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Abstract

Graph-neural-networks (GNN) is a rising trend for few-

shot learning. A critical component in GNN is the affinity.

Typically, affinity in GNN is mainly computed in the feature

space, e.g., pairwise features, and does not take fully advan-

tage of semantic labels associated to these features. In this

paper, we propose a novel Mutual CRF-GNN (MCGN). In

this MCGN, the labels and features of support data are used

by the CRF for inferring GNN affinities in a principled and

probabilistic way. Specifically, we construct a Conditional

Random Field (CRF) conditioned on labels and features of

support data to infer a affinity in the label space. Such

affinity is fed to the GNN as the node-wise affinity. GNN

and CRF mutually contributes to each other in MCGN. For

GNN, CRF provides valuable affinity information. For CRF,

GNN provides better features for inferring affinity. Exper-

imental results show that our approach outperforms state-

of-the-arts on datasets miniImageNet, tieredImageNet, and

CIFAR-FS on both 5-way 1-shot and 5-way 5-shot settings.

1. Introduction

Few-shot learning attempts to classify unlabelled data

(i.e., query samples) when only a few labelled data (i.e.,

support samples) are available. Instead of relying on reg-

ularization to compensate for the data scarcity, researchers

have explored ways to learn a distribution of similar tasks

(also called “meta-learning”). Meta-learning method intro-

duces the concept of episodic, which means that one round

of model training contains only few samples (e.g., 1 or 5)

for each class. By episodic training, meta-learning methods

aim to train a meta-learner that can quickly propagate labels

from support samples to query samples.

Recently, Graph Neural Network (GNN) [60, 31] be-

comes a rising method to transfer the knowledge from the

†This work was done when Shixiang Tang was an intern at SenseTime.
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Figure 1. Illustration of Mutual CRF-GNN (MCGN). Green and

purple indicate different classes. Unary compatibility contains la-

bel information and binary compatibility contains feature informa-

tion from GNN. (a): The marginal distribution for pairwise vari-

ables can be used to predict the affinity for GNN. (b): the marginal

distribution of single variable is used for label prediction.

support samples to the query samples. In particular, Garcia

and Bruna [15] first modelled the few-shot learning prob-

lem as a supervised graph message passing task by defining

each sample in the support set and query set as a node in

GNN.

Affinity, which measures the similarity between two

samples/nodes, is a key component in GNN. Therefore, lots

of approaches are proposed to have better affinity represen-

tation. EGNN [26] proposes to utilize labels for GNN affin-

ity initialization and propagate the edge labels for explicitly

modeling the intra-cluster similarity and inter-cluster dis-

similarity. DPGN [53] propose to incorporates distribution

propagation with GCN and combines both distribution-level

relations with instance-level relations.

In this regard, we leverage CRF [48], which is a pow-

erful probabilistic graphical model, to manipulate depen-

dencies between variables, to collaborate with GNN. We

model the labels as random variables in CRF. In our ap-

2329



proach, the marginalized distributions in the unified CRF

model have two functionalities. First, the marginalized dis-

tribution for single variable reflects the predicted possibility

of label. Second, the marginalized probability of pair-wise

variables defines the similarity of two samples, which is the

affinity for GNN. Our design of MCGN is from the follow-

ing two observations for CRF and GNN.

First, for CRF, the marginalized probabilities for single

variable and pair-wise variables should be obtained by fus-

ing feature information and label information. The unary

compatibility term of each variable is used to model the

relation between the variable/sample and the correspond-

ing observed label information. The binary compatibility

term utilizes the feature information. Specifically, it mod-

els the relation between two random variables/samples and

is intuitively defined by the feature similarities of two cor-

responding random variables/samples. Since marginaliz-

ing the states of variables in CRF requires to multiply both

unary and binary compatibility terms, the marginal distribu-

tion fuses the feature information and label information in a

principled and probabilistic way.

Second, for GNN, its affinity should be defined by the

probability in the label space, reflecting the possibility that

two samples belong to the same class. Unlike typical GNN

that determines the pairwise affinity in the feature space,

e.g. using similarity of features, affinity determination by

probabilities in label space merits two advantages. First,

affinity defined in the label space is less sensitive to out-

liers. Take two samples that are visually similar but belong

to different classes as an example. When using feature sim-

ilarities to determine affinities, their affinity could be large,

which leads to inappropriate feature aggregation between

two samples. However, such affinity could be reduced in

the label space because it is additionally guided by the pro-

vided semantic labels, i.e., two samples have different class

labels. Second, the labels given in the support set can guide

the affinities in a probabilistic instead of deterministic man-

ner. Different with EGNN and DPGN that initialize affini-

ties to zero or one according to the corresponding labels,

the unary compatibility term in CRF can set a tolerance for

mislabelled samples, which makes our classification more

robust than original GNN-based models.

