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Abstract

This paper focuses on the task of 4D shape reconstruc-

tion from a sequence of point clouds. Despite the recent

success achieved by extending deep implicit representations

into 4D space [29], it is still a great challenge in two re-

spects, i.e. how to design a flexible framework for learn-

ing robust spatio-temporal shape representations from 4D

point clouds, and develop an efficient mechanism for cap-

turing shape dynamics. In this work, we present a novel

pipeline to learn a temporal evolution of the 3D human

shape through spatially continuous transformation func-

tions among cross-frame occupancy fields. The key idea is

to parallelly establish the dense correspondence between

predicted occupancy fields at different time steps via explic-

itly learning continuous displacement vector fields from ro-

bust spatio-temporal shape representations. Extensive com-

parisons against previous state-of-the-arts show the supe-

rior accuracy of our approach for 4D human reconstruc-

tion in the problems of 4D shape auto-encoding and com-

pletion, and a much faster network inference with about 8

times speedup demonstrates the significant efficiency of our

approach. The trained models and implementation code are

available at https://github.com/tangjiapeng/

LPDC-Net.

1. Introduction

We are surrounded by spatio-temporally changing envi-

ronments that consist of various dynamics, such as observer
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Figure 1: Given a sequence of 3D point clouds sampled in

space and time, our goal is to reconstruct time-varying sur-

faces with dense correspondences. Compared to the state-

of-the-art, i.e. OFlow [29], our approach can obtain more

accurate geometries (higher IoU), better coherence (lower

correspondence error) while supporting 8x faster inference.

movements, object motions, and human articulations. Re-

constructing the human bodies evolving over time is vital
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for various application scenarios such as robot perception,

autonomous driving, and virtual/augmented reality.

Traditional works have achieved varying degrees of suc-

cess in learning 4D reconstruction (i.e. 3D reconstruction

along time) from a temporal sequence of point clouds, they

are faced with various restrictions including the require-

ment of an expensive template mesh [1, 15, 41, 16, 18]

or the dependence on smooth and clean inputs in space

and time [43]. To overcome these issues, OccFlow [29]

proposes a learning-based 4D reconstruction framework

that establishes dense correspondences between occupancy

fields by calculating the integral of a motion vector field

defined in space and time to implicitly describe the trajec-

tory of a 3D point. Although impressive results have been

achieved, there are still several inherent limitations in this

framework. Firstly, its spatial encoder does not take into

account the aggregation of shape properties from multiple

frames, which degrades the capability to recover accurate

surface geometries. In addition, its temporal encoder ig-

nores the time information which is of great importance to

capture the temporal dynamics. Secondly, the integral of

estimated immediate results leads to accumulated predic-

tion errors in the temporal continuity and the reconstructed

geometries. Lastly, it demonstrates low computational ef-

ficiency during training and inference because of the de-

manding computations of solving complex neural ordinary

differential equations [6] to sequentially calculate the tra-

jectories of points over time.

To tackle the above-mentioned problems, we aim to de-

sign a novel framework for 4D shape reconstruction from

spacetime-sampled point clouds, to advance the 4D recon-

struction from computational efficiency, accurate geome-

try, and temporal continuity. Our key idea is a mecha-

nism which parallelly establishes the dense correspondence

among different time-step occupancy fields predicted from

the learned robust spatio-temporal shape representations.

A high-level design of our proposed approach is a combi-

nation of static implicit field learning and dynamic cross-

frame correspondence predicting. The former one focuses

on occupancy field predictions from a novel spatio-temporal

encoder that can effectively aggregate the shape properties

with the temporal evolution to improve the robustness of

geometry reconstructions. The latter one is utilized to iden-

tify the accurate correspondences within cross-frame occu-

pancy fields, which are produced from representative em-

beddings describing the spatio-temporal changes in an effi-

cient manner. The key to achieving this goal is a strategy

of simultaneously learning occupancy field transformation

from a first time step to others. It can help to remarkably re-

duce the convergence time in the network training, because

of the bypassing of the expensive computation caused by

solving ordinary differential equations. Moreover, benefit-

ing from the advantages of parallel isosurface deformations

for the different time steps, our method provides a signifi-

cant speed-up of the inference time. As shown in Fig. 1, we

can achieve more robust surface reconstructions and more

accurate correspondence prediction while allowing for con-

siderably faster inference.

