
Leveraging Large-Scale Weakly Labeled Data for Semi-Supervised Mass

Detection in Mammograms

Yuxing Tang1, Zhenjie Cao1, Yanbo Zhang1, Zhicheng Yang1, Zongcheng Ji1,

Yiwei Wang1, Mei Han1, Jie Ma2, Jing Xiao3, Peng Chang1

1PAII Inc., USA 2Shenzhen People’s Hospital, China 3Ping An Technology, China

tangyuxing87@gmail.com, pengchang@gmail.com

Abstract

Mammographic mass detection is an integral part of

a computer-aided diagnosis system. Annotating a large

number of mammograms at pixel-level in order to train

a mass detection model in a fully supervised fashion is

costly and time-consuming. This paper presents a novel

self-training framework for semi-supervised mass detection

with soft image-level labels generated from diagnosis re-

ports by Mammo-RoBERTa, a RoBERTa-based natural lan-

guage processing model fine-tuned on the fully labeled data

and associated mammography reports. Starting with a fully

supervised model trained on the data with pixel-level masks,

the proposed framework iteratively refines the model itself

using the entire weakly labeled data (image-level soft label)

in a self-training fashion. A novel sample selection strat-

egy is proposed to identify those most informative samples

for each iteration, based on the current model output and

the soft labels of the weakly labeled data. A soft cross-

entropy loss and a soft focal loss are also designed to serve

as the image-level and pixel-level classification loss respec-

tively. Our experiment results show that the proposed semi-

supervised framework can improve the mass detection accu-

racy on top of the supervised baseline, and outperforms the

previous state-of-the-art semi-supervised approaches with

weakly labeled data, in some cases by a large margin.

1. Introduction

Mammography is widely used for the early detection of

breast cancer, the most common cancer in women. With

about 48 million mammograms performed annually in the

US, a Computer-Aided Diagnosis (CAD) system for mam-

mogram screening is of great interest. This paper focuses

on detecting mass lesions from mammograms, an impor-

tant indication of potential malignancy. Despite the re-

cent progress of Deep Neural Networks (DNN)-based ap-

proaches, mass detection with high accuracy still remains a
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Figure 1. Our semi-supervised breast mass detection system uses

fully labeled data (with mass masks) as well as large-scale weakly

labeled data (with probabilistic NLP labels).

challenging problem.

Many previous DNN-based mass detection models are

trained with fully supervised fashion [26, 36, 22], and in

turn require a large amount of fully labeled data (with pixel-

level masks or rectangular bounding-boxes), which must be

manually annotated by medical experts [33]. In many cases,

the amount of high-quality annotation data has become the

bottleneck for further performance improvement. Semi-

supervised approaches can minimize the effort required to

prepare the labeled data by training the model with a lim-

ited number of fully labeled examples and an additional, ar-

bitrary amount of unlabeled or weakly labeled (e.g., image-

level class labels) examples [28, 30].

For this study, we collected a large-scale dataset contain-

ing 134,520 images with diagnostic reports from 30,495

patients, among which 2,634 images have pixel-level

mass masks labeled by our collaborative radiologists. To

fully leverage the diagnostic reports, we further adopt a

RoBERTa [21]-based natural language processing (NLP)
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model Mammo-RoBERTa, and it can take a diagnostic re-

port as input and generate the probability of mass pres-

ence for the corresponding image, which is subsequently

assigned as the image-level soft label.

To fully exploit the large-scale weakly labeled data

(with image-level soft labels), and small amount fully la-

beled data (with pixel-level mass masks), we present a

novel high-resolution, multi-stage semi-supervised learn-

ing framework, inspired by the previous self-training-based

semi-supervised approaches [11, 24] and Multiple Instance

Learning (MIL)-based weakly supervised learning meth-

ods [18, 1, 4, 29]. Starting from a high-resolution bilat-

eral dual-view-based mass detection model first trained on

the fully labeled data, the proposed framework iteratively

updates the detection model in a self-training fashion, by

carefully designing a novel batch sample mining strategy

to identify the most informative samples for the next itera-

tion. Compared to previous MIL-based approaches, a soft

cross-entropy loss and a soft focal loss are deployed for the

image-level classification task and the pixel-level classifi-

cation task respectively, which are shown to outperform the

hard label-based counterpart by our experiment results.

