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Figure 1: Example result of HITNet on the SceneFlow, KITTI, ETH3D and Middlebury datasets. Our approach predicts

accurate depth with crisp edges. HITNet obtains state-of-art results on KITTI, ETH3D and Middlebury-v3 benchmarks.

Abstract

This paper presents HITNet, a novel neural network ar-

chitecture for real-time stereo matching. Contrary to many

recent neural network approaches that operate on a full cost

volume and rely on 3D convolutions, our approach does not

explicitly build a volume and instead relies on a fast multi-

resolution initialization step, differentiable 2D geometric

propagation and warping mechanisms to infer disparity hy-

potheses. To achieve a high level of accuracy, our net-

work not only geometrically reasons about disparities but

also infers slanted plane hypotheses allowing to more accu-

rately perform geometric warping and upsampling opera-

tions. Our architecture is inherently multi-resolution allow-

ing the propagation of information across different levels.

Multiple experiments prove the effectiveness of the proposed

approach at a fraction of the computation required by state-

of-the-art methods. At the time of writing, HITNet ranks 1st-

3rd on all the metrics published on the ETH3D website for

two view stereo, ranks 1st on most of the metrics amongst

all the end-to-end learning approaches on Middlebury-v3,

ranks 1st on the popular KITTI 2012 and 2015 benchmarks

among the published methods faster than 100ms.
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1. Introduction

Recent research on depth from stereo matching has

largely focused on developing accurate but computationally

expensive deep learning approaches. Large convolutional

neural networks (CNNs) can often use up to a second or

even more to process an image pair and infer a disparity

map. For active agents such as mobile robots or self driving

cars such a high latency is undesirable and methods which

are able to process an image pair in a matter of millisec-

onds are required instead. Despite this, only 4 out of the top

100 methods on the KITTI 2012 leaderboard are published

approaches that take less than 100ms1.

A common pattern in end-to-end learning based ap-

proaches to computational stereo is utilizing a CNN which

is largely unaware of the geometric properties of the stereo

matching problem. In fact, initial end-to-end networks were

based on a generic U-Net architecture [37]. Subsequent

works have pointed out that incorporating explicit match-

ing cost volumes encoding the cost of assigning a disparity

to a pixel, in conjunction with 3D convolutions provides a

notable improvement in terms of accuracy but at the cost

of significantly increasing the amount of computation [24].

Follow up work [25] showed that a downsampled cost vol-

ume could provide a reasonable trade-off between speed

and accuracy. However, the downsampling of the cost vol-

ume comes at the price of sacrificing accuracy.

Multiple recent stereo matching methods [51, 12, 28]

have increased the efficiency of disparity estimation for

active stereo while maintaining a high level of accuracy.

These methods are mainly built on three intuitions: Firstly,

the use of compact/sparse features for fast high resolution

matching cost computation; Secondly, very efficient dispar-

ity optimization schemes that do not rely on the full cost

volume; Thirdly, iterative image warps using slanted planes

to achieve high accuracy by minimizing image dissimilarity.

All these design choices are used without explicitly operat-

ing on a full 3D cost volume. By doing so these approaches

achieve very fast and accurate results for active stereo but

they do not directly generalize to passive stereo due to the

lack of using a powerful machine learning system. This

therefore raises the question if such mechanisms can be in-

tegrated into neural network based stereo-matching systems

to achieve efficient and accurate results opening up the pos-

sibility of using passive stereo based depth sensing in la-

tency critical applications.

We propose HITNet, a framework for neural network

based depth estimation which overcomes the computational

disadvantages of operating on a 3D volume by integrating

image warping, spatial propagation and a fast high resolu-

tion initialization step into the network architecture, while

1Additional approaches faster than 100ms are on the leaderboard but

the algorithms are unpublished and hence it is unknown how the results

were achieved.

keeping the flexibility of a learned representation by allow-

ing features to flow through the network. The main idea of

our approach is to represent image tiles as planar patches

which have a learned compact feature descriptor attached

to them. The basic principle of our approach is to fuse

information from the high resolution initialization and the

current hypotheses using spatial propagation. The propa-

gation is implemented via a convolutional neural network

module that updates the estimate of the planar patches and

their attached features. In order for the network to itera-

tively increase the accuracy of the disparity predictions, we

provide the network a local cost volume in a narrow band

(±1 disparity) around the planar patch using in-network im-

age warping allowing the network to minimize image dis-

similarity. To reconstruct fine details while also capturing

large texture-less areas we start at low resolution and hi-

erarchically upsample predictions to higher resolution. A

critical feature of our architecture is that at each resolution,

matches from the initialization module are provided to facil-

itate recovery of thin structures that cannot be represented

at low resolution. An example output of our method shows

how our network recovers very accurate boundaries, fine

detail and thin structures in Fig. 1.

