matching. Methods [8, 40, 36, 46, 29, 29]

based on sparse feature matching build 2D-3D correspon-

dences by interest point detection [27, 10, 12, 2, 17, 30]

and local descriptor matching [36, 10, 38, 12, 27, 6]. Then,

poses are estimated by PnP combined with RANSAC. To

further improve the localization performance, the subse-

quent learning-based approaches gradually take a coarse-

to-fine methodology [36, 46, 37, 30]. The other methods

generally focus on improving the capability of local feature

detectors [10, 12, 42, 51], descriptors[1, 52, 10, 12, 51] and

correspondence matching[38]. A recent work along this di-

rection is SuperGlue [38] and it achieves strong pose accu-

racy, especially in large-scale outdoor scenes. However, as

limited by local feature descriptors, those methods tend to

handle scenes with textureless regions or repeated patterns

poorly. Instead, by leveraging global contexts, our method

show better robustness on those scenes. Additionally, our

method can generate dense coordinate maps which are im-

portant to various robotics and augmented reality applica-

tions.

Dense coordinate regression. Different from sparse 2D-

3D correspondences, these methods directly regress the

dense 3D scene coordinates of the query image and ob-

tain the final camera pose by dense 2D-3D correspon-

dences [3, 43, 53, 4, 44, 24]. Shotton et al. [44] proposes

to regress the scene coordinates using a Random Forest.

Along this direction, DSAC [3] and DSAC++ [43] employ

convolutional neural networks to predict a dense coordinate

map from a single RGB image. KFNet [53] extends such

ideology to the tasks of video sequence localization and em-

beds coordinate regression into Kalman filter within a deep

learning framework. It achieves the top performance on
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Figure 2: Illustration of Dense Scene Matching (DSM) module. For a specific pyramid level l, DSM takes 1) query image

feature maps Fl
q,t at time t and Fl

q,t−1 at time t−1; 2) scene image feature maps Fl
s with corresponding scene coordinates; 3)

initial coordinate maps D̂l. Then the DSM module predicts a coordinate map Dl by cost volume construction and coordinate

regression. In the figure, N , H , W is the number of scene images, image heights and image weights respectively. K is the

number of scene coordinates selected for regression and d is the window size of candidate scene coordinates.

both single frame and video relocalization tasks. Notably,

all of those methods are scene-specific and cannot be gener-

alized to arbitrary novel scenes, which limits their applica-

tions in scenarios requiring quick adaption to novel scenes.

SANet [48] is the first network proposed to regress coordi-

nates in a scene-agnostic manner. However, it selects fea-

ture matches using ball query and uses Point-Net [32, 33] to

regress 3D scene coordinates, which largely decreases coor-

dinate accuracy and network efficiency. Our method is also

scene agnostic, and we employ cost volumes to evaluate

feature matches and compute 3D scene coordinates, which

outperforms recent scene-specific and scene-agnostic meth-

ods including DSAC [3], DSAC++ [4] and SANet [48].

Cost volume. The proposed method in this paper is in-

spired by the ideology of cost volume which has been

widely adopted in computer vision tasks, e.g. optical

flow[11, 45, 19, 34], stereo matching [7, 28, 31] and multi-

view stereo [49, 16, 50]. Recent learning-based methods

for optical flow or stereo matching extract feature pyramid,

build cost volumes and make predictions in a coarse-to-fine

manner [45, 7]. Since stereo matching or optical flow con-

struct the cost volumes between image pairs, the number of

costs for each pixel is fixed and can be arranged into a reg-

ular volume. On the other hand, multi-view stereo (MVS)

build a dense 3D regular cost volume between images and

the 3D space, with respect to a fixed number of depth or

disparity hypothesis planes. However, the 3D dense cost

volume used in MVS is infeasible to construct in our prob-

lem since it requires to sample a large number of hypoth-

esis points, which makes the cost volume too large to pro-

cess. Therefore, to build a regular 2D cost volume between

a query image and a 3D scene efficiently, we propose a

straightforward sorting strategy. The final dense coordinate

maps are then obtained from the constructed cost volume.

