
SKFAC: Training Neural Networks with

Faster Kronecker-Factored Approximate Curvature

Zedong Tang1,2*, Fenlong Jiang1*, Maoguo Gong1†, Hao Li1, Yue Wu3

Fan Yu4, Zidong Wang4, Min Wang4

1 School of Electronic and Engineering, Xidian University
2 Academy of Advanced Interdisciplinary Research, Xidian University

3 School of Computer Science and Technology, Xidian University

tangzedong@hotmail.com,jiangfenlong@outlook.com,gong@ieee.org

ywu@xidian.edu.cn,omegalihao@gmail.com
4 Central Software Institute, 2012 Lab, Huawei Technologies Co. Ltd

{fan.yu,wang1,wangmin10}@huawei.com

Abstract

The bottleneck of computation burden limits the

widespread use of the 2nd order optimization algorithms for

training deep neural networks. In this paper, we present a

computationally efficient approximation for natural gradi-

ent descent, named Swift Kronecker-Factored Approximate

Curvature (SKFAC), which combines Kronecker factoriza-

tion and a fast low-rank matrix inversion technique. Our re-

search aims at both fully connected and convolutional lay-

ers. For the fully connected layers, by utilizing the low-rank

property of Kronecker factors of Fisher information matrix,

our method only requires inverting a small matrix to ap-

proximate the curvature with desirable accuracy. For con-

volutional layers, we propose a way with two strategies to

save computational efforts without affecting the empirical

performance by reducing across the spatial dimension or

receptive fields of feature maps. Specifically, we propose

two effective dimension reduction methods for this purpose:

Spatial Subsampling and Reduce Sum. Experimental results

of training several deep neural networks on Cifar-10 and

ImageNet-1k datasets demonstrate that SKFAC can capture

the main curvature and yield comparative performance to

K-FAC. The proposed method bridges the wall-clock time

gap between the 1st and 2nd order algorithms.

*Equal Contribution
†Corresponding Author

This work was supported in part by the National Natural Science

Foundation of China under Grant 62036006 and Grant 61906146, in part

by CAAI Huawei MindSpore Open Fund, and in part by the Key Research

and Development Program of Shaanxi Province under Grant 2018ZDXM-

GY-045.

1. Introduction

Deep learning, whose success is inseparable from the

support of enormous computing power, has achieved fruit-

ful results in many fields, such as computer vision [6][21]

and natural language processing [1][11]. However, for

large-scale tasks, effective training of neural networks is

usually time-consuming [8], resulting in a new request for

fast and efficient training methods.

In general, the training of neural networks is a process to

optimize the network parameters θ by minimizing the reg-

ularized empirical loss function L(θ), and the parameters

are updated as: θ ← θ−ηG−1∇θL(θ), where G is a posi-

tive definite preconditioner of the gradient and η represents

a positive learning rate. In particular, if G is an identity

matrix, it will degrade to the classical 1st order optimiza-

tion algorithm, namely Stochastic Gradient Descent (SGD).

It and its variants with momentum term are current main-

stream in neural network training. SGD adopts consistent

update step size for all parameters. As for 2nd order opti-

mization, in this case, G contains more curvature or corre-

lation information, such as the Hessian matrix in Newton’s

method or Fisher Information Matrix (FIM) in natural gra-

dient method (NG). For a network with massive parameters,

G has a gigantic size of nθ×nθ, where nθ is the dimensions

of θ, which renders it impractical to compute and invert it

directly. Only if we can get huge time savings at the ex-

pense of a little information integrity, 2nd order algorithms

will show more potential than the 1st order ones to fasten

the training.

This has motivated researches into finding the approxi-

mation of G and its inverse G−1 with low computational

cost. For instance, the well-known and widely used Ada-

113479

grad [2], Adadelta [26], RMSProp [25], and Adam [9] in-

volve a simple diagonal approximation to the covariance

matrix of the gradients. Moreover, more sophisticated al-

gorithms are not limited to diagonalization, but try to pre-

serve more important correlations between parameters in-

stead. Le Roux et al. proposed a block-diagonal approxi-

mation of empirical FIM named TONGA [23], where each

block corresponds to the weights of each neuron. It com-

putes the inverse matrix of each block by maintaining a low

rank plus diagonal term. In 2013, Ollivier et al. also pro-

posed a similar block-diagonal approach [17], except that it

used the standard FIM instead of the empirical one1. In ad-

dition, some methods leverage the hierarchical structure of

neural network to perform block-diagonal approximation,

such as K-FAC [14], and methods in [7][19]. Interestingly,

in addition to similar approximations, they [7][19][14] all

Kronecker-factorized the block matrices, which can further

reduce the computational cost. However, for models that

have thousands or even tens of thousands of neurons per

layer, it is still too time-consuming to efficiently compute

the inverse matrices of those factors, which also results in

the consequence—compared with carefully tuned SGD and

adaptive algorithms such as Adam—that these algorithms

still have no significant advantage in overall time cost.

We present a much faster approximation algorithm for

natural gradient descent, namely Swift Kronecker-Factored

Approximate Curvature (SKFAC). Consider this case where

a large batch of samples are distributed to multiple nodes,

each node only processes a mini batch whose size might

be smaller than the number of layers’ inputs and outputs.