The main contribution can be summarized as follow:

• We propose a learning framework of modeling the

temporal evolution of the occupancy field for 4D shape

reconstruction, which is capable of capturing accurate

geometry recoveries and coherent shape dynamics.

• We develop a novel strategy of establishing cross-

frame shape correspondences by paralleling modeling

occupancy field transformations from the first frame to

others, which significantly improves the network com-

putation efficiency, especially in the inference stage.

• We propose a novel 4D point cloud encoder design that

performs efficient spatio-temporal shape properties ag-

gregation from 4D point cloud sequences, which im-

proves the robustness of reconstructed geometries.

Extensive ablation studies are conducted to validate the

effectiveness of our proposed module designs. Compar-

isons against previous state-of-the-arts on the challenging

D-FAUST dataset demonstrate the superior accuracy and ef-

ficiency of our approach in the problems of 4D shape auto-

encoding and completion.

2. Related Work

In this section, we review the closely related works from

three aspects as follows.

3D Shape Reconstruction The commonly used shape rep-

resentations include voxel [8, 12], octree [34, 40, 45, 13],

point cloud [9] , mesh [11, 44, 17, 30, 38], implicit

field [7, 24, 31, 47, 32, 48, 50], and hybrid representa-

tions [38, 39, 33]. Especially, the implicit representa-

tions [7, 24, 31, 47, 32], which implicitly represent a 3D

surface by a continuous function, have attracted much at-

tention. The continuity enables more accurate surface re-

coveries and volumetric reconstruction with infinite resolu-

tion. To inherit the advantages, we propose to extend the

implicit representation for 4D reconstruction. Instead of

independently extracting a surface mesh from the implicit

field of each frame in the input sequence, which typically

leads to slow inference and non-consistent topologies, we

avoid these issues by the dense correspondence modeling

which propagates the extracted surface mesh from the ini-

tial state to others.

Dynamic 4D Reconstruction Traditional works [20, 25,

26, 28, 36] utilize multi-view geometry to tackle the dy-

namic scene reconstruction problem from videos captured

by multiple cameras. In contrast to them, we aim at
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Figure 2: Model Overview. The proposed model first inputs a 3D point cloud sequence {S0,S1, ...,SK−1} into a designed

spatio-temporal encoder which extracts latent representations {z0, z1, ...zK−1}. And then, the representations go through

two separate decoders, i.e. the occupancy and the correspondence decoder. The occupancy decoder targets predicting the

occupancy fields O0,O1, ...,OK−1 in each frame. Finally, the correspondence decoder is used to parallelly model the

correspondence between O0 of the first frame and O1, ...,OK−1 of others.

4D shape reconstruction from a sequence of dynamically

scanned point clouds, while the existing works with simi-

lar settings are faced with various limitations, including a

heavy dependence on spatio-temporally smooth inputs [43]

or the requirement of expensive template meshes [1, 15, 41,

16, 18]. Compared to OccFlow [29], instead of predicting

the motion vectors for points in space and time and relying

on the solver of Neural ODE [6] to calculate their 3D trajec-

tories, we directly model the movements of points, which

decreases the computation overhead during training. And

the supporting of parallel surface deformation at different

time steps remarkably accelerates the inference speed. Be-

sides, we design a unified spatio-temporal encoder to effec-

tively capture temporal dynamics and utilize the important

time information in learning spatio-temporal descriptors.

Shape Correspondence Modeling Modeling point-to-

point correspondence between two 3D shapes [3, 42, 37]

is a well-studied area in computer vision and graphics. Our

goal of modeling time-varying occupancy fields is closely

related to deformation field-based methods [23, 27]. How-

ever, most of these works only define vector fields on the

surfaces rather than in the whole 3D space as us. Eisen-

berger et al. [35] choose to model the evolution of the

signed distance field to implicitly yield correspondences.

They optimize an energy function in the evolution equa-

tion to impose similarity relationships of the Laplacian

eigenfunction representations between the input and target

shapes. However, we learn the dense correspondences be-

tween time-varying occupancy fields based on an intuitive

observation, namely that the occupancy values of points are

always invariant along the temporal evolution.

3. Approach

In this section, we first formulate the dynamic 4D surface

reconstruction problem as the following. We consider as

input a sequence of potentially incomplete, noisy 3D point

clouds ( of human bodies, easily captured by depth sensors).