Meaningful performance improvement of the mass de-

tection model has been achieved by applying the proposed

framework to our large-scale weakly labeled dataset, in

comparison with the same model trained with only fully

labeled data. The proposed framework also outperforms

various state-of-the-art semi-supervised 2D medical image

detection and segmentation approaches, when the entire

dataset is used. It is also worth noting that the model per-

formance is monotonically increasing with respect to the

amount of the weakly labeled data available in the training

set (Section 4.4 Figure 4), while some previous work [18]

may observe degraded model performance once the weakly

labeled data exceeds a certain amount.

The main thrusts of this paper are summarized as fol-

lows.

1. We propose a novel self-training-based semi-supervised

learning framework, by leveraging probabilistic soft

class labels generated from the diagnostic report by an

NLP model (Mammo-RoBERTa).

2. We propose a novel sample mining strategy to select the

most informative weakly labeled data for each iteration

of self-training, along with the soft label-based image-

level and pixel-level classification loss functions.

3. We show meaningful improvement of the semi-

supervised approach when compared with the previous

fully supervised approaches, in terms of mass detec-

tion accuracy. In addition, the proposed framework

can outperform several previously reported state-of-the-

art semi-supervised approaches on our entire large-scale

dataset.

2. Related Work

Weakly/Semi-supervised learning for object detec-

tion or segmentation. Semi-supervised learning ap-

proaches have been explored due to the lack of strongly

labeled examples with object-level or pixel-level annota-

tions. In specific, Expectation-Maximization (EM), consis-

tency regularization [13, 17, 6] and pre-training [7] strate-

gies have been applied to utilize a large amount of unla-

beled data. In particular, EM-based self-training methods

[24, 34, 11] treat the object locations or pixel-level masks

as latent variables and alternately estimate the latent labels

and optimize the DNN parameters in an iterative way. We

also adopt the iterative self-training scheme in this work.

To utilize the image-level weakly labeled data, the mul-

tiple instance learning technique is applied in the medical

image domain by enforcing at least one image patch be-

longing to the image labeled disease [18]. Several methods

[23, 19] introduce an additional branch to perform image-

level classification. A model is jointly trained for segmen-

tation/detection and classification tasks to exploit the in-

formation contained in weakly labeled images, therefore

the backbone convolutional layers are optimized with both

image-level and pixel-level images together. The afore-

mentioned methods benefit from a large amount of weakly

labeled data for the case with only a very small group

of fully-labeled data (typically from tens of to around a

hundred images). However, the merit of weakly labeled

data is remarkably compromised with an increased amount

of fully-labeled data. In comparison, our developed self-

training based method can constantly achieve outstanding

performance with even thousands of fully labeled mammo-

grams, which is more practical for developing a commercial

computer-aided diagnostic system.

Many methods have been proposed to generate labels

in various manners. Work in [3] estimates pseudo pixel-

level labels for unlabelled data. Active learning allows a

user to interactively label some new representative samples

[35, 16], however, it is still expensive for medical applica-

tions. On the contrary, NLP techniques have been used to

generate image labels from radiological reports [32, 5] to

build a large scale medical image dataset. However, it con-

tains some false labels due to the ambiguous description in

reports. Unlike the aforementioned approaches, we gener-

ate soft labels from radiological reports using NLP to ob-

tain a large scale image-level labeled data with minor bias.

Moreover, we leverage a similar strategy as [3] to produce

more accurate pseudo pixel-level labels with the help of

soft-label information.

Lesion detection in mammogram. A standard mam-

mography screening procedure acquires x-ray images from

two projection views for each breast, respectively referred

to as the craniocaudal (CC) view and the mediolateral

oblique (MLO) view. Recently, some supervised learning-
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Figure 2. Overview of the proposed semi-supervised learning approach. The framework consists of a supervised learning model (Stage 1)

with fully labeled images and an alternate and iterative training procedure (Stage 2.1 and 2.2) using a mixture of fully labeled images and

weakly labeled images by the NLP technique. We design a high-resolution Bilateral Two-View Network for the mass detection task.

based methods have been proposed to detect mass from

single-view [26] or multi-view mammograms [36, 22]. The

later manner achieves superior performance with the assis-

tance of mutual information from cross-view. Therefore, we

also conduct detection on multi-view mammograms in this

study. Weakly supervised learning approaches have been

applied to detect lesions in mammograms using only image-

level labeled data [1, 19, 4, 29]. Most of them consist of

image classification and lesion localization branches using

a similar strategy as MIL.