The covariance matrices of activations and pre-activations

are induced by the low-rank factors. Inspired by this, we

propose a low-rank formulation of K-FAC by reformulating

the FIM, such that the computations of preconditioners have

moderate time which is sublinear in the number of layers’

inputs and outputs. For convolutional layers, additional spa-

tial structures of feature maps will bring out a sharp increase

in computational burden in the proposed method. There-

fore, we further propose two corresponding dimensionality

reduction methods for the convolutional layers. We train

canonical neural networks to verify the advancement of SK-

FAC on the Cifar/ImageNet datasets. The results show that

SKFAC can not only retain improved convergence proper-

ties, but also tremendously improve the efficiency of com-

puting natural gradients in large-scale networks. The con-

tributions of our work can be summarized as follows:

• We attempt to reformulate the Kronecker-factored ap-

proximation of natural gradient for accelerating the in-

version.

• Two effective dimensionality reduction methods are

1Please refer to [13] and [10] for detailed discussions of the difference

between the standard Fisher and the empirical one.

proposed to address the issue of too large dimension

in convolutional layers.

• We propose to only transmit the activations and pre-

activation derivations in distributed training to reduce

communication latency.

• The experiments of training neural networks demon-

strate that our method can retain the good convergence

property, like that of K-FAC.

2. Background and Notations

Our work is an improvement method based on the previ-

ous Kronecker-factored approximation methods. The rele-

vant background and works are described below.

2.1. Natural Gradient Descent

Given a train dataset Dtrain containing pairs of inputs

and target samples (x,y), training a neural network with

L layers can be seen as minimizing a cost function J(θ)
where θ = (vec(W1), · · · , vec(WL)) is a vector consisted

of all layers’ parameters in the model. J(θ) is the average

of the loss L between the model’s predictions and targets

over Dtrain:

J(θ) = E(x,y)∈Dtrain
L (f(x; θ),y) . (1)

The parameter optimization process of the natural gradient

descent algorithm (NG) can be expressed as

θ ← θ − ηF−1∇θJ(θ), (2)

where η represents a learning rate and F is the Fisher Infor-

mation Matrix (FIM), as given by

F = Ex∈Dtrain,y∼p(ŷ|x;θ)

[
∇θJ(θ)∇θJ(θ)

⊤
]
. (3)

It is worth noting that the expectation is taken over the data

distribution and model’s predictive distribution. The FIM

represents the degree of correlation between the gradients.

In contrast with the standard gradient descent, the natural

gradient descent can be interpreted as the steepest descent

measured by KL divergence instead of the Euclidean norm.

2.2. KFAC

In natural gradient, the size of F is |θ| × |θ|. For large

networks with billions of parameters, it is impractical to

compute F−1 directly. In [14], Martens et al. proposed

a Kronecker-factored approximate curvature (K-FAC) for

the natural gradient descent, which subtly leverages the hi-

erarchical structure of neural networks to perform a block

diagonal approximation of F and greatly reduce the com-

putational cost.

Considering a neural network with L layers, we use A to

represent the activations of each layer and DS to represent

213480

the pre-activation gradient of each layer obtained through

backward propagation. The Kronecker factors of F are de-

noted as Ω and Γ, respectively. Taking the fashion of mini-

batch stochastic training, we use B to represent a mini-batch

of size M and E[·] to represent the expectation over the

model’s predictive distribution.

2.2.1 K-FAC for Fully Connected Layers

We first discuss the situation of the fully connected layer.

According to the idea of dividing FIM in blocks by layers

[14], each block of FIM can be factorized as

Fi,j = E[A⊤
i−1Aj−1 ⊗DS

⊤
i DSj], (4)

where i, j = 1, 2, . . . , L. u ⊗ v denotes the Kronecker

product of arbitrary u and v.

First, K-FAC approximates the expectation of a Kro-

necker product as the Kronecker product of expectations,

as given by:

Fi,j ≈ Ωi−1,j−1 ⊗ Γi,j , (5)

where Ωi−1,j−1 = E[A⊤
i−1Aj−1] and Γi,j =

E[DS⊤
i DSj].

Then, K-FAC designs two approximate forms, block di-

agonal and block tridiagonal. Here, we use the relatively

simple block diagonal approximation for computational ef-

ficiency. Only the FIM blocks located on the diagonal are

reserved. In this case, F and F−1 can be represented as:

F ≈ diag (F1,F2, . . . ,Fℓ, · · · ,FL) , (6)

F−1 ≈ diag
(
F−1

1 ,F−1
2 , . . . ,F−1

ℓ , · · · ,F−1
L

)
, (7)

where Fℓ = Ωℓ−1⊗Γℓ and F−1
ℓ = Ω−1

ℓ−1⊗Γ−1
ℓ . Comput-

ing the inverse factors Ω−1
ℓ−1 and Γ−1

ℓ is much faster than

directly computing F−1.

Here, we detail the size of involved factors:

Aℓ−1 ∈ R
M×nℓ , DSℓ ∈ R

M×nℓ ,
Ωℓ−1 ∈ R

nℓ×nℓ , Γℓ ∈ R
nℓ×nℓ ,

(8)

where ℓ = 1, 2, . . . , L and nℓ represents the number of neu-

rons in the ℓth layer.

2.2.2 K-FAC for Convolutional Layers

In [4], Grosse et al. proposed the K-FAC for convolutional

layers. In general, by combining some additional assump-

tions, this algorithm has a similar form to that for fully con-

nected layers.