Thanks to the cost volume based formulation, we can easily

fuse temporal information to deal with video input.

3. Method

3.1. Overview

The overall framework of our system is illustrated in

Fig.1. The pipeline takes a single image or a video sequence

as query input. For each query image, we first retrieve N

nearest scene images with corresponding coordinate maps

via deep image retrieval [15]. Next, we extract a L-level

feature pyramid for each query and scene image via the

Feature Pyramid Network [25]. In a coarse-to-fine manner,

we then design a Dense Scene Matching (DSM) module at

each pyramid level to regress the dense coordinate maps of

gradually higher resolution and accuracy. Finally, the cam-

era pose is estimated from the finest coordinate map by the

standard RANSAC+PnP algorithm.

3.2. Feature and Coordinate Pyramid

Given one query image Qt at time t and multiple refer-

ence scene images {Si|i = 1, ..., n}, we generate a L-level

pyramid of feature maps {Fl|l = 1, ..., L} for each of them

by ResNet50-FPN [25]. We denote the query feature maps

as Fl
q and the scene feature maps as Fl

s. The feature vectors

in Fl
q are referred as f lq , and those in Fl

s are f ls. The spatial

size of feature maps at level l is H l ×W l.

For each scene image with known 3D coordinates, we

also build a L-level coordinate pyramid {Ml|l = 1, ..., L}.

The spatial size of each coordinate map is the same as that

of the feature map Fl
s. In order to deal with scenes at dif-

ferent scales, we transform the 3D scene coordinates to a

local coordinate system, where the coordinates are normal-

ized to zero-mean and unit standard deviation at all x, y, z

channels.

We estimate the coordinate map in a coarse-to-fine man-

ner. After initializing the coarsest level, the coordinate map

D̂l at level l is initialized by upsampling from Dl+1.
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3.3. Dense Scene Matching

The overview of the DSM module is shown in Fig. 2.

At a specific level l, the input of DSM module includes: 1)

query image feature maps Fl
q; 2) scene image feature maps

Fl
s and corresponding scene coordinate maps M l; 3) ini-

tial coordinate maps D̂l upsampled from Dl+1. The DSM

module predicts the coordinate map Dl with more details

from the initial D̂l. Specifically, DSM consists of two steps,

namely cost volume construction and coordinate regression.

It first constructs a cost volume which measures the cor-

relations between 2D query pixels and scene points (with

known coordinates). It then regresses a dense coordinate

map of the query image from the cost volume.

3.3.1 Cost Volume Construction

This section explains the details of cost volume construc-

tion, which involves two processes, namely the scene cor-

relation and temporal correlation. The scene correlation

measures similarity between query image pixels and scene

points, while the temporal correlation measures the simi-

larity between query image pixels from two neighboring

frames in the query video clip. Our network only uses scene

correlation in training, and fuses both correlations at testing

time.

Scene correlation. The scene correlation is defined as co-

sine similarity between the features of query pixels and the

ones of 3D scene points. We adopt a coarse-to-fine strategy

in order to avoid the computation between all 2D-3D pairs.

For the coarsest level, we compute the correlation between

each query pixel and every 3D scene point since its initial

depth is unknown. For the other levels, as shown in Fig.3,

for an pixel q in the query feature map Fl
q , we obtain its 3D

coordinate from the initial coordinate map D̂l. After that,

we project the 3D coordinates to each scene image. Sup-

pose the projected position is p, we consider a d× d search

window centered at p and compute the cosine similarity be-

tween the feature vector at q and those feature vectors for

the pixels within the search window. In this way, we obtain

a correlation vector of size d × d at the query pixel at q.

We initialize the correlation value as 0 if the corresponding

position is out of the image. Given N reference scene im-

ages, we obtain a N × d × d scene correlations per pixel,

which aggregate to a H l×W l× (N ×d×d) tensor, named

correlation tensor.