3. Proposed Method

We propose a novel semi-supervised learning framework

to leverage a small number of fully labeled and numerous

weakly labeled images (with diagnostic reports) for medi-

cal image detection or segmentation, and apply it for breast

mass detection 1 in mammograms.

1While detection and segmentation are different computer vision tasks,

we use segmentation and detection interchangeably in this paper. In fact,

our framework is independent of segmentation or detection backbones. We

design a breast mass segmentation network and evaluate its performance

using the widely-used and clinically accepted mass detection metrics.

Mathematically, given a fully labeled dataset DF =
{(xm, ym),m = 1, 2, · · · ,M} and a weakly labeled set

DW = {(xn, yn), n = 1, 2, · · · , N}, where x 2 R
3×H×W

is an image and y is its label. ym 2 {0, 1}H×W is manually

annotated at pixel-level by medical experts, while yn is ini-

tially unknown but can be later extracted from the diagnos-

tic report at image-level (i.e., yn 2 {0, 1}1×1). In our case,

the size of labeled dataset is much smaller than the weakly

labeled set (M ⌧ N ). The goal of this study is to estimate

the parameters Θ of the detection/segmentation network

and update the predictions on weakly labeled data alter-

nately, so as to accurately predict pixel-wise label yk from

testing image xk in DT = {(xk, yk), k = 1, 2, · · · ,K}.

Figure 2 depicts the pipeline of our proposed framework.

A supervised framework is first trained using pixel-level

mask annotations (Training Stage 1). To leverage a vast

number of images with only text reports, we develop a nat-

ural language processing (NLP) model to predict the prob-

ability of the presence of breast mass in each image/breast.

We then iteratively mine these data using the probabilis-

tic labels (Stage 2.1) and alternately training the network

(Training Stage 2.2) with both sources of data using novel
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sample mining strategy and soft-label loss functions.

3.1. High-resolution bilateral two-view networks

The first stage of the framework is a supervised pixel-

level classification model trained on DF . It takes a small

number of high-resolution mammogram images and lesion

masks annotated by radiologists as input. We design a deep

high-resolution framework called Bilateral Two-View Net-

works (BTV) for this stage. The BTV is based on the HR-

Net [31] for semantic segmentation. We modify it to take

bilateral mammograms as input (e.g., RCC as the main im-

age and LCC as the auxiliary image, or LMLO as the main

image and RMLO as the auxiliary image, etc., where “L”

and “R” respectively represent left/right breast.)

The fully supervised learning framework is formulated

to optimize model parameters Θ:

min
Θ

MX

m=1

Lseg(f(xn;Θ), ym), (1)

where f(·) is the pixel-level classification network parame-

terized by Θ and Lseg is the supervised loss function.

3.2. NLP labeling from text reports

Fully labeled medical images are usually scarce to train

a supervised model, while a substantial number of medi-

cal images and their associated diagnosis reports are stored

in many hospitals’ Picture Archiving and Communication

Systems (PACS). To take full advantage of these unlabeled

data (or weakly labeled data considering that they have clin-

ical reports), we develop a clinical natural language pro-

cessing (NLP) model called Mammo-RoBERTa to predict

whether or not a patient has breast mass given her mammog-

raphy report on a large-scale dataset DW from the PACS.

We formulate this problem as a text classification problem

and propose a binary classification model by fine-tuning

the pre-trained RoBERTa [21] with whole word masking

in Chinese text [8]. We build separate prediction models for

each (left and right) side of the breast.

As shown in Figure 3, the language classification model

treats each text report as a sample and takes both the

description and impression parts of a report as the in-

put. Specifically, for each description w
des and impression

w
imp, we construct a sequence [CLS] wdes [SEP] wimp,

where [CLS] is the special token used for the classification

output, and [SEP] is the special token used for concatenat-

ing w
des and w

imp. Suppose w
des and w

imp has n and

m words, respectively, the input sequence is formulated as:

[CLS], wdes
1

, ..., wdes
n , [SEP], w

imp
1

, ..., wimp
m .

The pre-trained RoBERTa model with whole word mask-

ing in text [8] consists of 12 encoding layers with H=768

hidden units and 12 attention heads. We use the final hid-

den vector C 2 R
1×H corresponding to the first input to-

ken [CLS] as the aggregate representation of the input se-

quence. We apply a linear classification layer with weights

... 