Considering the above observations, we propose a uni-

fied model named Mutual CRF-GNN (MCGN), where the

GNN and CRF are mutually correlated and can contribute to

each other. The network consists of multiple layers and each

layer alternately implements the CRF-based affinity infer-

ence and GNN-based feature aggregation. As illustrated in

Fig. 1, we use features in GNN to define the binary com-

patibility in CRF. Next, with unary and binary compatibil-

ity, we estimate the marginal distribution of each variable.

Afterwards, the obtained marginal distribution of each vari-

able infers affinities in GNN. At last, more robust features

are obtained by aggregation in GNN, which further leads

to better compatibility in the next CRF layer. In such a

feed-forward process, CRF produces better affinities with

compatibilities defined by robust features in GNN and GNN

produces robust features by taking affinity inferred by CRF.

In summary, our main contributions are two folds. First,

we propose to introduce CRF to GNN, where CRF helps

to implement dependencies between the predictions and de-

fine affinities of GNN in label space. Second, we propose a

novel Mutual CRF-GNN where feature aggregation and re-

lation inference could contribute to each other. Extensive

experiments conducted on three popular datasets proved

the effectiveness of Mutual CRF-GNN by a significant im-

provement in few-shot classification accuracy.

2. Related Work

Few-shot Learning. Research literature on few-shot learn-

ing is highly diverse. We focus on algorithms using super-

vised meta learning framework [21, 13, 49]. In particular,

we divide these methods into three categories. (1) Met-

ric learning based methods [52, 45, 47, 53, 9, 58, 42, 51]

focus on obtaining a generalizable encoder to transform

all samples into a common metric space and then use the

distances between query features and support features to

perform classification. (2) Memory network based meth-

ods [25, 34, 35] try to store knowledge from seen tasks and

then generalize it to new tasks. (3) Gradient descent based

methods [13, 40, 29, 18, 59] have a specific meta-learner

that learns to adapt a specific base-learner to any few-shot

learning task. Our method is closely related to Metric learn-

ing based methods, especially leveraging GNNs to measure

similarities among few-shot samples.

GNN for Few-shot Learning. Recent development of Met-

ric learning based methods is to leverage GNN [7]. GNNs

can iteratively perform feature aggregations from neigh-

bors, and therefore can explore complex similarities among

features in the graph. Node-labeling GNN [15] aggregates

node features to explore sample similarities. EGNN [26]

additionally aggregates edges in GNNs for few-shot learn-

ing. DPGN [54] proposes to leverage distribution relations

for affinity, which considers first-order global information.

Our approach is different from the methods in two aspects.

First, existing methods fused feature information and label

information to determine affinities in a unprincipled and im-

balance way. Node-labeling GNN concatenates the high-

dimensional features and low-dimensional labels as a uni-

fied node feature, where label information is underestimated

during aggregation. EGNN and DPGN ignore the labels

information when feature transformation and only unitizes

them for GNN initialization. Our method models affinity

as the pair-wise marginal probabilities in CRF, where pair-

wise marginal probabilities fuse feature and label informa-

tion by multiplying unary compatibilities and binary com-
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patibilities in a principled way. Second, the labels given

the support set can guide affinity in a probabilistic manner.

Different from EGNN and DPGN that initialize affinity by 0

or 1, the unary compatibility in CRF can set a tolerance for

mislabelled samples, making our classification more robust.

CRF Approaches. Conditional Random Field (CRF) [27,

11, 12, 10, 6] is a popular probabilistic model to infer var-

ious dependencies within a image group or pixels in a im-

age. Works that combine probabilistic models with neural

networks to predict structured data can be found in various

domains [3, 24, 55, 4]. [14] is the most relevant work to our

method. It also uses CRF to enhance GNN but in the way

of using the expectation of variables to generate new node

features for transformation in the next GNN layer. Differ-

ent from previous work that use CRF to predict labels or to

generate new node features for GNN, we incorporate CRF

in GNN models to calculate better affinities for GNN by

marginal distributions, which has not been investigated be-

fore. Furthermore, CRF should collaborate with GNN to

exploit the relations of the samples because it does not have

a multiple-layer structure and can not be refined in an itera-

tive way as GNN.