The observation of each frame can be represented as a point

set P = {pi ∈ R
3 = {xi, yi, zi}|i = 0, 1, ...}. For a

sequence of K frames with possibly non-uniform time in-

tervals, we consider it as a 4D spatio-temporal point cloud

donated by S = {Sk}
K−1

k=0
, where Sk = {si ∈ R

4 =

{xi, yi, zi, tk}
Nk−1

i=0
}. Nk is the number of points at frame

k ∈ [0,K − 1] and at time tk ∈ [t0, tK−1] ⊂ R with

N =
∑K

k=1
Nk. Our goal is to reconstruct time-varying 3D

surfaces with accurate geometry, temporal coherence and

fast inference. We achieve this by (1) developing our model

based on the implicit surface representation which has been

demonstrated the impressive capacity of capturing complex

object geometries [31, 47, 2, 46, 10] (2) capturing the ro-

bust spatio-temporal shape properties by efficiently fusing

information from each frame and taking the time informa-

tion into consideration to obtain accurate temporal dynam-

ics (3) parallelly modeling the dense correspondences be-

tween cross-time occupancy fields, which facilities parallel

surface deformations from the first to other time steps to

accelerate the inference speed.

Overview The overall pipeline is shown in Fig. 2. It is

composed of three key components which are respectively

responsible for spatio-temporal representation learning, oc-

cupancy fields predicting, and dense correspondences mod-

eling. We firstly process the input (i.e. a point cloud se-
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Figure 3: Spatio-Temporal Encoder. It contains a T-PointNet branch that utilizes the entire 4D point cloud S = {Sk}
K−1

k=0

to extract a temporal representation by treating time explicitly and equally to each spatial dimension. It also uses a S-PointNet

branch to extract a sequence of geometric representations by individually applying it for each frame Sk without considering

timestamps. Finally, the geometric and temporal representations are fused into a sequence of spatio-temporal descriptors

{z0, z1, ...zK−1}, to aggregate shape properties and explore dynamics variations.

quence S) through a spatio-temporal encoder hα(·) to get a

sequence of latent embeddings {z0, z1, ...zK−1} encoding

the geometric shape properties and the temporal changes.

Then we learn the occupancy field fk
θ (·) at t = tk using

a shared decoder fθ : R3 → [0, 1] conditioned on a time-

specific latent embedding zk. And a correspondence de-

coder gϕ : R3 → R
3 is utilized to simultaneously estimate

continuous displacement vector fields to model occupancy

field evolutions from initial to future time steps. More

specifically, it establishes dense correspondences between

f0

θ (·) and fk
θ (·) by learning a function gkϕ(·) that transforms

3D spatial points at time t0 into coordinate system at time

tk conditioned on the associate embeddings z0 and zk. So

the occupancy field at time tk can be predicted through

fk
θ (g

k
ϕ(·)). The α, θ and ϕ respectively denote learnable

network parameters of h(·), fk(·) and gk(·). In the fol-

lowing, we explain more details about the spatio-temporal

encoder (Section 3.1), the occupancy field decoder (Section

3.2), the correspondence decoder (Section 3.3), the training

paradigm (Section 3.4), and the inference (Section 3.5).

3.1. Spatio-temporal Representations Learning

To understand 3D shape motions in a sequence of con-

secutive observed frames, it is crucial to learn both geomet-

ric features for shape recovery and the temporal correlation

for continuity maintenance. A straightforward solution is

to follow the previous method that [29] uses two parallel

PointNet-based [5] encoders to extract shape and motion

embeddings respectively. However, its proposed shape en-

coder only uses the first point cloud S0 to acquire the shape

feature. Thus the reconstructed surfaces are always sub-

optimal if S0 is seriously incomplete, as the shape proper-

ties in other frames can not be incorporated. And its pro-

posed temporal encoder strictly assumes that the point-wise

correspondence between different input frames is known in

the learning, which restricts its flexibility of processing real

scans without this relationship. Moreover, the aggregation

of temporal information does not explicitly take into ac-

count the time information. Our motivation is to aggregate

the shape features from different frames to capture robust

embeddings for the implicit surface generation, and to treat

time as important as the spatial coordinates to capture ex-

pressive embeddings for describing the dynamic shape evo-

lution. Although it is possible to utilize the technique of 4D

point cloud processing proposed by [21], it would be insuffi-

cient due to time-consuming spatio-temporal neighborhood

queries. Thus we introduce a novel spatio-temporal en-

coder shown in Fig. 3. Specifically, it contains a T-PointNet

branch that accepts and transforms the entire 4D point cloud

S = {Sk}
K−1

k=0
to extract a temporal representation by treat-

ing time explicitly and equally to each spatial dimension.