For simplicity, the algorithm utilizes the expansion oper-

ation J·K defined in [4]. This operation extracts the patches

surrounding the spatial locations, stretches them into vec-

tors and stacks these vectors into matrix. Besides, the con-

volution kernels are reshaped in size of cℓ × kℓcℓ−1 where

cℓ and cℓ−1 are the number of feature maps and the num-

ber of input channels respectively, and kℓ is the kernel size.

Fℓ can be written as an expectation on the two-dimensional

space:

Fℓ = Ωℓ−1 ⊗ Γℓ, (9)

where Ωℓ−1 = E[JAℓ−1KJA
⊤
ℓ−1K] and Γℓ = E[DSℓDS

⊤
ℓ].

Since the true covariance statistics are unknown, K-FAC

uses the empirical statistics for a given mini-batch to appro-

maxiate the covariance matrice Ωℓ−1 and Γℓ by following

equation,

Ω̂ℓ−1 =
1

M
JÃℓ−1K

⊤JÃℓ−1K, Γ̂ℓ =
1

M |T |
DS̃⊤

ℓ DS̃ℓ,

(10)

where M is the batch size and T is the collection of spa-

tial positions. Then, by employing the same approximate

method used in K-FAC for fully connected layers, F−1
ℓ can

be efficiently computed as F−1
ℓ = Ω̂−1

ℓ−1 ⊗ Γ̂−1
ℓ .

Accordingly, the derived size of corresponding factors

are:

Ãℓ−1 ∈ R
Msℓ−1×cℓ−1kℓ−1 , DS̃ℓ ∈ R

Msℓ×cℓ ,

Ω̂ℓ−1 ∈ R
cℓ−1kℓ−1×cℓ−1kℓ−1 , Γ̂ℓ ∈ R

cℓ×cℓ ,
(11)

where ℓ = 1, 2, . . . , L, cℓ represents the number of channels

in the ℓth layer, kℓ and sℓ are corresponding spatial size of

the filters and feature maps, respectively. The approximate

natural gradient ∇̂θ is then computed as,

∇̂θ=F−1∇θ=
[
vec(Γ̂−1

ℓ (∇Wℓ
)Ω̂−1

ℓ−1), ℓ=1,· · ·, L
]
.

(12)

3. Proposed Method

We assuming a block-diagonal approximation to FIM

like that in K-FAC, such that every block corresponds to the

parameters of one layer. Then, the Kronecker factorization

applies to fully connected layers and convolutional layers,

because only these two widely used layers are discussed in

this paper. In this section, we demonstrate our main con-

tribution, an low-rank formation of K-FAC for each block

of FIM for fully connected layers and convolutional lay-

ers. For clarity, in this section, we focus on one block Fℓ

corresponding to one layer ℓ. Although, by utilizing the

Kronecker factorization, K-FAC makes the computational

natural gradients of a large-scale neural network computa-

tionally feasible, but the inverting of Kronecker factors can

still spend many computational efforts.

Starting from K-FAC approximation for fully connected

layers, we first derived our main theorem for the low-rank

K-FAC approximation.

313481

3.1. SKFAC for Fully Connected Layers

Based on the block-diagonal approximation of Fisher

matrix in K-FAC, we first derive the low-rank inverse of

Fisher matrix. Recall that the independent assumption be-

tween activations and output derivatives yields the Kro-

necker approximation of the Fisher matrix, Fℓ = Ω̂
(λ)
ℓ ⊗

Γ̂
(λ)
ℓ , where Ω̂

(λ)
ℓ = λI+ Ω̂ℓ and Γ̂

(λ)
ℓ = λI+ Γ̂ℓ, herein,

λ is the damping introduced by [14]. The unknown data dis-

tribution causes the difficulty in computing the Fisher ma-

trix information. To address this difficulty, we estimate the

Kronecker factors by the empirical statistics over a mini-

batch of training data B ⊂ Dtraining, |B| = M at iteration

t. The empirical statistics of the Kronecker factors over a

given mini-batch is defined as

λI+ Ω̂ℓ = λI+ EB[A
⊤
ℓ Aℓ] = (λI+

A⊤
ℓ Aℓ

M
), (13)

λI+ Γ̂ℓ = λI+EB[DS
⊤
ℓ DSℓ] = (λI+

DS⊤
ℓ DSℓ

M
). (14)

In Section II, we mentioned that A and DS are R
M×nℓ

and R
M×nℓ−1 , respectively. When M << nℓ, nℓ−1, they

have low-rank structure. The approximation of above terms

over a mini batch suggests that the factors of FIM is practi-

cally low-rank. Note that although we assume the factors

of FIM having low-rank structure, the resulting approxi-

mation of FIM is not low-rank. Existing methods [14][4]

attempt to reduce the computation cost of the fully exact

inverse of the Kronecker factors Γ̂−1 and Ω̂−1, where the

large matrices have to decompose into the low-rank factors

first. In contrast, our method utilizes the low-rank nature

of activation likelihood covariance matrix Ω̂ℓ = AℓA
⊤
ℓ

and pre-activation derivative likelihood covariance matrix

Γ̂ℓ = DSℓDS
⊤
ℓ matrices to yield an low-rank formulation

of inverses of (Γ̂λ
ℓ)

−1 and (Ω̂λ
ℓ)

−1.