RoBERTa 

... 

Classification Layer 

Embedding 

Softmax 

... 

... 

���� 

����  �����  �����  ����� ����� ����  

[CLS] ����� ����� [SEP] ����� ����� 
Figure 3. The architecture of the mammography report classifica-

tion model: Mammo-RoBERTa.

W 2 R
2×H on C and use a softmax function to obtain the

probability of an image xi containing mass, formulated as:

ŷi = softmax(CWT ). (2)

During training, since our labeled data is limited, we use

three-fold cross-validation to make full use of the labeled

data DF , and at the same time to obtain more robust results.

The goal is to minimize the cross-entropy loss over all the

training examples:

LNLP =
1

T

TX

i=1

[�yi log ŷi � (1� yi) log(1� ŷi)] , (3)

where T is the number of training data, yi 2 {0, 1} and ŷi 2

[0, 1] are the ground-truth label and predicted probability of

an image xi containing breast mass, respectively.

After training, we obtain three models, each correspond-

ing to one pair of two folds as the training data and one

fold as the hold-out data. At test time, we apply these

three models on the dataset DW , and compute the average

of the probabilities returned by the three models as the fi-

nal probability yn of an image xn containing breast mass:

yn = p(mass|xn) 2 [0, 1]. The unlabeled images thus be-

come weakly labeled ones for our mass detection task by

leveraging the NLP.

3.3. Iterative mining the weakly labeled data

To effectively leverage the large-scale weakly labeled

data and probabilistic labels extracted using our Mammo-

RoBERTa, we iteratively mine the data and feed the most

informative samples to the framework for the next training

stage, to improve the current BTV model. The informa-

tive samples include the data: 1). where the current im-

age model possibly gets contradictory or inconsistent pre-

dictions with the language model; 2). which are likely to

augment the current labeled dataset with potentially accu-

rate pseudo masks. To obtain these informative samples,

we design the following iterative mining strategy:

1. For each of the weakly labeled images xn in DW , we

apply the trained BTV model in Stage 1 to generate a

mass probability map (or prediction map) Mp(xn) and a
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NLP (+) NLP (�)

Mask prediction (+) TP FP

Mask prediction (�) FN TN

Table 1. The definition of tentative TP (true positive), FP (false

positive), FN (false negative), and TN (true negative) samples.

Take the FP as an example, it is defined as an image that the NLP

model predicts with a low probability (i.e., tentative negative mass

image), but the binary mask prediction indicates a mass detection

(i.e., positive mass detection).

binary mass prediction mask Mb(xn) by post-processing

the probability map using a Dense Conditional Random

Field (Dense CRF) [15].

2. After being labeled by Mammo-RoBERTa, each image

xn in DW gets a probability yn, indicating the confi-

dence of mass present within this image (or report, lit-

erally). For images with very high and low probabilities

(yn > p0 or yn < 1 � p0), we tentatively treat them

as positive and negative images, respectively, where the

language model is confident with its predictions. We

then compare the NLP labels and mass prediction masks

at the current stage to mine a smaller number of informa-

tive samples from DW . We define four kinds of tentative

samples {TPs, FPs, TNs, FNs} 2 DW in Table 1.

3. Since the majority of images are free of mass (healthy

patient accounts for a substantial part of the screening

mammography) in DW , the true negatives (TNs) domi-

nate the sample set. However, these TNs are less infor-

mative because the current BTV network is already ca-

pable of recognizing easy negatives. Consequently, we

discard these tentative TNs and only feed the other three

types of samples, which are more informative (large en-

tropy from information theory), to the network for iter-

ative re-training. We add an image-level classification

branch (mass vs. no mass) to the BTV model and fine-

tune the whole model with both samples from DF and

DW (Stage 2.2 in Figure 2). To go into greater detail,

• The fully-labeled images in DF go through the seg-

mentation branch of the BTV model and the newly-

added classification branch for image-level classifica-

tion. The pixel-wise annotations labeled by radiolo-

gists and binary image-level labels indicating the pres-

ence or absence of breast mass are served as ground-

truth. We adopt pixel-wise focal loss for the segmenta-

tion branch (LF
seg) and binary cross-entropy loss for the

classification branch (LF
cls). Adding DF in the iterative

training stage helps not only training the newly-added

classification branch but also avoiding the BTV to be

dominated by weakly labeled data during re-training.