3. Methodology

3.1. Preliminaries

Problem Definition The target of few-shot learning is

to learn a model that can generalize well to new tasks

(e.g., classes) with only a few labelled samples. Each

few-shot task has a support set S and a query set Q.

The support set S contains N classes with K samples

for each class (called N -way K-shot setting). Specifi-

cally, S = {(x1, y1), (x2, y2), ..., (xN×K , yN×K)}, where

x∗ represents a sample and y∗ represents its label. The

query set Q has T samples, which can be denoted by

Q = {xN×K+1,xN×K+2, ...,xN×K+T }. In the training

stage, labels {yN×K+1, yN×K+2, ..., yN×K+T } are provided

for query setQ. In the testing stage, we determine the label

of the query sample according to the few labelled support

samples. The labels of samples in the training stage and

testing stage are mutually exclusive.

Modeling with GNN In few-shot learning, Graph Neu-

ral Network [17, 44] is a powerful post-processing tool to

achieve robust features. Let F = (f1, f2, ..., fN×K+T ) ∈
R

(N×K+T )×p be the collection of N ×K+T feature vec-

tors in one few-shot task, where p is the feature dimension.

The pairwise relationships of any two features are encoded

in the affinity matrix A = {aij |1 ≤ i, j ≤ N×K+T} ∈
R

(N×K+T )×(N×K+T ). A GNN usually contains several prop-

agation (hidden) layers. Given an input F0 = F and the

associated graph affinity A
0 = A, GNN conducts the fol-

lowing layer-wise propagation in the hidden layers as

F
l+1 = σ(D−1/2

A
l
D

−1/2
F

l), (1)

where l = 0, 1, ..., L−1, Dl = diag(d1, d2, ..., dn) is a di-

agonal matrix with di =
∑n

j=1 a
l
i,j and σ is a trainable fea-

ture transformer. Typically, affinity A
l is often computed

by the node-wise features and therefore may not be opti-

mal for two reasons: (1) it only models pairwise informa-

tion and ignores the neighboring information in GNN. (2) it

only leverages feature information but does not incorporate

the semantic information, i.e., labels, when computing A
l.

3.2. Introducing CRF to GNN

Conditional random fields (CRFs) are a class of statisti-

cal modeling method often used for structured prediction.

To produce the affinities Al that consider contexts, we uti-

lize the marginal distribution of each random variable in

CRFs to compute affinity in all GNN layers. Compared with

conventional GNN that utilizes features to estimate affinity,

using the marginal distribution of random variables brings

three advantages. First, marginal distribution takes context

into account whereas features only describes individual in-

formation. Second, marginal distribution incorporates both

feature similarities (binary compatibility) and semantic la-

bels of support samples (unary compatibility) into a uni-

fied quantity. Last, the space of marginal distribution is re-

stricted by the label space. When used to estimate affin-

ity, marginal distribution can help to explicitly illustrates

whether two samples belong to the same class instead of

whether two features are similar in typical GNN.

In particular, the l-th CRF layer is built upon a proba-

bilistic graph Gcrfl = (Vcrf
l ,Ecrf

l ) composed by all the

samples in one few-shot learning task. V
crf
l = {uli}

N×K+T
i=1

are the nodes of the graph, where uli is the random variable

associated to the sample i. It represents the labels assigned

to the sample i, and may take any value from the label set.

The conditional distribution for the CRF is given by:

P(ul1, . . . , u
l
N×K+T |Fl,Ys) ∝

N×K∏

i=1

ψ(uli)
∏

〈j,k〉∈E
crf
l

φ(ulj , u
l
k),

(2)

where Ys = {y1, y2, ..., yN×K} is a label collection for

the support set, ψ(uli) is the unary compatibility between

the random variable uli and its label yi, and φ(ulj , u
l
k) is

the binary compatibility to describe the relationship be-

tween random variables ulj and ulk. In the following, we

first introduce two compatibility functions in the CRF, then

describe the details to estimate the marginal distribution

P(uli|Fl,Ys) and the affinity A
l for the next layer GNN.

Unary Compatibility ψ(uli). Unary compatibility ψ(uli) is

to describe the relation between the variable uli of support

samples and its corresponding observation, i.e. ground truth

labels yi. Mathematically, it can be formulated as

ψ(ul
i = m) =

{

1− η if m = yi
η/(N − 1) if m 6= yi

, (3)
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Figure 2. The overall framework of MCGN. This figure shows an example of a 2-way 2-shot setting, plus a query sample. The circles in

GNN represent features extracted from backbone or aggregated by the previous layer. The squares in CRF means the labels of support

samples. The label (dashed square) for the query sample is unknown. Purple and green colors for circles (squares) represent different

classes. The pentagons in CRF denote the random variables which represent the labels assigned for the corresponding embedding in GNN.

where η = 0.3 is a small positive value which is the prob-

ability tolerance when the random variable takes the incor-

rect label. It is noteworthy that we define ψ(uli 6= yi) =
η/(N−1) because we consider there is tiny possibility for

uli to take incorrect labels. We set ψ(uli = yi) = 1−η

because we normalize summation
∑N

m=1 ψ(u
l
i = m) to 1.