Theorem 1 The inverse of two Kronecker factors of Fisher

information matrix is derived as

[Ω̂
(λ)
ℓ]−1 = (λI+ Ω̂ℓ)

−1 =
1

λ
I−

1

λ
A⊤

ℓ Ω
∗
ℓAℓ, (15)

[Γ̂
(λ)
ℓ]−1 = (λI+ Γ̂ℓ)

−1 =
1

λ
I−

1

λ
DS̃⊤

ℓ Γ
∗
ℓDS̃ℓ, (16)

where Ω∗
ℓ = (MλI+AℓA

⊤
ℓ)

−1
, and Γ∗

ℓ =

(MλI+DSℓDS
⊤
ℓ)

−1
.

Proof Combined equations (13)(14) with Woodbury for-

mula [5][20], the claim follows. Complete proof is given

in Appendix. �

Using Theorem 1, we get following equation,

F−1
ℓ =λ−1[I−A⊤

ℓ−1(MλI+Aℓ−1A
⊤
ℓ−1)

−1Aℓ−1]

⊗ λ−1[I−DS⊤
ℓ (MλI+DSℓDS

⊤
ℓ)

−1DSℓ]. (17)

Taking [Γ̂
(λ)
ℓ]−1 as an example, the computation cost of in-

verting the factors of FIM reduces from O(n3
ℓ) to roughly

O(M3), where nℓ is the number of outputs of the lth
layer and M is the batch size. Therefore, as long as

M << nℓ is satisfied, our derived inverse procedure is

much more efficient than inverting the full Kronecker fac-

tors directly. Compared with K-FAC, the theoretical com-

putational cost of computing the inverse of Kronecker fac-

tors of FIM is reduced from O(
∑

ℓ n
3
ℓ + M

∑
ℓ n

2
ℓ) to

O(
∑

ℓ M
3+M

∑
ℓ n

2
ℓ). By parallel computing, the matrix

multiplication in equations (15)(16) has a sublinear com-

plexity O(M
∑

ℓ (n
2
ℓ/NT)

2), where NT is the number of

computation threads. The steps is shown in Algorithm 1.

Algorithm 1 SKFAC for fully connected layers

Require: layer ℓ, batch size M , ℓ’s input Aℓ ∈ R
M×nℓ ,

ℓ’s pre-activation derivations DSℓ ∈ R
M×nℓ , damping

coefficient λ
Ensure: the inverse of damped factor matrices: [Ω̂

(λ)
ℓ]−1

and [Γ̂
(λ)
ℓ]−1

1: for Y, X in [{Aℓ, Ω̂
(λ)
ℓ }, {DSℓ, Γ̂

(λ)
ℓ }] do

2: M,n = shape(Y).
3: if M ≥ n then

4: X−1 = (λI+M−1Y⊤Y)−1

5: else

6: X−1 = λ−1[I−Y⊤(MλI+YY⊤)−1Y]
7: end if

8: end for

Due to the reception fields existing in convolutional lay-

ers, Theorem 1 might not be directly applied to these layers.

Deriving an analogous low-rank K-FAC approximation for

convolution layers needs some additional approximation.

Next, we present the specific techniques for convolutional

layers.

3.2. SKFAC for Convolutional Layers

We begin by considering the inverse of Ω. Let M denote

the batch size, and let s be the size of spatial dimensions

of input feature map. If we apply Theorem 1 to convolu-

tional layers directly like that for fully connected layers, it

is very likely that the size of the inverse matrix involved will

increase dramatically to Ms ×Ms due to the exist of spa-

tial dimensions. This is much larger than the original size

of Kronecker factors in most cases. However, it is observed

that when calculating the corresponding factors of A orDS,

the larger dimension (Ms) is aggregated by inner product.

413482

This motivates us to obtain an analogous low-rank formu-

lation of SKFAC for convolutional layers like that for fully

connected layers by reducing the size of spatial dimensions.

In the following, we propose two feasible methods for this

purpose.

3.2.1 Spatial Sampling:

From Equation (9), Fℓ is an expectation on the spatial size

of activations, and corresponding samples is s, which is

usually very large. If we reduce it to s′ and s′ ≤ s, Fℓ

can be seen as the expectation on a subspace T ′ ⊆ T ,

which ensures that the estimation is still unbiased. Accord-

ing ID, patches are drawn from the identical distribution, a

sub set of sampling patches can approximate the FIM well.

Thereby, we can subsample the patches to reduce the com-

putation complex. Then, we have:

(
λI+ Ω̂ℓ

)−1

≈ λ−1

[
I− JÃK⊤ℓ

(
MλI+ JÃKℓJÃK⊤ℓ

)−1

JÃKℓ

]
,

(18)

(
λI+ Γ̂ℓ

)−1

≈ λ−1

[
I−DS̃⊤

ℓ

(
M |T ′

ℓ |λI+DS̃ℓDS̃
⊤
ℓ

)−1

DS̃ℓ

]
,

(19)

where JÃKℓ ∈ R
Ms′×cℓkℓ andDS̃ℓ ∈ R

Ms′×cℓkℓ . The final

size of inversion becomes Ms′×Ms′, which can accelerate

the computation if Ms′ < cℓkℓ.