It also uses the S-PointNet branch to produce a sequence

of geometric representations by individually applying it for

each frame Sk without considering timestamps. Finally, the

geometric and temporal features are fused to obtain a se-

quence of descriptors {z0, z1, ...zK−1} aggregating shape

properties and exploring dynamics variations.

3.2. Occupancy Fields Predicting

In this section, we present the details of the learning oc-

cupancy field at each time step for 4D shape reconstruction.

The occupancy field represents the 3D shape as a continu-

ous boundary classifier where each 3D point is classified as

0 or 1, depending on whether the point lies inside or outside

the surface. Although the signed distance field (SDF) can

be an alternative choice, we observed convergence issues

by employing encoder-decoder architecture for SDF learn-

ing from sparse point clouds.

According to the universal approximation theorem [14],

we implement the occupancy field learning as a multi-layer

perceptron (MLP) to predict occupancy states for the points

sampled in space and time. Given a point pk sampled
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at time tk, the probability of locating outside the 3D hu-

man body is predicted by fk
θ (pk) := f(pk; zk) that feed-

forwards the feature constructed by concatenating the point

coordinates pk and its associate spatio-temporal feature zk.

spatio-temporal representations

concat

 occupancy field transformation

concat

MLP

Figure 4: Dense Correspondence Decoder. Based on the

learned spatio-temporal representations {z0, z1, ..., zK−1},

the correspondence decoder utilizes a shared MLP condi-

tioned on the concatenation of the associate representations

z0 and zk, to predict the displacements from p0 at time t0
to pk located in the coordinate system at time tk

.

3.3. Cross-time Correspondence Modeling

In this section, we describe the details about dense cor-

respondence modeling between the initial occupancy field

O0 and others ( O1, ...,OK−1 ). Although it is feasible to

model the occupancy field transformation between consec-

utive two frames in order to omit the complex computations

of solving neural ODE [6], the sequential manner would

lead to accumulated prediction errors and slow inference.

Thus we choose to implement this by predicting displace-

ment vector fields to future time steps in parallel paths.

Each displacement vector function is responsible for de-

scribing the occupancy field deformation from initial frame

to subsequent frames. More specifically, the transformation

process from time t0 to time tk can be formulated as:

pk = p0 + gkϕ(p0) (1)

where gkϕ : R3 → R
3 is used to predict the displacement

of each point p0 at time t0 to the associate position pk lo-

cated in the coordinate system at time tk. According to Mo-

tion Coherent Theory [49], it is significant to ensure the de-

formation vector function gkϕ are continuous. To meet this

goal, we implement gkϕ with a shared multi-layer percep-

tron (MLP) conditioned on z0 and zk that capture geomet-

ric properties and temporal dynamics at time t0 and tk. The

dense correspondence decoder is shown in Fig. 4. Specifi-

cally, for each point p0, we concatenate its coordinates with

the spatiotemporal features z0, zi that are associated with

time t0 and tk. Then the displacement vector p0 to pk can

be obtained by

pk − p0 = gϕ(p0 ⊕ z0 ⊕ zk) (2)

where the symbol ⊕ denotes a concatenation operation

along the feature channel direction.

3.4. Training Objective

Our network learning is supervised by two types of

optimization losses. For the occupancy field generation

and transformation, we employ the standard binary cross-

entropy loss for measuring the discrepancy between the pre-

dicted probabilities and the ground truths. It is defined as:

Locc =
∑

k

∑

pk∈Pk

Lbce(f
k
θ (pk),O

k(pk)) + (3)

Lbce(f
k
θ (g

k
ϕ(p0)),O

k(gkϕ(p0))),

where Ok(pk) denotes the ground truth occupancy value

of pk at time tk. The first term is used to constrain the

implicit surface generation at each time. And the second

term is used to constrain the occupancy states changing for

non-surface points.