Binary Compatibility φ(ulj , u
l
k). Binary compatibility

φ(ulj , u
l
k) is to describe the relations between the connected

random variables, ulj and ulk. Mathematically, it can be for-

mulated as

φ(ul
j = m,ul

k = n) =

{

tlj,k if m = n,

(1−tlj,k)/(N−1) if m 6= n,
, (4)

where m and n denote the labels assigned to ulj and ulk re-

spectively, tlj,k = ReLU(cos(f lj , f
l
k)), and cos(f lj , f

l
k)) indi-

cates the cosine similarity between node features f li and f
l
k.

According to Eq. 4, similar features lead to high compati-

bility when two samples take the same label and dissimilar

features produce high compatibility when two samples take

different labels.

Marginal Distribution P(uli = m|Fl,Ys). To incorpo-

rate states of other variables, we marginalize out all random

variables other than uli in Eq. 2 and derive marginal distri-

bution P(uli|Fl,Ys) by

P(ul
i|Fl,Ys) ∝

∑

V
crf
l

\{ul
i
}

P(ul
1, u

l
2, . . . , u

l
N×K+T |Fl,Ys), (5)

where P(uli = m|Fl,Ys) describes the probability of sam-

ple i being assigned with the label m after considering all

possible states of random variables other than uli. By con-

sidering all possible states of random variables other than

uli, P(uli = m|Fl,Ys) can exploit the contextual informa-

tion of samples in both support set and query set. We adopt

the loopy belief propagation [37] to calculate marginal dis-

tribution of each node in CRF (see Supplementary Mate-

rial).

Affinity A
l. Since marginal distribution P(uli|Fl,Ys) in-

tegrates both the contextual information in CRF and label

information of support samples, we can use the marginal

distribution to estimate a semantic affinity matrix A
l. More

specifically, the relation âlij between f
l
i and f

l
j can be de-

fined as the possibility of samples i and j belonging to the

same class. Mathematically, it can be computed by addition

theorem of probability:

âlij = P(uli = ulj) =
N
∑

m=1

P(uli = m)P(ulj = m). (6)

Following implementation in EGNN [26], we aggregation

the relation âlij by its neighboring relations to get the final

affinity for GNN, i.e., alij ←
âl
ija

l−1

ij
∑

k al−1

ik
âl−1

ik
/
∑

k al−1

ik

, where k

is the neighbor of i.

3.3. Mutual CRFGNN

We propose a Mutual CRF-GNN (MCGN) that enables

GNN and CRF to help each other. For GNN, CRF provides

valuable affinity A
l for feature transformation F

l+1. For

CRF, GNN provides better features Fl for inferring affinity
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A
l. In the following, we describe how they can contribute

to each other along with the overall pipeline of our method.

Initialization. Given the images in the support set and the

query set, the raw feature F
1 is extracted by a CNN-based

feature extractor femb, i.e.,

F
1 = femb(X ), (7)

where X = S ∪Q contains all the samples in one task. The

initial affinity matrix A
0 in GNN is initialized by semantic

labels from the support set, i.e.

a0ij =







1 if yi = yj and i, j ≤ N×K,

0 if yi 6= yj and i, j ≤ N×K,

0.5 otherwise,

(8)

Feed-forward Implementation of MCGN. Given the raw

feature F
1 and the initialized affinity matrix A

0, the final

feature F
L+1 for classification are transformed by MCGN

for L iterations. We describe the detailed process of MCGN

where CRF and GNN can mutually help each other for ex-

tracting discriminative features in few-shot learning. For

the l-th layer, the whole process can be divided into 4 steps.

• Step1: Given the affinity A
l−1 and output features F

l

from (l−1)-th iteration, we estimate the unary and bi-

nary compatibility in the CRF by Eq. 3 and Eq. 4, re-

spectively. The estimated compatibility functions de-

fine the affinities between two connected random vari-

ables in CRF.

• Step2: The marginal distribution (Eq. 5) for random

variables in CRF is inferred by loopy belief propaga-

tion [37], using the compatibility functions obtained

from Step 1 and the labels of samples in the support

set.