3.2.2 Reduce Sum:

One of the most straightforward ideas is to average the

larger dimension. According to Equation (9), we first ap-

proximates the expectation on the space of the Kronecker

product as the Kronecker product of expectations just like

what is done on batches as shown in Equation (5).

We found that we could make the activations and pre-

activation derivations become low-rank without affecting

empirical performance by accelerating over the spatial di-

mensions. Namely, let Ω̃ and Γ̃ denote the approximations

of Ω and Γ by dimension reduction. And JĀℓK andDS̄ℓ de-

note the acceleration of JAℓK and DSℓ over spatial dimen-

sions. The approximate Kronecker factors can be efficiently

computed by following equations,

Ω̂ℓ = E(
∑

T

JAℓKJAℓK
⊤) ≈ E(

1

|T |

∑

T

JAℓK
∑

T

JAℓK)
⊤

= E(
1

|T |
JĀℓKJĀℓK

⊤), (20)

Γ̂ℓ = E(
∑

T

DSℓDS
⊤
ℓ) ≈ E(

1

|T |

∑

T

DSℓ

∑

T

DSℓ)
⊤

= E(
1

|T |
DS̄ℓDS̄

⊤
ℓ). (21)

Then, using one of the above dimension reducing meth-

ods, we can further make the approximation for JAK and

DS:

Fℓ ≈ EB[JĀℓ−1K
⊤JĀℓ−1K]⊗ EB [DS̄

⊤
ℓ DS̄ℓ], (22)

where JĀℓ−1K =
∑

T JAℓ−1K and DS̄ℓ =
∑

T DSℓ are

just the sum of A and DS over spatial dimensions. Then,

by Kronecker-factorizing above equation and reformulating

the inverse factors via Theorem 1, we give the efficient ap-

proximation of these two inverse factors as follows,

(Ω̂
(λ)
ℓ)−1 ≈ (Ω̃

(λ)
ℓ)−1

= λ−1[I− JĀℓK
⊤(MλI+ JĀℓKJĀℓK

⊤)−1JĀℓK], (23)

(Γ̂
(λ)
ℓ)−1 ≈ (Γ̃

(λ)
ℓ)−1

= λ−1[I−DS̄⊤
ℓ (MλI+DS̄ℓDS̄

⊤
ℓ)

−1DS̄ℓ], (24)

F−1
ℓ = (Ω̃

(λ)
ℓ)−1 ⊗ (Γ̃

(λ)
ℓ)−1. (25)

Let S be Ms′ in SKFAC-SS or the batch size M
in SKFAC-RS. Taking (Ω̂

(λ)
ℓ)−1 as an example, the size

of matrix having to invert is reduced to S × S, and

the computational cost is dropped down to O(
∑

l S
3) +

O(S
∑

l (kl × cl)
2). Therein, the matrix multiplication

spends O(S
∑

l (kl × cl)
2), which can be optimized by par-

allel computing again leading to a sublinear complexity

O(S
∑

l (
kl×cl
NT

)2), where NT is the number of computa-

tion threads. Moreover, for the sake of ensuring the batch

stochastic optimization, it should be noted that reduce sum

or subsampling is only performed on the spatial dimension.

The main steps is shown in Algorithm 2.

3.3. LowRank Natural Gradient Descent

According to the above discussion, we claim that we can

efficiently compute the natural gradients without obtaining

neither the full Fisher information matrix nor the Kronecker

factors. Depicted as equations (18), (19), (21) and (22), the

only necessary terms needed to record are A, DS and Ω∗,

Γ∗. Due to the inverse operation of matrix is not linearly

incompatible, we instead summarized the history of A and

DS over the batches of training data by moving averages,

At+1
ℓ = (1− α)At

ℓ + αAℓ, (26)

DSt+1
ℓ = (1− α)DSt

ℓ + αDSℓ. (27)

In distributed training, only At
ℓ, S

t
ℓ, Ω

∗ and Γ∗ needs to be

transmitted, which results in less communication latency.

513483

We substitute the moving averages At
ℓ and DSt

ℓ into

equations (15)(16)(22)(23) to obtain matrices Ωλ
ℓ and Γλ

ℓ .

Following the computation of natural gradients in K-FAC,

it is necessary to compute the full Fisher matrix. Instead,

the natural gradients can be obtained in the form of matrix.

Here is the equation for computing rescaled updates:

vec(F−1
ℓ vec(∇Wℓ)) = Ω̂

(λ)−1
ℓ ∇WℓΓ̂

(λ)−1
ℓ

= (λI+ Ω̂ℓ)
−1∇Wℓ(λI+ Γ̂ℓ)

−1. (28)

Algorithm 2 SKFAC for convolutional layers

Require: layer ℓ, batch size M , ℓ’s input JAℓK ∈
R

Msℓ×cℓkℓ , ℓ’s pre-activation derivations DSℓ ∈
R

Msℓ×cℓ , damping coefficient λ, subsampling amount

s′

Ensure: the inverse of damped factor matrices: [Ω̂
(λ)
ℓ]−1

and [Γ̂
(λ)
ℓ]−1

1: for Y, X in [{JAℓK, Ω̂
(λ)
ℓ }, {DSℓ, Γ̂

(λ)
ℓ }] do

2: M, s, n = shape(Y),Y ∈ R
Ms×n

3: if Perform SKFAC with Reduce Sum then

4: if M ≥ n then

5: X−1 = (λI+M−1Y⊤Y)−1

6: else

7: Get Ȳ by accumulating Y over spatial dimen-

sion.