• The weakly labeled images in DW : TPs go through

both the segmentation and classification branches.

Since their ground-truth image and pixel level labels

are unknown, we use pseudo ground-truths, namely,

pixel-wise probabilities from Stage 2.1 as segmenta-

tion mask, and NLP probabilities as classification la-

bels. We design a pixel-wise soft-label focal loss and

a soft-label cross-entropy loss for segmentation (LW
seg)

and classification (LW
cls) based on the pseudo proba-

bilistic labels, respectively (Please refer to Section 3.4

for our loss functions). FNs and FPs go through the

shared DNN backbone (BTV) but only flow into the

classification branch (LW
cls) because the pseudo masks

are either empty or could not provide any correct su-

pervision to the segmentation branch. We use the NLP

probabilities as ground-truth image labels and soft-

target cross-entropy loss for FNs and FPs.

4. Update the BTV model with the latest model and itera-

tively perform step 1-3 Q times until converging (or per-

formance saturated). Note that the TPs, TNs, FPs, and

FNs are tentative and interchangeable with regard to the

output of the current model during training. Ideally, the

number of TPs and FPs will decrease along the iterative

training process. We decrease p0 within each training it-

eration to allow more weakly-labeled data. Please refer

to implementation details in Section 4.2.

3.4. Pseudo labels and soft-label losses

Instead of direct using all the pseudo-binary masks pre-

dicted by BTV in Stage 2.2 and the binary NLP labels to al-

ternately train the framework, we design two soft-target loss

functions to better capture the probabilistic information.

Using binary hard-labels generated by tuning the threshold

is laborious and might be error-prone since 1). the pre-

diction maps of supervised BTV may be inaccurate when

trained with only a few data, 2). radiologist sometimes uses

vague descriptions when he/she is uncertain about the pres-

ence of lesions and refers to further imaging or biopsy in-

vestigation. A soft probabilistic label from the NLP model

implicitly indicates the confidence of the radiologist’s in-

terpretation. Moreover, training with inaccurate hard-labels

might probably cause the network to get stuck in fake ‘local

minimum’. The soft-label strategy also enables the semi-

supervised network to train with the NLP labeled data grad-

ually based on the confidence of the NLP model – gener-

ally, the larger the confidence score (probability), the more

accurate the label it be. The semi-supervised network se-

lects images with more accurate labels first and gradually

accepts noisy labels when it is more robust.

The soft-label cross-entropy loss is similar to the stan-

dard cross-entropy loss:

LCE =
1

N

NX

n=1

[�yn log ŷn � (1� yn) log(1� ŷn)] , (4)

where we replace the hard-label yn 2 {0, 1} with soft prob-

abilistic label yn 2 [0, 1] as the ground-truth label, and ŷn
is the prediction (probability) of the network. This loss can

be also computed at pixel-level for segmentation (i.e., pixel-

level classification).
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Since there are far more negative data than positive data

both at image-level and pixel-level, we adopt Focal loss [20]

to address the issue of the class-imbalance problem. The

Focal loss also considers the weights of easy and hard ex-

amples. We modify it to be compatible with probabilistic

labels yn. The soft-label focal loss is defined as:

LS-FL = αt · (yn � ŷn)
γ · LCE, (5)

where αt and γ are pre-defined hyper-parameters used to

balance the class weights and difficulties, respectively.

The overall loss of the semi-supervised model is:

L = LF
seg + λ1L

F
cls + λ2L

W
seg + λ3L

W
cls. (6)

4. Experiments

4.1. Data

We collected a large-scale database of 4-view mammo-

grams and reports from our collaborating hospitals’ PACS

for several consecutive years, containing 134,520 images

and over 33,630 reports 2. Among these data, we have 2,634

images delineated with pixel-level mass masks by radiolo-

gists and 14,378 images free of mass according to radiolo-

gist’s interpretation, i.e., 3,753 labeled studies in total (each

study has two images for each side of the breast: CC and

MLO view, and any associated reports). In addition to the

labeled imaging studies, we have 28,688 imaging studies

(114,752 images) with mammography reports in Chinese.

The labeled images were split into training and validation

randomly at the patient-level with a ratio of 10:1. To evalu-

ate the performance of the proposed model and to compare

it with other methods, we have a hold-out testing set of 689

studies (2,756 images) manually labeled by radiologists.