• Step3: The affinities A
l in GNN is derived from the

marginal distributions obtained in step 2 by Eq. 6.

• Step4: The output features F
l+1 of the l-th iteration

are computed by aggregating their neighboring fea-

tures with A
l as their weights by Eq. 1.

We repeat above process layer by layer for L iterations and

get the final output FL+1 and affinity matrix A
L for net-

work optimization and inference.

3.4. Training and Testing

Training. We supervise the output of GNN and CRF si-

multaneously. In particular, GNN is supervised by a verifi-

cation loss Lgnn on affinity A
l, and CRF can be supervised

by a cross-entropy loss over the marginal distribution. This

is because the marginal distribution P(uli|F
l,Y0) is repre-

sented as a N -dimensional vector (pli,0, p
l
i,1, ..., p

l
i,N ), and

pli,j represents the possibility uli assigned label j, which is

essentially a classification problem. The two loss functions

can be defined as:

Lcrf =

N×K+T
∑

i=N×K

L+1
∑

l=1

µcrf
l CE(P(uli|F

l,Y0), yi), (9)

Lgnn =

N×K+T
∑

i=N×K

N×K
∑

j=1

L
∑

l=1

µgnn
l BCE(alij , cij), (10)

where CE indicates the cross entropy, µcrf
l is the weights

of each layer; BCE indicates the binary cross entropy loss,

µgnn
l is the weights of each layer, cij is 1 if yi = yj and 0

if yi 6= yj . The total objective function can be a weighted

summation of two losses, i.e., L = λcrfL
crf + λgnnL

gnn,

where λcrf , λgnn of each loss are set to balance their im-

portance.

Testing. The class of each sample can be inferred by its

final marginal distribution. We take the label that can max-

imize the mariginal distribution

ŷi = argmax P(uL+1
i |FL+1,Y0). (11)

4. Experiments

4.1. Datasets and Experimental Setup

Datasets: Our experiments are conducted on several

widely used few-shot learning benchmarks, including

miniImageNet [52], tieredImageNet [41], and CIFAR-

FS [28]. miniImageNet consists of 100 classes with 600

labeled instances in each category. We follow the standard

protocol that utilizes 64 classes as the training set to train

the feature extractor, 16 classes as the validation set, and

20 classes as the testing set. tieredImageNet is a larger

dataset compared with miniImageNet, and its categories are

selected with a hierarchical structure to split training and

testing datasets semantically. We follow the dataset parti-

tion in [41] with 351 classes for training, 97 classes for val-

idation and 160 classes for testing. The average number of

images in each class is 1281. CIFAR-FS is a dataset with

images from CIFAR-100. It contains 100 classes with 600

instances in each class. We follow the partition protocol

given by [28], using 64 classes to construct the training set,

16 classes for validation and 20 classes for testing.

Evaluation Protocols: Evaluations are conducted in

5way-1shot/5shot settings on standard few-shot learning

datasets, including miniImageNet, tieredImageNet and

CIFAR-FS. The evaluation process is exactly the same as

previous works [26, 28, 56]. In N -way K-shot setting, a

meta-test task is composed of N classes, in which there are

K samples. We randomly sample 600 meta-test tasks from

the test dataset and then report the mean accuracy as well

as the 95% confidence interval. For each meta-test task,

we additionally sample 15 queries for each of 5 classes in

5way-1shot/5shot settings.

2333



20% 40% 60% 100%
Label Ratio

40

50

60

70

80
Ac

cu
ra

cy
 (%

)
GNN
EGNN
MCGN

Figure 3. Semi-supervised few-shot learning accuracy in 5way-

5shot on miniImageNet. MCGN surpasses GNN and EGNN by a

considerable margin consistently.

Network Architecture: We use two popular network

backbones for a fair comparison, which are ConvNet

and ResNet12 that are widely used in few-shot learning

tasks [26, 28, 43, 8]. ConvNet is composed by four Conv-

BN-ReLU blocks without any skip-connections, where the

last of two blocks contain extra two Dropout layers [46].

ResNet12 is the same as the one proposed in [20]. The

output of both ConvNet and ResNet12 is followed by

a global average pooling and a fully-connected layer

with batch normalization [23] to obtain a 128-dimension

instance embedding.

Data Augmentation: Data augmentations are implemented

before training as in [16, 56], which consists of horizontal

flip, random crop and colour jitter. Each meta-train episode

consists ofN classes withK samples. We randomly sample

40 meta-train episodes in each iteration. Adam optimizer

is leveraged in all experiments with the initial learning of

10−3. The learning rate decay is set by 0.1 per 15000 itera-

tions and the weight decay is set to 10−5.