8: X−1 = λ−1[I− Ȳ⊤(MλI+ ȲȲ⊤)−1Ȳ]
9: end if

10: else if Perform SKFAC with Spatial Subsampling

then

11: if s′ ≥ s then

12: s′ = s
13: end if

14: if Ms′ ≥ n then

15: X−1 = (λI+M−1Y⊤Y)−1

16: else

17: Form Ỹ by sampling s′ elements from Y along

with the spatial dimension.

18: X−1 = λ−1[I− Ỹ⊤(MλI+ ỸỸ⊤)−1Ỹ]
19: end if

20: end if

21: end for

3.4. Implementation Details

Moving Average. To maintain running estimates of the

required A and DS, K-FAC adopted a simple exponen-

tially decaying averaging scheme [14]. However, SKFAC

approximates the Kronecker factors of the FIM by consid-

ering partial information of A andDS. Therefore, we main-

tain the moving average of A and DS to alleviate the influ-

ence of random factors and enhance the robustness of our

method. In distributed computing, this can also further save

communication overhead.

Matrix Decomposition. Matrix decomposition is of-

ten the underlying support technique for practical inversion

computation and using the proper decomposition algorithm

for matrices with special properties can often give faster

computations. In K-FAC and SKFAC, all the matrices that

need to be inverted are strictly positive definite. Therefore,

we employ the eigenvalue decomposition in the implemen-

tation of SKFAC.

Stale Fisher Information. Some works shows that FIM

changes very slowly in neural network training [18]. At

the same time, due to the high cost of FIM inverse matrix

computation, they generally adopted the periodic computa-

tion strategy in the practical application, making a trade off

between the accuracy and time cost, and the higher compu-

tation frequency, the more K-FAC will accelerate. We can

also incorporate this strategy into SKFAC.

3.5. Related Work

Currently, there are also some works employing Sher-

man–Morrison–Woodbury (SMW) formula in the second-

order optimization. O’Leary-Roseberry et al.[16] used the

SMW formula to efficiently solve the Newton rescaled neg-

ative gradient. Ren et al.[22] combined the SMW for-

mula with automatic differentiation to efficiently perform

the Newton method and natural gradient descent. However,

these algorithms do not consider the structures of activa-

tions and pre-activation derivations. SKFAC differs from

them in that it can use these inherent structures to cleverly

reduce the computation complexity.

4. Experiments

In this section, we exhibit the practical benefits of our

SKFAC on several neural network training tasks using the

published state-of-art architectures as baselines. We con-

duct experiments on the following three tasks: training

VGG-11 with Cifar-10 dataset; training ResNet-34 with

Cifar-10 dataset; training ResNet-50 with the ImageNet-

1K dataset. We conduct Cifar-10 experiments on a sin-

gle GPU and ImageNet-1K on 4 RTX 2080Ti GPUs. Our

method is implemented by PyTorch and Horovod.

Hyper-Parameter Settings. First, we evaluate the effec-

tiveness of the proposed algorithm on the tasks of training

VGG11 [24] and ResNet34 [6] with the relatively simple

Cifar-10 dataset. We compare our SKFACs with three base-

lines (K-FAC, Adam and SGD with momentum). More-

over, we also investigate the sensitivity of the sampling

number sn to the performance of SKFAC-SS. For this pur-

pose, we run SKFAC-SS with different sn settings in {1, 2,

4, 8} one by one. For the sake of fairness, we employ the

warm-up learning rate settings for all methods given in [3]

613484

0 20 40 60 80 100

Epoch

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

T
ra

in
in

g
 A

cc
u
ra

cy
 %

SGD

ADAM

KFAC

SKFAC:RS

SKFAC:SS:1

SKFAC:SS:2

SKFAC:SS:4

SKFAC:SS:8

(a) Training Accuracy for ResNet-34

0 20 40 60 80 100

Epoch

80.0

82.5

85.0

87.5

90.0

92.5

T
es

t
A

cc
u
ra

cy
 %

SGD

ADAM

KFAC

SKFAC:RS

SKFAC:SS:1

SKFAC:SS:2

SKFAC:SS:4

SKFAC:SS:8

(b) Test Accuracy for ResNet-34

0 20 40 60 80 100

Epoch

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

T
ra

in
in

g
 A

cc
u
ra

cy
 %

SGD

ADAM

KFAC

SKFAC:RS

SKFAC:SS:1

SKFAC:SS:2

SKFAC:SS:4

SKFAC:SS:8

(c) Training Accuracy for VGG-11

0 20 40 60 80 100

Epoch

80.0

82.5

85.0

87.5

90.0

92.5

T
es

t
A

cc
u
ra

cy
 %

SGD

ADAM

KFAC

SKFAC:RS

SKFAC:SS:1

SKFAC:SS:2

SKFAC:SS:4

SKFAC:SS:8

(d) Test Accuracy for VGG-11

Figure 1: The convergence curves of SGD, Adam, K-FAC, SKFAC-RS and SKFAC-SS with sampling amount {1, 2, 4, 8} in

terms of validation error and loss for training ResNet34 and VGG11 on Cifar-10.

with a cosine-annealing and initial value of 1e − 3 as de-

picted in [12], and batch size is set to 32. Since SKFACs

have similar properties as K-FAC, we can directly follow

the settings of hyper-parameters in K-FAC. Thus, the co-

variance matrix updating period and the corresponding in-

verse matrix updating period are set to 20 and 200 iterations,

respectively. The damping is set to 0.001.