4.2. Training

Networks. For the Bilateral Two-View (BTV) net-

works, we modify the HRNet-W48 for semantic segmen-

tation [31] to fit the high-resolution, bilateral view mam-

mograms. More specifically, we concatenate the three-

resolution feature maps of the main image (e.g., LCC view)

and its auxiliary image (e.g., RCC view) produced by the

stage 1-3 of the HRNet, followed by 1 ⇥ 1 convolutions

and non-linear operations (see the top figure of Figure 2).

The structure of the newly-included classification branch

is similar to that of HRNet-W48 for ImageNet classifica-

tion, with 2 output units (instead of 1,000 for ImageNet

classification) to predict the presence or absence of the

mass. This classification branch is connected to stage 4

of the HRNet, which downsamples the four-resolution fea-

ture maps into small resolution and then aggregates them

to obtain a final representation for classification. The pro-

posed framework is independent of the DNN backbone

2Institutional Review Board (IRB) number: LL-XJS-2020011

Average F1 Weighted F1 Accuracy

left 0.9729 0.9873 0.9872

right 0.9581 0.9819 0.9819

Table 2. Results of three-fold cross-validation of the language

model Mammo-RoBERTa. Left and right denote the models for

predicting with the left and right breasts, respectively.

(e.g., ResNet [10], DenseNet [12], or U-Net [27]) and ar-

chitecture (e.g., Faster R-CNN [25] or Mask R-CNN [9]).

We adopt the HRNet since it can maintain high-resolution

representations through the whole process, which are cru-

cial for our position-sensitive mass detection task.

Implementation and hyper-parameters. We imple-

ment both the image model and the language model in Py-

Torch. All the mammograms are resized to 800⇥1024 pix-

els as a compromise between fast processing and high res-

olution. We initialize the network with the parameters pre-

trained on the ImageNet classification task. We use sev-

eral standard data augmentation techniques including ran-

dom horizontal and vertical flipping, Gaussian noise, affine

transformation (rotation, scaling) to avoid overfitting. We

use Adam optimizer [14] to train Stage 1 for 50 epochs and

set the initial learning rate to 0.0001, then reduce it to 1/5 of

the initial value every 10 epochs. For the iterative training

using the mixed supervised data (the combination of fully

labeled and NLP labeled images), we perform alternate op-

timization for Q=2 iterations (no noteworthy improvement

was observed after 2 iterations), with 15 epochs for each it-

eration. We set the learning rate for the classification branch

10 times to other layers of BTV. p0 is initially set to 0.95 and

decreases by 0.1 every 5 epochs to allow more NLP labeled

examples to be fed into training. Through all the experi-

ments, the batch size is 24 and the ratio of positive to nega-

tive samples is 1:5 in each mini-batch. We experiment with

different combinations (αt={0.25, 0.5, 0.75} and γ={1, 2,

5}) and find that the default setting of αt=0.25 and γ=2 in

[20] is optimal. The weights of the loss components λ1, λ2,

and λ3 are empirically set to 0.3, 0.6, and 0.2, respectively.

Computation time. In terms of computation time, it

takes about 15 hours to train the BTV for 50 epochs on 25%

of the fully labeled data and 9 hours to train an additional

iteration (15 epochs) on mix-supervised data, on 4 NVIDIA

Quadro RTX 8000 GPUs. At the inference phase, an image

goes through the BTV without the classification branch. On

average, it takes about 0.1 seconds to predict the mass prob-

ability map and binary mask for one mammogram image.

4.3. Results of the language model

Based on the labeled mammograms we have on hand,

we collected 3,753 mammography reports corresponding to

these images. We randomly split them into three folds and

evaluate the models with their corresponding hold-out set

and get three results, each for one hold-out set. Then we ag-

gregate these results as the evaluation result for the training
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Labeled Weak FP FP FP FP Average

data data @0.1 @0.2 @0.5 @1 Sen.