4.2. Episodic Training for Fewshot Learning

Episodic training is firstly introduced by Vinyals et

al. [52] in few-shot learning. The training set and testing set

are organized by episodes, each of which contains a support

set and a query set. We compare the proposed MCGN with

several state-of-the-art models including graphical and non-

graphical models on the task of few-shot classification. The

results (in the transductive setting) are reported in Table 2,

where the mean value and deviations are averaged over 600

episodes. Our method outperforms current state-of-the-arts

for both 5-way 1-shot setting and 5-way 5-shot setting on

miniImageNet, tieredImageNet.

We analyze the results of our main competing meth-

ods, including EGNN [26], TPN [15] and DPGN [54] with

ConvNet backbone in Table 2. EGNN employs features

and affinities aggregations but these affinities are deter-

Method
miniImageNet tinyImageNet

5w1s 5w5s 5w1s 5w5s

EP [42] 66.50 81.28 76.53 87.32

LST [32] 70.1 78.7 77.7 85.2

EMD [58] 65.91 82.41 71.16 86.03

FEAT [56] 66.78 82.05 70.80 84.79

Tian et.al (simple) [50] 62.02 79.64 69.74 84.41

Tian et.al (distillation) [50] 64.82 82.14 71.52 86.03

MCGN 68.87 86.58 77.12 89.22

Table 1. Feature-pretrained experiments on miniImageNet and

tinyImageNet for both 5-way 1-shot (5w1s) and 5-way 5-shot

(5w5s) few shot learning.

mined by the feature-wise similarities, whose performance

is close to GNN-only method as reported in Table 3. Com-

pared with EGNN, the main difference of our method is

to employ the class-level affinity based on CRF inference,

leading to 7.69%, 7.23% accuracy gain on miniImageNet,

tieredImageNet respectively for 5-way 1-shot learning. For

5way-5shot learning, MCGN outperforms EGNN by 6.69%
and 5.74% on miniImageNet and tieredImageNet. TPN

propagates labels of the support samples to query samples

by Laplacian matrix and takes the advantage of the support

sample labels. However, it doesn’t have a multi-layer struc-

ture and thus cannot refine the features by affinities layer

by layer. Our method improves TPN by a large margin

13.17% and 11.3% on miniImageNet and tieredImageNet

respectively for 5 way 5 shot few-shot learning. DPGN [54]

leverages the distribution propagation to involve the contex-

tual information for inference, but it does not leverage the

given labels of the support samples. The lack of such se-

mantic information may make the DPGN less effective than

our method. Our method outperforms DPGN by 1.2% and

1.8% for 5-way 1-shot and 5-way 5-shot setting.

Inductive scenario. In the inductive scenario, we have to

learn a function that produces a label for any given input.

In such scenario, we treat each query sample independently

and can not make the use of the relationships among query

samples. The comparison of our proposed method and other

states of the art is illustrated in Table 2. The proposed

MCGN outperforms other inductive methods by about 1%.

This is because MCGN can better utilize the contextual in-

formation in the feature space. On the other hand, the pre-

vention of using the relation between query samples reduces

the improvements in the inductive scenario by our method

because our method relies on fully exploiting complex rela-

tions among all features in the graph.

Semi-supervised few-shot learning. We follow the same

setting with [15] for semi-supervised experiments. In this

setting, the labels of samples in support set are partially

given, and are balanced among different classes to have

same amount of labelled and unlabelled samples for each

class. Results are presented in Figure 3, from which we
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can conclude: (1) With the increase of labelled ratio of

samples in the support set, the testing accuracy of GNN,

EGNN and MCGN improves by a large margin. (2) Our

method, MCGN, outperforms EGNN [26] in different la-

bel ratio, namely 20%, 40%, 60%, 100%. The superiority

of our method is relative small (about 1%) compared with

EGNN when the label ratio = 20%, 40%. This is because

MCGN cannot take the full advantage of the labels in the

support set. With the number increase of the labelled sam-

ples, our method can utilize more information in the support

set, leading to larger margin with EGNN (about 3.5%).

4.3. Feature Pretrained Fewshot Learning

Feature pretrained few-shot learning is implemented by

[50, 42, 22], where the feature embedding is trained by all

samples in the meta-training stage. The baseline method

proposed in [50] uses all samples in the meta-training stage

to train the feature extractor and uses the samples in the sup-

port set during meta-testing stage to train the classifier in

each meta-testing task. Different from the baseline method,

all parameters in our proposed method are trained by meta-

training samples. Specifically, our proposed method con-

sists of two steps. First, we train the feature extractor fol-

lowing the same method in [50]. Second, we train the GNN

and CRF components on the top by the fixed features that

are computed by the feature extractor obtained.