Temporal correlation. If the query input is a video se-

quence, we can leverage the result at the previous frame

and the correlation between neighboring video frames to en-

hance the result. Basically, if the camera pose is known, we

can project a scene point p into the query video frame Qt−1

at q′. Then the correlation between p and the query pixel

q in video frame Qt can be evaluated by the correlation be-

tween the two query pixels q′ and q.
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Figure 3: Demonstration of correlation fusion process. For

a specific pixel q in Fl
q,t, we obtain its scene correlation

by projecting its corresponding 3D coordinate predicted in

D̂l to a searching space of a d × d window in retrieved N

scene feature maps Fl
s. Temporal correlation is obtained by

projecting the scene coordinates within the searching space

in Ml to Fl
q,t−1. Finally, a N × d× d correlation tensor is

formed for each query pixel.

Specifically, we project all scene points to the query im-

age Qt−1 according to the camera pose at t − 1. Subse-

quently, we can compute the correlation between the fea-

ture vector at a query pixel in Qt and the feature vectors of

these projected pixels in Qt−1. In this way, for each query

pixel, we also obtain a correlation vector of size N × d× d

by temporal correlation.

Correlation fusion. The final correlation score between

a query pixel and a scene point is then computed from

the scene correlation and temporal correlation by the equa-

tion, Corr = αCorrs + (1 − α)Corrt, where Corrs
stands for scene correlation and Corrt is temporal corre-

lation. The parameter α balances Corrs and Corrt. The

hyper-parameter α is derived from the confidence score by

α = min(s + 0.4, 1), s is the confidence score, which

will be introduced in Sec. 3.3.3. Note that the fusion is ap-

plied to each of the N reference scene images. At the end

of this fusion, we obtain a fused correlation tensor of size

H l ×W l × (N × d× d).

Cost volume. We construct a cost volume by sorting the

correlation values and selecting the top K (K = 16 in

our implementation) scene coordinates. Although the sort-

ing operation is not differentiable, the gradients can still be

passed by the correlation values in the backward propaga-

tion during training. Intuitively, a higher correlation score

means more accurate match between query pixels and scene

points.

After sorting, we obtain a cost volume of size H l×W l×

1834



K. We further concatenate this cost volume with the 3D

scene coordinates of corresponding scene points to form a

H × W × 4K (1 for correlation and 3 for scene coordi-

nates) cost-coordinate volume. This cost-coordinate vol-

ume is then processed by CNN to produce a dense coor-

dinate map.

3.3.2 Coordinate Regression

We design a network namely Netcoords to estimate the final

scene coordinate map by taking the input of cost volume,

coordinate volume and image features. The cost-coordinate

volume are first fed into a network consisting of 1×1 convo-

lutional layers and produce a coordinate feature map. This

coordinate feature map are concatenated with image feature

map and fed into another network consisting of 3 × 3 con-

volutional layers to predict the final coordiante map. The

detailed architecture is illustrated in the supplementary ma-

terial.

3.3.3 Confidence Estimation

In order to fuse the temporal correlations and scene corre-

lations, we estimate a confidence value s as the weighting

parameter, as discussed in Sec. 3.3.1. We predict a cer-

tainty score for each pixel, which measures how accurate

the coordinate prediction is. As illustrated in Fig.2, after

predicting the coordinate map from only scene correlation,

we concatenate it with the corresponding 2D pixel coordi-

nates and feed to Netconf which outputs certainty scores.

The architecture of Netconf is explained in supplementary

material. We treat the certainty score estimation as a rank-

ing problem. Coordinates with higher certainty scores are

supposed to have smaller reprojection errors. This relation

can be measured by the average precision metric. There-

fore, we label each pixel as correct if its reprojection error

of the estimated coordinate is smaller than a threshold (1

pixel in implementation) or incorrect otherwise and use av-

erage precision loss [35] to optimize Netconf . The final

confidence s is the average certainty score over all pixels,

and then the fusion score α can be computed. After fus-

ing scene correlation and temporal correlation, we still use

Netcoords to predict the final coordinate map.