The dense correspondence decoder is also trained by

constraining the temporal evolution of 3D points sampled

from the dynamic surfaces. The temporal correspondence

loss can then be defined as:

Lcorr =
∑

k

∑

Q

|gk
ϕ(Q(t0))−Q(tk)| (4)

where Q denotes the a trajectory Q(t0), Q(t1), ..., Q(tK−1)
sampled from the dynamic surfaces at different time steps.

Then the overall optimization objective of our proposed

approach Ltotal can be formulated as follows:

Ltotal = Locc + λ ∗ Lcorr (5)

where λ is a hyper-parameter weighting the importance of

the temporal correspondence loss Lcorr.

3.5. Inference

During the inference stage, we predict the dynamic 3D

shapes for a new observation S by first reconstructing the

shape at starting time t = t0, followed by propagating
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the reconstruction into the future t ∈ [t1, ...tK−1] using

the trained correspondence decoder. Thus we do not need

to predict the occupancy field at each time step. We use

the Multiresolution IsoSurface Extraction (MISE) [24] and

marching cubes algorithms [22, 19] to extract the triangular

mesh M0 = {V0, E0,F0} where V0, E0,F0 represent the

vertices, edges, and faces of mesh M0 from the predicted

occupancy field at initial time t = t0. For other time steps

in the future, we use the learned deformation vector fields

to calculate the displacement gkϕ(vi) for the each vertice vi

in V0 while fixing the topology connectivity relationships

E0,F0. So the mesh at time tk is obtained through:

Mk = {{gkϕ(vi)|vi ∈ V0}, E0,F0} (6)

Notably, compared with previous methods [24, 29], our ap-

proach can provide a faster network inference as it paral-

lelly estimates the vertex displacements of M0 for different

time steps and avoids the expensive computation of solving

ordinary differential equations.

4. Experiment

Datasets Our experiments are performed on the challeng-

ing Dynamic FAUST (D-FAUST) [4] dataset which con-

tains raw-scanned and registered meshes for 129 sequences

of 10 humans (5 females and 5 males) with various motions

such as “shake hips”, “running on spot”, or “one leg jump”.

Same as the train/val/test split of OFlow [29], we divide all

sequences into training (105), validation (6), and test (21)

sequences. All models are evaluated on unseen actions or

individuals during training. The test set consists of two sub-

sets. One (S1) contains 9 sequences of seen individuals with

unseen motions in the train set. The other (S2) contains 12

sequences of an unseen individual. To increase the size of

the training samples, we subdivide each sequence into short

segments of 17 time steps or long segments of 50 time steps

according to different experiment settings.

Baselines We compare our approach with three state-of-the-

arts for 4D reconstruction from point cloud sequences, in-

cluding PSGN 4D, ONet 4D, and OFlow. The PSGN 4D

extends the PSGN [9] to predict a 4D point cloud, i.e. the

point cloud trajectory instead of a single point set. The

ONet 4D is a natural extension of ONet [24] to define the

occupancy field in the spatio-temporal domain by predict-

ing occupancy values for points sample in space and time.

The OFlow [29] assigns each 4D point an occupancy value

and a motion velocity vector and relies on the differential

equation to calculate the trajectory. For a fair comparison,

we train all models of baselines with the paradigms in [29].

Implementation details The model implementation is

based on OFlow [29]. For all experiments, our model is

trained in an end-to-end manner using a batch size of 16

with a learning rate of 1e−4 for 400k iterations. For the loss

Method IoU Chamfer Correspond.

PSGN 4D [9] - 0.101 0.102

S1
ONet 4D [24] 77.9% 0.084 -

OFlow [29] 81.5% 0.065 0.094

Ours 84.9% 0.055 0.080

PSGN 4D [9] - 0.119 0.131

S2
ONet 4D [24] 66.6% 0.140 -

OFlow [29] 72.3% 0.084 0.117

Ours 76.2% 0.071 0.098

Table 1: Quantitative comparisons on the task of 4D Shape

Reconstruction from time-evenly sampled point cloud se-

quences. We evaluate the performance on the test set of

(S1) unseen motions (but seen individuals) and (S2) un-

seen individuals. The metrics of Chamfer distance, corre-

spondence, and IoU are reported.

Method IoU Chamfer Correspond.