To validate the effectiveness of our MCGN compared

with other methods [42, 56, 30] in few-shot learning, we

fix the feature extractor and train MCGN on top of the fea-

ture extractor. The results are illustrated in Table 1. Our

proposed MCGN improves the baseline performance, i.e,

Tian el.al (distill), by 4% in miniImageNet and by 3% in

tieredImageNet, which shows that MCGN can further im-

prove the classification even with very strong features. Our

method also outperforms other methods that use pretrained

models but finetune the backbone by at least 2%, which is

consistent with the conclusion in [50].

4.4. Ablation Study

To investigate the contribution of GNN and CRF, we

incrementally evaluate each of them on miniImageNet by

constructing 4 variants of our method. In particular, Base-

line is the MatchingNet where similarities between support

samples and query samples are directly calculated from fea-

ture embeddings. GNN-only is the GNN embedding model

which can aggregate features and affinities but the affinity

for GNN is defined by the embeddings of two connected

nodes. CRF-only is the model where a single CRF directly

follows the backbone. CRF+GNN is the model with two

branches. One is the GNN branch which is the same as

GNN-only and the other is the CRF branch which is the

same as CRF-only. In this setting, CRF and GNN can not

mutually contribute to each other. MCGN is the proposed

Figure 4. Experiments on miniImageNet in 5-way 5-shot few shot

learning (transductive scenario). Left: The few-shot classification

accurcies with different number of layers in MCGN. The width

of the colored region region indicates the variance of the perfor-

mance. Right: Comparison of GNN loss and GNN loss+CRF loss.

method where CRF inference is leveraged to infer the affin-

ity in GNN. Table 3 presents the performance of all variants.

In this section, we first illustrate the contribution of GNN

and CRF respectively by incrementally adding them to the

baseline and then explore the mutual benefits between CRF

and GNN. We also explore the contribution of the new CRF

loss (Eq. 9) and the influence of an important hyperparam-

eter in GNNs, i.e., number of layers in MCGN.

Contribution of GNN and CRF. We compare Baseline

and GNN-only in Table 3 to illustrate to what extend GNN

contributes to the proposed method. We observe that GNN

plays an important role for few-shot classification as only

apply feature aggregation only improves the performance

of the model by 10%−13% for 5-way 1-shot setting and

7%− 10% for 5-way 5-shot setting. With the compari-

son between Baseline and CRF-only, we conclude the CRF

can provide better affinity between support samples and

query samples. CRF improves the model by 4%−6% on

miniImageNet, tieredImageNet and CIFAR-FS in 5-way 1-

shot setting while the improvement on 5-way 5-shot setting

is about 2%− 4%. We attribute the improvement differ-

ence to the inaccurate marginal distribution estimation by

loopy belief propagation [37] when CRF has dense connec-

tions and a large number of nodes [57]. The performance of

GNN+CRF shows that GNN and CRF are cumulative.

Contribution of CRF and GNN Mutual Benefits. By

comparing with CRF+GNN and GNN only, we can see the

performance only improves a little. However, the compar-

ison between CRF+GNN and MCGN in Table 3 illustrates

that GNN and CRF can mutually help each other because

we can see the classification accuracy by MCGN is signif-

icantly higher than that by CRF+GNN on miniImageNet,

tieredImageNet and CIFAR-FS.

Contribution of Marginal Distribution Supervision.

CRF loss (Eq. 9) uses marginal distribution of variables to

supervised the network optimization. To illustrate the ef-

fectiveness of supervision on the marginal distribution of

each random variable in CRF, we conduct experiments un-

der GNN loss only (Eq. 10) and GNN (Eq. 10)+CRF loss

(Eq. 9). From Fig. 4 (right), we can see the CRF+GNN loss
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Method Backbone
miniImageNet tiredImageNet

1-shot 5-shot 1-shot 5-shot

Inductive Learning

Matching Network [52] 64-64-64-64 43.56± 0.84 55.31± 0.73 51.67± 1.81 70.30± 1.75

Prototypical Network [45] 64-64-64-64 49.42± 0.7 68.20± 0.66 53.31± 0.89 72.69± 0.74