3.4. Training loss.

The total loss is the summation of the regression loss,

Lregress, for coordinate regression and the average preci-

sion loss [35], LAP , for training certainty scores. For co-

ordinate regression, we use L1 distance errors between pre-

dicted coordinates and ground truth coordinates as training

loss.

Lregress = ||Ycoords − Y coords||

L = LAP +
1

n

n
∑

i=0

(Lregress)

Where Ycoords is the absolute coordinate predicted from

Netcoords, Y stands for the ground truth and n is the num-

ber of query pixels.

4. Experiments

4.1. Experiment Settings

Dataset. We evaluate our method on both the indoor dataset

7scenes [14] and the outdoor dataset Cambridge Land-

marks [23]. For 7scenes, it contains 7 different scenes

with raw RGB-D video sequences captured by a handheld

Kinect RGB-D camera. It also provides camera poses and

a dense 3D model for each scene generated by KinectFu-

sion [20]. Cambridge Landmarks dataset contains 6 dif-

ferent outdoor scenes with RGB video frames labelled with

full 6-DOF camera poses. We train our network using Scan-

Net dataset [9], which is a RGB-D video dataset consisting

of 2.5M views in 1513 scenes annotated with 3D camera

poses and dense depth maps.

Data processing. All the images of the 7scenes [14], Cam-

bridge Landmarks [23] and ScanNet [9] datasets are down-

sized to 384 × 512. To form the training data, we first ran-

domly sample about 160k images from ScanNet dataset as

query images. For each query image, we retrieve 5 and 10
corresponding scene images in the same video sequence for

training and testing respectively by the learning-based im-

age retrieval approach [15]. In order to encourage query-

scene image pairs with different viewing angles, we only

keep the scene images of the same video sequence that are

at least 50 frames away from a given query image. We fol-

low the multi-view stereo reconstruction method adopted in

the DSAC [3] to obtain dense 3D coordinates of the Cam-

bridge Landmarks.

Training. We only use Scannet as training data for the

inference on 7scenes dataset. As for a specific scene of

the outdoor dataset Cambridge Landmarks, we fine-tune

our pretrained model with the other 5 scenes. ResNet50-

FPN [25] is regarded as our backbone network for all

the following experiments. Our model is trained with an

AdamW optimizer [26], whose base learning rate is 0.0005,

and a batch size of 16 in a single RTX TITAN GPU for

50000 iterations.

4.2. Localization Accuracy

In this section, we mainly compare our approach with

two classes of methods, namely sparse feature match-

ing [39, 46, 36] and dense coordinate regression meth-

ods [3, 43, 53, 48]. We measure localization accuracy in
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7scenes (Indoor) Chess Fire Heads Office Pumpkin Kitchen Stairs

S
p

ar
se

Active Search 1.96◦, 0.04m 1.53◦, 0.03m 1.45◦, 0.02m 3.61◦, 0.09m 3.10◦, 0.08m 3.37◦, 0.07m 2.22◦, 0.03m

InLoc 1.05◦, 0.03m 1.07◦, 0.03m 0.16◦, 0.02m 1.05◦, 0.03m 1.55◦, 0.05m 1.31◦, 0.04m 2.47◦, 0.09m

HLoc 0.79◦, 0.02m 0.87◦, 0.02m 0.92◦, 0.02m 0.91◦, 0.03m 1.12◦, 0.05m 1.25◦, 0.04m 1.62◦, 0.06m

D
en

se

DSAC(*) 0.7◦, 0.02m 1.0◦, 0.03m 1.3◦, 0.02m 1.0◦, 0.03m 1.3◦, 0.05m 1.5◦, 0.0.5m 49.4◦, 1.9m

DSAC++(*) 0.5◦, 0.02m 0.9◦, 0.02m 0.8◦, 0.01m 0.7◦, 0.03m 1.1◦, 0.04m 1.1◦, 0.04m 2.6◦, 0.09m