To verify the efficiency of our proposed algorithms in

training the deep neural network on large-scale datasets,

we use SKFAC-SS and SKFAC-RS to train the ResNet50

[6] with the ImageNet-1K dataset. We compare SKFACs

with three baselines (K-FAC, K-FAC with SUA and SGD

with momentum). One might be interested in K-FAC with

SUA. SUA is a further approximation of the activations for

convolutional layers [4], which can accelerate the computa-

tion of FIM. For SGD, we followed the prescription given

by [3] for adapting the learning rate, which is the state-of-

the-art baseline of SGD. For K-FAC and SKFACs, polyno-

mial decay with an initial value of 0.025 and a half-life of 5

epochs is employed to tune the learning rate. Batch size per

GPU is set to 32, and for 4 GPUs the effective batch size is

4 × 32 = 128. The sampling amount sn of SKFAC-SS is

set to 1. Other parameter settings of K-FAC and SKFACs

are the same as those in the Cifar-10 experiment.

Results on Cifar-10. When training ResNet34 and

VGG11 with Cifar-10, following findings confirm the en-

hanced performance of SKFAC-RS and SKFAC-SS. It can

be seen from Fig. 1 that, compared with SGD and ADAM,

K-FAC and SKFACs can achieve significant improvement

in convergence rate which further translates into improve-

ment in validate accuracy. Comparing SKFACs with K-

FAC, SKFACs obtain a similar convergence property like

that of K-FAC. Although our optimization method may

have some fluctuations in loss function values during the

first dozens of epochs, SKFACs tends to more stable in

the subsequent training process. Moreover, when training

VGG11 which is a relatively shallow network, SGD also

has a fast convergence rate like that of K-FAC and SKFACs.

While training ResNet34, which is a deeper network, the

convergence rate of K-FAC and SKFACs is faster. This is

mainly because with the network getting deeper, SGD is

more likely to be affected by gradient vanishing, while the

second-order optimization algorithm, which leverage a pre-

conditioner to adjust the update step, can effectively sup-

press the effect of gradient vanishing.

The result of SKFAC-SS with different sn of {1, 2, 4,

8} is also shown in Fig. 1. From the curves, it can be seen

that the overall trend of SKFAC-SSs with different sn set-

tings have a similar convergence property. And, the con-

vergence trends of training validation accuracy are similar

to K-FAC and SKFAC-RS. Then, when we get a close ob-

servation of the convergence curves, we will find that in the

713485

Figure 2: The convergence trends of SGD, K-FAC,

SKFAC-RS and SKFAC-SS during training ResNet50 on

ImageNet-K dataset. Upper: Classification error. Lower:

Loss function value.

first tens epochs, subsampling strategy could cause the fluc-

tuation. By observing the K-FAC convergence curve, K-

FAC can converge smoothly and stably, but it needs more

computational efforts to compute relatively precious natu-

ral gradients. However, due to the moving average strat-

egy, the SKFAC-SS can obtain a stable convergence trend at

the late stage of training as the histories of activations and

pre-activation derivations are accumulated. In terms of the

performance of the finally trained model, SKFAC-SS with

different sampling numbers can work as well as K-FAC and

SKFAC-RS.

Results on ImageNet-1K. When training ResNet-50

with ImageNet-1K dataset, following findings are obtained

from Fig. 2. The carefully tuned SGD baseline converges

very fast during the first 200 min. However, SKFACs can re-

serve a better convergence property than SGD after 400min.

Since the purpose of developing this algorithm is to speed

up K-FAC by using further curvature approximation, we can

see from Fig. 2 that our algorithm can achieve a good con-

vergence property like that of K-FAC in terms of both the

loss function values and the validate errors. The statisti-

cal results of training are listed in Table 1. SGD needs 61

epochs to reach a validate accuracy of 75%. K-FAC needs

33 epochs to achieve it, while SKFAC-RS and SKFAC-SS

need 36/37 epochs. Therefore, it is verified that two pro-

posed algorithms can work as well as K-FAC. Moreover,

from the perspective of running time, our algorithms spend

1206.9 minutes (SKFAC-SS), 1189.5 minutes (SKFAC-RS)

respectively. K-FAC needs 1544.9 minutes and SGD needs

1834.76 minutes. SUA trick results in about a 3% decrease

in overall wall-clock time. Compared to K-FAC, our meth-

ods saves at most 23% training time. In short, our algorithm

has shown its superiority in terms of iteration rounds and

wall-clock time. Fig. 3 shows the faster inversion and less

communication latency leading to the time-saving in com-

puting natural gradient in each iteration.

Table 1: Statistical results of SGD, K-FAC, SKFAC-RS and

SKFAC-SS when reaching the accuracy checkpoint of 75%.