TAML [25] 64-64-64-64 51.77± 1.86 66.05± 0.85 - -

SAML [19] 64-64-64-64 52.22±n/a 66.49± n/a - -

GCR [30] 64-64-64-64 53.21± 0.80 72.34± 0.64 - -

IMP [2] 64-64-64-64 49.2± 0.7 64.7± 0.7 - -

KTN (Visual) [39] 64-64-64-64 54.61± 0.80 71.21± 0.66 - -

R2D2 [5] 96-192-384-512 51.2± 0.6 68.8± 0.1 - -

Reptile [38] 64-64-64-64 47.07± 0.8 62.74± 0.58 - -

SNAIL [34] ResNet-12 55.71± 0.99 68.88± 0.92 - -

AdaResNet [36] ResNet-12 56.88± 0.62 71.94± 0.57 - -

GNN [15] 64-64-64-64 50.33± 0.36 66.41± 0.63 - -

EGNN [26] 64-96-128-256 - 66.85± 0.63 - 70.98±n/a

DPGN† [54] 128-192-256-512 - 72.83± 0.74 - -

MCGN 64-96-128-256 57.89± 0.87 73.58± 0.87 58.45± 0.59 74.58± 0.84

Transductive Learning

Relation Network [47] 64-64-64-64 49.97± 0.32 65.99± 0.58 54.48± 0.93 71.32± 0.78

MAML [38] 64-64-64-64 48.70± 184 63.11± 0.92 - -

Reptile [38] 64-64-64-64 50.44± 0.82 65.32± 0.70 - -

EGNN [26] 64-96-128-256 59.63± 0.52 76.34± 0.48 63.52± 0.53 80.24± 0.87

TPN [33] 64-64-64-64 55.51± 0.86 69.86± 0.65 59.91± 0.94 73.30± 0.75

DPGN† [54] 128-192-256-512 66.14± 0.43 81.23± 0.41 69.91± 0.43 83.13± 0.46

MCGN 64-96-128-256 67.32± 0.43 83.03± 0.54 71.21± 0.85 85.98± 0.98

Table 2. Few-shot classification accuracies on miniImageNet and tieredImageNet. Results are reported in the inductive scenario and the

transductive scenario, respectively. † denotes results re-implemented by public codes [1].

Method
miniImageNet tieredImageNet CIFAR-FS

5way 1shot 5way 5shot 5way 1shot 5way 5shot 5way 1shot 5way 5shot

Baseline 49.42± 0.98 68.20± 0.85 53.34± 0.78 72.69± 0.78 55.50± 0.86 72.01± 0.90

GNN only 58.93± 0.76 76.12± 0.94 62.62± 0.98 79.64± 0.87 69.47± 0.69 82.14± 0.74

CRF only 53.21± 0.76 71.34± 0.79 57.43± 0.72 76.04± 0.73 59.98± 0.89 75.69± 1.02

CRF+GNN 60.12± 0.57 78.64± 0.84 65.43± 0.93 82.23± 1.02 71.98± 0.99 84.22± 0.23

MCGN 67.32± 0.43 83.03± 0.54 71.21± 0.85 85.98± 0.98 76.45± 0.99 88.42± 0.23
Table 3. Ablation study of the baseline and three variants on miniImageNet, tieredImageNet and CIFAR-FS. Thare are 3 layers in GNN-

only, CRF+GNN and MCGN. The accuracies are tested on 600 episodes in the transductive scenario.

can improve GNN loss only by about 1%.

Contribution of Multiple Layers in MCGN. We investi-

gate the effects of the number of layers in MCGN. MCGN

has a cyclic architecture which includes embeddings ag-

gregation by GNN and a marginal distribution inference

by CRF. To obtain the trend of testing accuracy, we report

the results on miniImageNet for 5-way 5-shot setting in Ta-

ble 4 (left). More specifically, we ensure the convergence

of Loopy Belief Propagation [37] and change the number of

layers in MCGN. By changing the number of layers from 0

to 1, we can see the testing accuracy has a significant jump

from 72.43% to 76.34%. When the number of layers con-

tinuously increases, the testing accuracy only marginally

increases and will come to convergence in the last several

numbers of layers. Comparing with EGNN, DPGN and

MCGN, the performance of our proposed MCGN is con-

sistently higher than that of the other two methods.

5. Conclusion

In this work, we present a novel framework, Mutual

CRF-GNN (MCGN) for few-shot classification. MCGN

combines GNN and CRF as a unified model, where the CRF

can offer a better affinity for GNN and the GNN can pro-

duce a robust embedding by taking affinity from CRF. Our

method significantly outperforms the current states of the

art on extensive benchmarks.
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