10% 7 0.426 0.501 0.625 0.705 0.564

25% 7 0.550 0.650 0.752 0.826 0.695

50% 7 0.660 0.745 0.810 0.808 0.756

100% 7 0.720 0.774 0.823 0.827 0.786

10% 3 0.624 0.700 0.776 0.801 0.725

25% 3 0.673 0.725 0.801 0.826 0.753

50% 3 0.700 0.775 0.813 0.830 0.780

100% 3 0.726 0.778 0.820 0.850 0.794

Table 3. The test set results of the BTV model with different pro-

portions of fully labeled training data without (7) or with (3)

weakly labeled data. Sensitivity at different false positives (FP)

per image and average sensitivity are reported. The best result un-

der each evaluation metric is underscored.

data. We evaluate the language model Mammo-RoBERTa

with widely used F1 score and accuracy using a default

threshold of 0.5 for quantitative measurement, though we

adopted the probabilities from prediction as soft-labels in-

stead of hard-labels after thresholding. We first calculate the

F1 score of each label (mass or no mass) and then compute

the average F1 as well as the weighted F1 as our metrics.

Weighted F1 means the average F1 score is weighted by the

number of samples of each label.

As can be seen from Table 2, our language classification

model achieves very high accuracy (>0.98) in predicting

the presence or absence of mass in text reports. The aver-

age F1 scores (>0.95) and weighted F1 scores (>0.98) also

show that the performance of our language classification

model is very robust in general. All these results demon-

strate that the weakly labels extracted by our NLP model

provide informative image-level supervision to the image

model with minimum noise.

4.4. Evaluation

Evaluation metrics. We use the widely used Free-

response Receiver Operating Characteristic (FROC) curve

to evaluate the mass detection performance [2]. More

specifically, we measure the sensitivities at 0.1, 0.2, 0.5, and

1 false positive per image (FPPI) to show the recall at differ-

ent precision levels. There is a trade-off between a higher

recall/sensitivity (towards 0% false negatives) and FP rate.

Too many FPs might distract the radiologists. The average

of these values is referred to as average sensitivity. Follow-

ing prior work [2, 36], a mass is successfully detected if the

intersection over the union (IoU) of a predicted mass region

and the ground-truth mass mask is greater than 0.2.

Results using different proportions of fully and

weakly labeled training data. We first evaluate the per-

formance of the BTV model with different proportions of

fully labeled training data without weakly labeled data on

the test set. Detailed results are shown in row 2 to 5 of

Figure 4. FROC curves of different proportions of weakly labeled

training data when the amount of fully labeled data is fixed at 25%.

FL: fully labeled by radiologists. WL: weakly labeled by NLP.

Table 3. As can be seen from these results, the perfor-

mance improves with more fully labeled training images

in general. When there are only a very limited number

(e.g., 10%) of fully labeled images, adding extra fully la-

beled data (e.g., to 25%) markedly improves the perfor-

mance. But when we have a mid-size (e.g., 50%) labeled

data, the benefit of adding extra annotations (e.g., to 100%)

is less obvious. These findings are consistent with previ-

ous work [18] in that fully labeled data is essential for de-

tection/segmentation. We then evaluate the performance of

the semi-supervised model by training with weakly labeled

data using different proportions of fully labeled data. Row

6 to 9 of Table 3 demonstrate the results. Adding weakly

labeled data using our iterative mining strategy consistently

improves the performance from the baseline BTV model.

Even though the baseline model trained with a small num-

ber (e.g., 10%) of labeled images is less accurate, adding

large-scale weakly labeled data immensely increases the

performance. We can see that training using 25% (or 50%)

of the fully labeled images together with the weakly labeled

data, our semi-supervised model achieves performance on

par with training using 50% (or 100%) of the fully labeled

images. This suggests that the proposed semi-supervised

learning model can effectively reduce the effort of manual

annotations from medical experts. When trained with 100%

of the fully labeled data, providing weakly labeled data still

improves the model with a small margin. The curves in Fig-

ure 4 show the performance trends of introducing 0%, 25%,

50%, 75%, and 100% weakly labeled data when fully la-

beled training data is fixed at 25%. They demonstrate that

the performance of our self-training method can be persis-

tently increased with more weakly labeled data available.

Soft labels vs. hard labels. We investigate the impact

of using soft labels in this study. We compare it with us-

ing hard labels by taking thresholds from soft labels. For

the NLP labels, we set the threshold to 0.5 and binarize

3861



mask NLP FP@0.1 0.2 0.5 1 Ave.

• • 0.668 0.720 0.798 0.806 0.748

• � 0.680 0.732 0.809 0.828 0.762

� • 0.671 0.724 0.798 0.819 0.753

� � 0.691 0.737 0.815 0.832 0.769

Table 4. Comparison of hard (•) versus soft labels (�) on the vali-

dation set using weakly labeled images with 25% labeled images.