Algorithm SGD K-FAC SUA SKFAC-RS SKFAC-SS

Epoch 61 33 39 36 37

Time (min) 1834.8 1544.9 1494.5 1189.5 1206.9

Time Gap +18.76% 0% -3.3% -23.00% -21.88%

0

5

10

15

20

25

30

35

40

K-FAC K-FAC with SUA SKFAC: RS SKFAC: SS

Inverse Communication Others

38.9%

100%

3.5% 3.3%
100% 70.4% 62.6% 63.3%

The number represents the ratio to the maximum

T
im

e
(m

in
)

Figure 3: The proportions of time spent by computing nat-

ural gradients when training ResNet50 on ImageNet-1K.

5. Conclusion

We presented SKFAC, a computationally efficient 2nd

order optimization approach for training neural networks,

which is built on the low-rank approximation of Kronecker

factors. We show that our approach can obtain significantly

reduction of total wall-clock time and achieve competitive

accuracy for training large-scale neural networks on both

Cifar-10 and ImageNet-1K datasets. In a series of vali-

dations2, we demonstrate that utilizing the low-rank natu-

ral of Kronecker factors in K-FAC, the proposed variant of

K-FAC achieves more than 20% running time saving than

canonical K-FAC. Summarily, these improvements made

by SKFAC would open up new probabilities of the 2nd or-

der optimization approaches for fast and robustly training of

large-scale neural networks. In future work, we will focus

on enhancing the robustness of SKFAC and further extend-

ing it to train the recurrent networks for text classification.

Moreover, the inverse of small matrices can be accelerated

by batch inverse powered by MindSpore[15] and exclusive

chips. Therefore, in the future work, we will implement the

proposed method on MindSpore for better computational

efficiency, which will be available soon.

2The code is available in https://github.com/fL0n9/

SKFAC-MindSpore.

813486

References

[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018. 1

[2] John Duchi, Elad Hazan, and Yoram Singer. Adap-

tive subgradient methods for online learning and stochas-

tic optimization. Journal of Machine Learning Research,

12(Jul):2121–2159, 2011. 2

[3] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. Accurate, large mini-

batch sgd: Training imagenet in 1 hour. arXiv preprint

arXiv:1706.02677, 2017. 6, 7

[4] Roger Grosse and James Martens. A kronecker-factored

approximate fisher matrix for convolution layers. In Inter-

national Conference on Machine Learning, pages 573–582,

2016. 3, 4, 7

[5] William W. Hager. Updating the inverse of a matrix. SIAM

Review, 31(2), Jun. 1989. 4

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 1, 6, 7

[7] Tom Heskes. On “natural” learning and pruning in multi-

layered perceptrons. Neural Computation, 12(4):881–901,

2000. 2

[8] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang,

Haidong Rong, Feihu Zhou, Liqiang Xie, Zhenyu Guo,

Yuanzhou Yang, Liwei Yu, et al. Highly scalable deep learn-

ing training system with mixed-precision: Training imagenet

in four minutes. arXiv preprint arXiv:1807.11205, 2018. 1

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 2

[10] Frederik Kunstner, Lukas Balles, and Philipp Hennig. Limi-

tations of the empirical fisher approximation. arXiv preprint

arXiv:1905.12558, 2019. 2

[11] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep

learning. nature, 521(7553):436–444, 2015. 1

[12] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient

descent with restarts. CoRR, 2016. 7

[13] James Martens. New insights and perspectives on the natural

gradient method. arXiv preprint arXiv:1412.1193, 2014. 2

[14] James Martens and Roger Grosse. Optimizing neural net-

works with kronecker-factored approximate curvature. In

International conference on machine learning, pages 2408–

2417, 2015. 2, 3, 4, 6

[15] MindSpore. https://www.mindspore.cn/, 2021. 8

[16] Thomas O’Leary-Roseberry, Nick Alger, and Omar Ghat-

tas. Inexact newton methods for stochastic non-convex opti-

mization with applications to neural network training. arXiv

preprint arXiv:1905.06738, 2019. 6

[17] Yann Ollivier. Riemannian metrics for neural networks. In-

formation and Inference: a Journal of the IMA, 2013. 2

[18] Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse,

Rio Yokota, and Satoshi Matsuoka. Large-scale distributed

second-order optimization using kronecker-factored approx-

imate curvature for deep convolutional neural networks. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 12359–12367, 2019. 6

[19] Daniel Povey, Xiaohui Zhang, and Sanjeev Khudanpur. Par-

allel training of dnns with natural gradient and parameter av-

eraging. arXiv preprint arXiv:1410.7455, 2014. 2

[20] WH Press, SA Teukolsky, WT Vetterling, and BP Flannery.

Woodbury Formula, chapter 2.7.3. Cambridge University

Press, New York, 2007. 4

[21] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015. 1

[22] Yi Ren and Donald Goldfarb. Efficient subsampled gauss-

newton and natural gradient methods for training neural net-

works. arXiv preprint arXiv:1906.02353, 2019. 6

[23] Nicolas L Roux, Pierre-Antoine Manzagol, and Yoshua Ben-

gio. Topmoumoute online natural gradient algorithm. In

Advances in neural information processing systems, pages

849–856, 2008. 2

[24] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 6

[25] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop:

Divide the gradient by a running average of its recent mag-

nitude. COURSERA: Neural networks for machine learning,

4(2):26–31, 2012. 2

[26] Matthew D Zeiler. Adadelta: an adaptive learning rate

method. arXiv preprint arXiv:1212.5701, 2012. 2

913487