KFNet(*) 0.65◦, 0.02m 0.9◦, 0.02m 0.82◦, 0.01m 0.69◦, 0.03m 1.02◦, 0.04m 1.16◦, 0.04m 0.94◦, 0.03m

SANet 0.88◦, 0.03m 1.10◦, 0.03m 1.48◦, 0.02m 1.03◦, 0.03m 1.32◦, 0.05m 1.4◦, 0.04m 4.59◦, 0.16m

Ours (Single) 0.71◦, 0.02m 0.85◦, 0.02m 0.85◦, 0.01m 0.84◦, 0.03m 1.16◦, 0.04m 1.17◦,0.04m 1.33◦, 0.05m

Ours (Video) 0.68◦, 0.02m 0.80◦, 0.02m 0.80◦, 0.01m 0.78◦, 0.03m 1.11◦, 0.04m 1.11◦,0.03m 1.16◦, 0.04m

Cambridge (outdoor) Great Court King’s College Old Hospital Shop Facade St. Mary’s Church Street

S
p

ar
se Active Search 0.6◦, 1.20m 0.6◦, 0.42m 1.0◦, 0.44m 0.4◦, 0.12m 0.5◦, 0.19m 0.8◦, 0.85m

InLoc 0.62◦, 1.20m 0.82◦, 0.46m 0.96◦, 0.48m 0.50◦, 0.11m 0.63◦, 0.18m 2.16◦, 0.75m

HLoc 0.21◦, 0.38m 0.31◦, 0.17m 0.39◦, 0.23m 0.37◦, 0.07m 0.29◦, 0.10m 1.32◦, 0.62m

D
en

se

DSAC(*) 1.5◦, 2.8m 0.5◦, 0.30m 0.6◦, 0.33m 0.4◦, 0.09m 1.6◦, 0.55m

DSAC++(*) 0.2◦, 0.40m 0.3◦, 0.18m 0.3◦,0.2m 0.3◦, 0.06m 0.4◦, 0.13m

KFNet(*) 0.21◦, 0.42m 0.27◦, 0.16m 0.28◦, 0.18m 0.35◦, 0.05m 0.35◦, 0.12m

SANet 1.95◦, 3.28m 0.42◦, 0.32m 0.53◦, 0.32m 0.47◦, 0.10m 0.57◦, 0.16m 12.64◦, 8.74m

Ours (Single) 0.23◦, 0.44m 0.36◦, 0.19m 0.39◦, 0.24m 0.38◦, 0.07m 0.35◦, 0.12m 1.71◦, 0.68m

Ours (Video) 0.19◦, 0.43m 0.35◦, 0.19m 0.38◦, 0.23m 0.30◦, 0.06m 0.34◦, 0.11m 1.53◦, 0.61m

Table 1: Performance comparison in terms of rotation errors (◦) and translation errors (m). (*) indicates scene-specific

methods.

Single frame localization Video localization

Acc. thresh Median Mean Acc. Median Mean Acc.

Chess 5◦, 0.05 0.713◦, 0.021 0.824◦, 0.024 94.5 0.684◦, 0.020 0.795◦, 0.023 96.1 (+1.6)

Fire 5◦, 0.05 0.856◦, 0.021 1.025◦, 0.027 93.8 0.802◦, 0.020 0.878◦, 0.020 94.5 (+0.7)

Heads 5◦, 0.05 0.846◦, 0.013 1.369◦, 0.023 96.4 0.802◦, 0.013 0.957◦, 0.016 99.5 (+3.1)

Office 5◦, 0.05 0.843◦, 0.028 0.983◦, 0.037 82.3 0.782◦, 0.026 0.937◦, 0.034 84.2 (+1.9)

Pumpkin 5◦, 0.05 1.164◦, 0.043 2.224◦, 0.112 57.0 1.113◦, 0.043 1.823◦, 0.083 57.2 +(0.2)

Kitchen 5◦, 0.05 1.165◦, 0.038 3.145◦, 0.082 68.7 1.115◦, 0.034 1.358◦, 0.044 69.2 (+0.5)