To summarize, our main contributions are:

• A fast multi-resolution initialization step that com-

putes high resolution matches using learned features.

• An efficient 2D disparity propagation that makes use

of slanted support windows with learned descriptors.

• State-of-art results in popular benchmarks using a frac-

tion of the computation compared to other methods.

2. Related Work

Stereo matching has been an active field of research for

decades [36, 43, 19]. Traditional methods utilize hand-

crafted schemes to find local correspondences [55, 22,

4, 21] and global optimization to exploit spatial context

[14, 26, 27]. The run-time efficiency of most of these ap-

proaches are correlated with the size of the disparity space,

which prevents real-time applications. Efficient algorithms

[31, 34, 5, 3] avoid searching the full disparity space by

using patchmatch [1] and super-pixel [31] techniques. A

family of machine learning based approaches, using ran-

dom forest and decision trees, are able to establish cor-

respondences quickly [10, 11, 12, 13]. However, these

methods require either camera specific learning or post pro-

cessing. Recently, deep learning brought big improve-

ments to stereo matching. Early works trained siamese

networks to extract patch-wise features or predict match-

ing costs [35, 58, 56, 57]. End-to-end networks have been

proposed to learn all steps jointly, yielding more accurate

results [46, 37, 40, 47].
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A key component in modern architectures is a cost vol-

ume layer [24] (or correlation layer [23]), allowing the

network to run per-pixel feature matching. To speed up

computation, cascaded models [39, 7, 32, 16, 53, 59] have

been proposed to search in disparity space in a coarse-

to-fine fashion. In particular, [39] uses multiple residual

blocks to improve the current disparity estimate. The recent

work [53] relies on a hierarchical cost volume, allowing the

method to be trained on high resolution images and generate

different resolutions on demand. All these methods rely on

expensive cost-volume filtering operations using 3D con-

volutions [53] or multiple refinement layers [39], prevent-

ing real-time performance. Fast approaches [25, 60] down-

sample the cost volume in spatial and disparity space and

attempt to recover fine details by edge-aware upsampling

layers. These methods show real-time performance but sac-

rifice accuracy especially for thin structures and edges since

they are missing in the low-res initialization.

Our method is inspired by classical stereo matching

methods, which aim at propagating good sparse matches

[12, 13, 51]. In particular, Tankovich et al. [51] proposed

a hierarchical algorithm that makes use of slanted support

windows to amortize the matching cost computation in tiles.

Inspired by this work, we propose an end-to-end learning

approach that overcomes the issues of hand-crafted algo-

rithms, while maintaining computational efficiency.

PWC-Net [49], although designed for optical flow es-

timation, is related to our approach. The method uses a

low resolution cost volume with multiple refinement stages

via image warps and local matching cost computations.

Thereby following the classical pyramidal matching ap-

proach where a low resolution result gets hierarchically up-

sampled and refined by initializing the current level with

the previous level’s solution. In contrast we propose a fast,

multi-scale, high resolution initialization which is able to

recover fine details that cannot be represented at low reso-

lution. Finally, our refinement steps produce local slanted

plane approximations, which are used to predict the final

disparities, as opposed to standard bilinear warping and in-

terpolation employed in [49].

3. Method

The design of HITNet, follows the principles of tradi-

tional stereo matching methods [43]. In particular, we ob-

serve that recent efficient methods rely on the three follow-

ing steps: 1© compact feature representations are extracted

[12, 13]; 2© a high resolution disparity initialization step uti-

lizes these features to retrieve feasible hypotheses; 3© an ef-

ficient propagation step refines the estimates using slanted

support windows [51]. Motivated by these observations, we

represent the disparity map as planar tiles at various reso-

lutions and attach a learnable feature vector to each tile hy-

pothesis (Sec. 3.1). This allows our network to learn which

information about a small part of the disparity map is rele-

vant to further improving the result. This can be interpreted

as an efficient and sparse version of the learnable 3D cost

volumes that have shown to be beneficial [24].