Method Data FP@0.1 0.2 0.5 1 Ave.

Global [29] WL only 0.475 0.530 0.551 0.605 0.540

Glb+Local [29] WL only 0.512 0.563 0.624 0.687 0.597

Mixed [23] All 0.608 0.690 0.741 0.794 0.708

MIL [18] All 0.672 0.732 0.779 0.828 0.753

TCSM [17] All 0.675 0.740 0.800 0.820 0.759

Ours All 0.726 0.778 0.820 0.850 0.794

Table 5. Comparisons with state-of-the-art weakly- and semi-

supervised learning methods in the medical imaging domain.

the labels into 0 and 1 (negative and positive mass image).

For the pseudo masks, we take the binary masks after the

Dense CRF layer instead of the probability maps as supervi-

sions. The soft-label loss function is converted to the stan-

dard hard-label version for each component. When 25%

fully labeled images are trained together with the weakly

labeled data, the comparison of results using hard labels

versus soft labels on the validation set is shown in Table 4.

Results show the benefit of using soft labels and soft-label

loss functions compared to their hard-label counterpart. Al-

though some inaccurate NLP labels may mislead the image

model, it might be partly alleviated by using the soft labels.

4.5. Comparison with the state-of-the-art

We present a comparison with state-of-the-art semi-

supervised 2D medical image detection/segmentation ap-

proaches [18, 23, 17] using all our training images in

Table 5, by reproducing the results on our test set. Li

et al. [18] utilize a unified framework for disease local-

ization and classification in a multiple instance learning

(MIL) manner. A patch slicing layer is inserted before the

recognition network to capture the local disease informa-

tion from small patch grids. Mlynarski et al. [23] jointly

train a framework for segmentation and classification to

make full use of mixed supervised data (fully-labeled and

weakly labeled). Li et al. [17] develop a self-ensembling

approach that encourages a consistent prediction of the net-

work for the same unlabeled input under various perturba-

tions. A weighted combination of supervised and unsu-

pervised losses is designed to optimize the semi-supervised

segmentation framework. It is designed for the task where

each image has a foreground. It does not use image-level

labels and suffers from a bad local minimum. We also

include the results from a weakly supervised localization

model GMIC [29] which trained only with weak image-

level labels for mass detection in mammograms. GMIC

Input 
image 

GT 
mask 

BTV 
baseline Ours Input 

image 
GT 

mask 
BTV 

baseline Ours 

Figure 5. Two visualized exemplar mass detection results of our

method. Detailed illustrations are described in Section 4.5.

contains a low-capacity global network operating at a whole

mammogram and a high-capacity local network focusing

on small patches. The final representation fusion is used

to train a globally-aware multiple instance classifier. For

all these methods, we replace their backbone DNNs with

the revised HRNet as used in our model. As shown in Ta-

ble 5, our method achieves the best performance compared

with other methods. The comparisons with the weakly su-

pervised model [29] in Table 5 and Table 3 show that fully

labeled data is still essential in training a good model.

Two sets of qualitative results of our method are dis-

played in Figure 5. Each set contains the input mam-

mogram, the ground-truth mass masks, the image over-

lay heatmaps (probability maps) by the supervised base-

line, and the semi-supervised method, from left to right.

In the first example, our iteratively trained semi-supervised

model improves the baseline method with clearer bound-

aries and more confident predictions (the warmer color the

larger score). It is clear in the second example when there is

no mass in the image, the semi-supervised model generates

less false positives (shown in red boxes) than the baseline

model. This advantage owes to our iterative training using

self-selected samples to suppress false positives.

5. Conclusion

In this paper, we studied a challenging problem in

annotation-efficient medical imaging: how to leverage unla-

beled or weakly labeled data. We developed an NLP model

to extract probabilistic image-level labels from radiology

reports as soft labels. Based on the fully and weakly labeled

data, we designed a sample mining strategy for alternate

training of a semi-supervised learning framework. The pro-

posed method takes advantage of soft labels generated by

the NLP and pixel-level prediction, and then models them

as a means of uncertainties for weak data. It demonstrates

better mass detection accuracy than the supervised baseline

and other comparing methods. Future work includes ex-

tracting more information (e.g., coarse locations of lesions)

from report to guide the learning of the image model as a

whole, and investigating self-supervised pre-training from

unlabeled data to improve diagnostic accuracy.
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