PSGN 4D [9] - 0.148 0.121

S1
ONet 4D [24] 71.9% 0.114 -

OFlow [29] 76.9% 0.090 0.134

Ours 83.8% 0.059 0.090

PSGN 4D [9] - 0.155 0.140

S2
ONet 4D [24] 62.8% 0.130 -

OFlow [29] 67.2% 0.112 0.178

Ours 74.8% 0.076 0.118

Table 2: Quantitative comparisons on the task of 4D Shape

Reconstruction from time-unevenly sampled point cloud

sequence with large variations between adjacent frames.

calculation in each training iteration, we randomly sample

a fixed number of points in space and time. More specif-

ically, for the occupancy prediction loss Locc, we sample

512 points that are uniformly distributed in the bounding

box of the 3D shapes at each respective time. For the corre-

spondence loss Lcorr, we uniformly sample the trajectories

of 100 points from the sequence of ground truth surfaces.

And the hyperparameters used in Equation 5 are λ = 1.

Evaluation Metrics We use Chamfer distance (lower is bet-

ter), Intersection over Union (higher is better), and corre-

spondence distance (lower is better) as primary metrics to

evaluate the reconstructed surface mesh sequences. We fol-

low OFlow [29] to compute these evaluation metrics.

4.1. 4D Shape Reconstruction

We first compare the performance of our approach with

previous methods for reconstructing time-varying surfaces

from the sparse point cloud sequences in two kinds of in-

put, including time-evenly and time-unevenly sampled se-
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Time Input PSGN 4D ONet 4D OFlow Ours

Figure 5: Qualitative Results on 4D Shape Reconstruc-

tion. We qualitatively show the input of three unequally

space and time steps with large variations, and the output of

PSGN 4D [9], ONet 4D [24], and OFlow [29]. Colors rang-

ing from red to blue index mesh faces to better illustrate the

surface correspondence across time.

quences. The network input is 300 discrete point trajecto-

ries randomly sampled from dynamic groundtruth surfaces.

In order to simulate the noises in the real world, we add

gaussian noise with standard deviation 0.05 to perturb the

point clouds. For the former one, each trajectory consists

of K = 17 time steps with uniform intervals. For the lat-

ter one, we randomly select 6 frames from a long segment

of 50 time steps as input. Each trajectory experiences non-

uniform intervals and large variations.

The quantitative and qualitative comparisons are respec-

tively shown in Table 1 Table 2 and Fig. 5. As shown in the

quantitative results, our approach achieves superior perfor-

mance over all previous methods. From the Fig. 5, we can

observe that our method can capture plausible motions and

correspondences over time but ONet 4D can not. PSGN 4D

predicts sparse and noisy point cloud sequences, causing

the challenge to get clean dynamic surface meshes. Be-

sides, compared to OFlow [29], our method can achieve

more robust geometry recoveries benefiting from the pro-

posed multi-frame shape information aggregation. More-

over, large performance improvements shown in Table 2

demonstrate that our multi-frame bundled correspondence

modeling can achieve higher robustness on non-uniform se-

quences with large variations.

4.2. 4D Shape Completion

In addition to 4D shape reconstruction experiments, we

also compare the performance on incomplete observations.

Method IoU Chamfer Correspond.

OFlow 75.9% 0.094 0.142

Ours (C1) 81.0% 0.070 0.112

S1 Ours (C2) 58.6% 0.124 0.254

Ours (Full) 82.4% 0.064 0.105

OFlow 67.0% 0.113 0.183

Ours (C1) 71.7% 0.087 0.139

S2 Ours (C2) 56.8% 0.164 0.344

Ours (Full) 72.9% 0.082 0.134

Table 3: Ablation studies & 4D Shape Completion:

Ours (C1) indicates our method without using the proposed

spatio-temporal encoder, and Ours (C2) denotes our method

without using the parallel correspondence modeling.

Specifically, we create partial point clouds by randomly se-

lect 5 seeds on the surface and discard those regions within

the radius of 0.1. The input is a sequence of K = 6 incom-

plete point clouds randomly sampled from a long segment,

and each contains 300 points. The quantitative and qualita-

tive results are respectively shown in Table 3 and Fig. 6. The

better performances verify the superiority of our approach

in the dynamic surface recoveries with temporal coherence

from incomplete observations.