The overall method is depicted in Fig. 2. Our feature ex-

traction module relies on a very small U-Net [41], where the

multi-resolution features of the decoder are used by the rest

of the pipelines. These features encode multi-scale details

of the image, similar to [7] (Sec. 3.2). Once the features

are extracted, we initialize disparity maps as fronto paral-

lel tiles at multiple resolutions. To do so, a matcher evalu-

ates multiple hypotheses and selects the one with the lowest

ℓ1 distance between left and right view feature. Addition-

ally, a compact per-tile descriptor is computed using a small

network (Sec. 3.3). The output of the initialization is then

passed to a propagation stage, which acts similarly to the

approximated Conditional Random Field solution used in

[12, 51]. This stage hierarchically refines the tile hypothe-

ses in an iterative fashion (Sec. 3.4).

3.1. Tile Hypothesis

We define a tile hypothesis as a planar patch with a learn-

able feature attached to it. Concretely, it consists of a geo-

metric part describing a slanted plane with the disparity d

and the gradient of disparity in x and y directions (dx, dy),
and a learnable part p which we call tile feature descrip-

tor. The hypothesis is therefore described as a vector which

encodes a slanted 3D plane,

h = [d, dx, dy
︸ ︷︷ ︸

plane

, p
︸︷︷︸

descriptor

] (1)

The tile feature descriptor is a learned representation of the

tile which allows the network to attach additional informa-

tion to the tile. This could for example be matching quality

or local surface properties such as how planar the geome-

try actually is. We do not constrain this information and

learned it end-to-end from the data instead.

3.2. Feature Extractor

The feature extractor provides a set of multi-scale fea-

ture maps E = {e0, . . . eM} that are used for initial match-

ing and for warping in the propagation stage. We denote a

feature map as el and an embedding vector el,x,y for loca-

tions x, y at resolution l ∈ 0, . . . ,M , 0 being the original

image resolution andM denoting a 2M ×2M downsampled

resolution. A single embedding vector el,x,y is composed of

multiple feature channels. We implement the feature extrac-

tor E = F(I;θF ) as a U-Net like architecture [41, 33], i.e.

an encoder-decoder with skip connections, with learnable

parameters θF . The network is composed of strided con-

volutions and transposed convolutions with leaky ReLUs as

non-linearities. The set of feature maps E that we use in
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Figure 2: Overview of the proposed framework. (Top) A U-Net is used to extract features at multiple scales from left and

right images. The initialization step is run on each scale of the extracted features. This step operates on tiles of 4× 4 feature

regions and evaluates multiple disparity hypotheses. The disparity with the minimum cost is selected. (Bottom) The output of

the initialization is then used at propagation stage to refine the predicted disparity hypotheses using slanted support windows.

the remainder of the network are the outputs of the upsam-

pling part of the U-Net at all resolutions. This means that

even the high resolution features do contain some amount of

spatial context. In more details, one down-sampling block

of the U-Net has a single 3 × 3 convolution followed by a

2× 2 convolution with stride 2. One up-sampling block ap-

plies 2× 2 stride 2 transpose convolutions to up-sample re-

sults of coarser U-Net resolution. Features are concatenated

with skip-connection, and a 1 × 1 convolution followed by

a 3 × 3 convolution are applied to merge the skipped and

upsampled feature for the current resolution. Each upsam-

pling block generates a feature map el, which is then used

for downstream tasks and also further upsampled in the U-

Net to generate a higher resolution feature map. We run the

feature extractor on the left and the right image and obtain

two multi-scale representations EL and ER.

3.3. Initialization

The goal of the initialization is to extract an initial dispar-

ity dinit and a feature vector pinit for each tile at various res-

olutions. The output of the initialization is fronto-parallel

tile hypotheses of the form hinit = [dinit, 0, 0,pinit].

Tile Disparity. In order to keep the initial disparity reso-

lution high we use overlapping tiles along the x direction,

i.e. the width, in the right (secondary) image but we still use

non-overlapping tiles in the left (reference) image for effi-

cient matching. To extract the tile features we run a 4 × 4
convolution on each extracted feature map el. The strides

for the left (reference) image and the right (secondary) im-

age are different to facilitate the aforementioned overlap-

ping tiles. For the left image we use strides of 4× 4 and for

the right image we use strides of 4 × 1, which is crucial to

maintain the full disparity resolution to maximize accuracy.

This convolution is followed by a leaky ReLU and an MLP.