Stairs 5◦, 0.05 1.356◦, 0.045 3.424◦, 0.197 53.9 1.157◦, 0.037 1.553◦, 0.069 69.9 (+16.0)

Great Court 5◦

, 1.0 0.209◦, 0.444 6.043◦, 5.624 68.5 0.193◦,0.428 4.023◦, 4.017 76.7 (+8.2)

King’s College 5◦

, 0.5 0.358◦, 0.194 0.574◦, 0.424 82.9 0.353◦, 0.188 0.522◦, 0.367 84.6 (+1.7)

Old Hospital 5◦

, 0.3 0.388◦, 0.243 0.387◦, 0.502 41.2 0.382◦, 0.228 0.372◦, 0.498 43.7 (+2.5)

Shop Facade 5◦

, 0.2 0.375◦, 0.074 0.623◦, 0.131 84.2 0.303◦, 0.061 0.574◦, 0.112 86.4 (+2.2)

St. Mary’s Church 5◦

, 0.3 0.353◦, 0.118 1.146◦, 0.374 91.4 0.342◦, 0.111 0.845◦, 0.264 93.7 (+2.3)

Street 5◦

, 2.0 1.711◦, 0.684 22.551◦, 27.111 62.2 1.523◦, 0.609 20.756◦, 25.862 64.8 (+2.6)

Table 2: Comparison of single frame based localization and video-based localization. For 7scenes, we use common threshold

(5◦, 0.05m) to calculate accuracy. We can see video-based has significantly lower mean errors and higher accuracy.

terms of median errors in translation and rotation. As shown

in Table. 1, the proposed DSM approach achieves state-of-

the-art performance among both sparse matching and dense

regression methods.

Compared with sparse matching methods, the pose accu-

racy of our approach is superior to that of Active Search [39]

and InLoc [46]. HLoc [36], upgraded with SuperPoint [10]

for feature detection and Superglue [38] for feature corre-

spondence matching, is considered and such upgrade brings

higher relocalization accuracy compared with the original

HLoc approach [36] as reported in the work [38]. We

can see that DSM outperforms HLoc in 7scenes, and it is

slightly inferior to HLoc in outdoor Cambridge Landmarks

dataset which contains much more salient texture for sparse

feature matching.

When comparing with scene-specific dense coordinate

regression methods, the proposed scene-agnostic approach

DSM outperforms DSAC [3] by a large margin and obtains

slightly superior performance than DSAC++ [43]. Even for

KFNet [53] with the top performance on single frame and

video localization tasks, our approach achieves compara-

ble performance. In comparison with the scene-agnostic

SANet [48], DSM shows obvious superior performance.

Table.2 shows the detailed comparison of metrics of

median errors, mean errors and the pose accuracy falling

within certain accuracy threshold (Acc. thresh) between

single frame localization and video localization methods.

As shown, after applying the temporal fusion, the localiza-
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St. Mary’s Church Redkitchen Stairs

Figure 4: The comparison of camera trajectories between the single frame (first row) and video localization (second row)

via the proposed dense scene matching network. The visualized results are respectively Redkitchen and Stairs in 7-scenes

dataset, and St. Mary’s Church sequence in Cambridge Landmarks dataset. In the first row, the outliers are shown in the red

circles.
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Figure 5: The comparison of cumulative distribution func-

tions of scene coordinate errors between different localiza-

tion approaches.

tion accuracy notably increases indeed. In addition, Fig. 4

shows the trajectories of Redkitchen and Stair sequence of

7-scenes dataset and St. Mary’s Church sequence of Cam-

bridge dataset. We can see that the trajectories of our single

frame localization contains some outliers while our video

localization is able to remove most of them.

4.3. Scene coordinate accuracy

In terms of scene coordinate accuracy, we compare our

method with SANet [48], DSAC [3], DSAC++ [43] and

Run time GPU memory usage

SANet 0.33s 5GB

Ours 0.21s 2.7GB

Table 3: Efficiency comparison of SANet and DSM.