4.3. Ablation Studies

Our whole framework contains two key modules. In this

section, we conduct the ablation studies by alternatively re-

moving one of them to verify the necessity of each module.

We perform experiments on the task of 4D shape comple-

tion from non-uniform sequences with large variations.

Without spatio-temporal encoder (C1) Based on our

pipeline, an alternative solution to learn the spatio-temporal

representations is to individually utilize Res-PointNet [5]

(details described in the supplementary material) to process

the 4D point cloud with time information at each frame.

The comparison results are shown in Fig. 6 and Table 3. As

can be seen, our method achieves more complete geome-

try as the designed spatio-temporal encoder can efficiently

aggregate the shape properties of all frames.

Without parallel correspondence modeling (C2) Instead

of parallelly modeling the dense correspondences, an alter-

native solution is to predict the occupancy field transfor-

mations between adjacent frames. As shown in Fig. 6, the

sequential correspondence modeling accumulates the pre-

diction errors in the legs in the second frame, resulting

in wrong shape predictions in subsequent frames and non-

continuous human dynamics. We also verify it by the in-

creased correspondence distance (see Table 3). Moreover,

the sequential manner adopted by OFlow and Ours (C2)

easily produces distorted results such as stretched surfaces

around the left knee when capturing large human variations.
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Figure 6: 4D Shape Completion & Ablation Studies:

Ours (C1) indicates our method without using the proposed

spatio-temporal encoder, and Ours (C2) denotes our method

without using the parallel correspondence modeling.

4.4. Space and Time Complexity

We compare our method to OFlow [29] in terms of mem-

ory footprint and computational efficiency. We train both

models using a batch size of 16 for 4D shape reconstruc-

tion from a sequence of 17 time steps with uniform inter-

vals and report the training memory footprint, total training

time. And we calculate the average of batch training time,

batch forward time, and batch backward time in the initial

10k iterations of training. We also report the average net-

work inference time using a batch size of 1 for 1k test se-

quences. Both models were run on a single GTX 1080 Ti.

We observed the slow training procedure of OFlow [29] as

ODE-solver requires demanding computations and gradu-

ally increases the number of iterations to meet the error tol-

erance. From the results shown in Table 4, we can see that

although our model has a higher training memory footprint,

it is about 4 times faster in training and 8 times in inference.

4.5. Shape Matching

In this section, we investigate our pipeline for the task of

shape matching. The inputs are the underlying surfaces of

two randomly sampled point clouds, and the outputs are the

point displacements of source surface to the target surface.

Since this task does not need to recover 3D surface meshes,

Method Mem. (GB) Train (day) Inference (s)

OFlow [29] 3.53 42 1.84

Ours 10.8 10 0.23

Forward (s). Backward (s). Train (s)

OFlow [29] 0.33 4.02 4.35

Ours 0.45 0.49 0.94

Table 4: Space and time complexity comparison between

OFlow [29] and our method.

Method Correspond Time(s)

Nearest Neighbor 0.374 0.004

Coherent Point Drift [27] 0.189 343.6

OFlow [29] 0.167 0.309

Ours 0.102 0.011

Table 5: Shape Matching Experiments. We report the cor-

respondence distance (correspond) of two randomly sam-

pled point clouds with the size 10k.

the model consists of only a spatio-temporal encoder and

a dense correspondence decoder, and the training is only

supervised by the correspondence loss in Eq. 4. From the

quantitative comparisons shown in Table 5, we can con-

clude that although our method is primarily designed for

4D reconstruction, it can also predict accurate correspon-

dences. Moreover, we remark that our inference speed is re-

markably faster than that of CPD [27] and OFlow [29], with

approximately 31,000 and 30 times faster, respectively.

5. Conclusion

We have proposed a novel learning framework to recon-

struct time-varying surfaces from point cloud sequences.

The overall framework includes a flexible framework for

learning robust spatio-temporal shape representations from

4D point clouds and an efficient cross-frame correspon-

dence decoder that simultaneously models the occupancy

field transformations from the first frame to others. Com-

parisons with previous works demonstrate that our approach

can achieve more accurate geometries, better temporal con-

tinuity while significantly improves the computation effi-

ciency. One limitation of our method is that to achieve su-

perior practical efficacy and efficiency, we sacrifice theoret-

ically temporal continuity due to the discrete field transfor-

mation, which will be further explored in the future works.
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