HLoc [36] on the whole 7scenes dataset. Since HLoc

cannot directly output a dense coordinate map, we first

get dense depth maps by projecting reconstructed mesh

to its predicted poses and compute coordinates by back-

projection. We calculate the coordinate accuracy under dif-

ferent euclidean distance error threshold and plot cumula-

tive distribution function in Fig.5. We can see that the ac-

curacy of coordinate maps from our network outperforms

SANet, DSAC and DSAC++ by a large margin. More

specifically, we surpass SANet by 16% and DSAC++ by

20% when the threshold is set to 10 cm. The projected co-

ordinates of HLoc is more accurate than DSAC, DSAC++

and SANet, but is under-performed by DSM. In addition,

our temporal-based coordinate map regression boosts accu-

racy compared with our single frame prediction.

We also visualize coordinate map in Fig.6 for DSM,

SANet and DSAC++. In general, the coordinate map pro-

duced by DSM has higher quality and preserves more de-

tails than SANet and DSAC++. SANet randomly sample

coordinates from search space with ball query, and the best

match may be dropped due to this operation. As a re-

sult, its coordinate maps contain a large number of artifacts.
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(a) Query (b) SANet (c) DSAC++ (d) DSM (e) G.T.

Figure 6: Coordinate map visualization for SANet, DSAC++ and DSM.
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Figure 7: The average scene coordinate errors of the k-th

selected coordinates with respect to ground truth.

DSAC++ is able to produce coordinate map with more de-

tails, but artifacts exist in some regions as well.

4.4. Efficiency

Table.3 shows the running time and GPU memory usage

to localize a single query frame with 5 scene images. We

list the statistics of SANet since it is the only localization

pipeline that predict dense coordinate map for an arbitrary

novel scenes. Here, the image retrieval time is not included.

Compared with SANet, Our network reduces the time con-

sumption by 33% and memory consumption by 46%. The

efficiency can be further improved by adapting light-weight

backbones.

4.5. Analysis of correlation

Our proposed approach assumes that high query-scene

correlations lead to more accurate corresponding scene co-

ordinates for query pixels. To verify this argument, we eval-

uate the relationship between the correlation and scene co-

ordinate errors with respect to ground truth. For each pixel

in the query image, we select the top K scene coordinate

candidates in 5th level of coordinate pyramid. Then for each

ranking index k, we take the average of the euclidean dis-

tance error between selected scene coordinates and ground

truths over all query pixels. Finally, We define the kth aver-

age scene coordinate error as ek = 1

n

∑n

i=1

√

||Y i
k − Y ||2,

where n is the number of pixels in a query image, for the

ith query pixel, Y i
k is the kth corresponding scene coordi-

nate and Y is the ground truth. We summarize the statistics

in 7scenes dataset and plot ek in Fig.7. It can be seen that

the scene coordinate error gradually becomes larger when

correlation becomes smaller. In other words, high corre-

lation stands for more accurate scene coordinate selection

for a specific query pixel. In addition, we also include the

evaluation for temporal-based model, which obtains con-

sistently lower euclidean distance errors than single frame

model, indicating that correlation fusion further improves

the accuracy of selected scene coordinates.

5. Conclusion

In this paper, we present dense scene matching (DSM)

for visual localization. DSM is able to estimate dense coor-

dinate maps for arbitrary novel scenes. First, DSM builds a

cost volume between a query image and a scene by sorting

and selecting the top K highest correlations per pixel. Then,

the cost volume with the corresponding coordinates are feed

into CNN for dense coordinate regression and a temporal

fusion module is introduced to further improve the accuracy

of the dense coordinate map. Finally, the camera poses are

then estimated by PnP together with RANSAC algorithms.

We demonstrated the effectiveness of DSM on both indoor

and outdoor datasets. This scene-agnostic method yields

comparable accuracy among all scene-specific methods and

outperforms scene-agnostic methods in terms of both local-

ization and coordinate accuracy.
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