The output of this step will be a new set of feature maps

Ẽ = {ẽ0, . . . , ẽM} with per tile features ẽl,x,y . Note that

the width of the feature maps in ẼL and ẼR are now differ-

ent. The per-tile features are explicitly matched along the

scan lines. We define the matching cost ̺ at location (x, y)
and resolution l with disparity d as:

̺(l, x, y, d) = ‖ẽLl,x,y − ẽRl,4x−d,y‖1 (2)

The initial disparities are then computed as:

dinitl,x,y = argmind∈[0,D] ̺(l, x, y, d) (3)

for each (x, y) location and resolution l, where D is the

maximal disparity that is considered. Note that despite

the fact that the initialization stage exhaustively computes
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matches for all disparities there is no need to ever store the

whole cost volume. At test time only the location of the best

match needs to be extracted, which can be done very effi-

ciently utilizing fast memory, e.g. shared memory on GPUs

and a fused implementation in a single Op. Hence, there is

no need to store and process a 3D cost volume.

Tile Feature Descriptor. The initialization stage also pre-

dicts a feature description pinit
l,x,y for each (x, y) location and

resolution l:

pinit
l,x,y = D(̺(dinitl,x,y), ẽ

L
l,x,y;θDl

). (4)

The features are based on the embedding vector of the ref-

erence image ẽLl,x,y and the costs ̺ of the best matching

disparity dinit. We utilize a perceptron D, with learnable

weights θD, which is implemented with a 1×1 convolution

followed by a leaky ReLU. The input to the tile feature de-

scriptor includes the matching costs ̺(·), which allows the

network to get a sense of the confidence of the match.

3.4. Propagation

The propagation step takes tile hypotheses as input and

outputs refined tile hypotheses based on spatial propaga-

tion of information and fusion of information. It internally

warps the features from the feature extraction stage from

the right image (secondary) to the left image (reference) in

order to predict highly accurate offsets to the input tiles. An

additional confidence is predicted which allows for effective

fusion between hypotheses coming from earlier propagation

layers and from the initialization stage.

Warping. The warping step computes the matching costs

between the feature maps eLl and eRl at the feature resolu-

tion l associated to the tiles. This step is used to build a

local cost volume around the current hypothesis. Each tile

hypothesis is converted into a planar patch of size 4 × 4
that it originally covered in the feature map. We denote the

corresponding 4× 4 local disparity map as d′ with

d′
i,j = d+ (i− 1.5)dx + (j − 1.5)dy, (5)

for patch coordinates i, j ∈ {0, · · · , 3}. The local dispar-

ities are then used to warp the features eRl from the right

(secondary) image to the left (reference) image using linear

interpolation along the scan lines. This results in a warped

feature representation eR
′

l which should be very similar to

the corresponding features of the left (reference) image eL

if the local disparity maps d′ are accurate. Comparing the

features of the reference (x, y) tile with the warped sec-

ondary tile we define the cost vector φφφ(e,d′) ∈ R
16 as:

φφφ(el,d
′) = [c0,0, c0,1, . . . , c0,3, c1,0 . . . c3,3], (6)

where ci,j = ‖eLl,4x+i,4y+j − eRl,4x+i−d′
i,j ,4y+j‖1.

Tile Update Prediction. This step takes n tile hypothe-

ses as input and predicts deltas for the tile hypotheses plus

a scalar value w for each tile indicating how likely this tile

is to be correct, i.e. a confidence measure. This mechanism

is implemented as a CNN module U , the convolutional ar-

chitecture allows the network to see the tile hypotheses in

a spatial neighborhood and hence is able to spatially propa-

gate information. A key part of this step is that we augment

the tile hypothesis with the matching costsφφφ from the warp-

ing step. By doing this for a small neighborhood in disparity

space we build up a local cost volume which allows the net-

work to refine the tile hypotheses effectively. Concretely,

we displace all the disparities in a tile by a constant off-

set of one disparity 1 in the positive and negative directions

and compute the cost three times. Using this let a be the

augmented tile hypothesis map for input tile map h:

al,x,y = [hl,x,y,φφφ(el,d
′ − 1),φφφ(el,d

′),φφφ(el,d
′ + 1)

︸ ︷︷ ︸

local cost volume

],

(7)

for a location (x, y) and resolution l, The CNN module Ul

then predicts updates for each of the n tile hypothesis maps

and additionally wi ∈ R which represent the confidence of

the tile hypotheses:

(∆h1
l , w

1, . . . ,∆hn
l , w

n

︸ ︷︷ ︸

hypotheses updates

) = Ul(a
1
l , . . . ,a

n
l ;θUl

). (8)

The architecture of U is implemented with residual blocks

[20] but without batch normalization. Following [25] we

use dilated convolutions to increase the receptive field. Be-

fore running a sequence of residual blocks with varying di-

lation factors we run a 1×1 convolution followed by a leaky

ReLU to decrease the number of feature channels. The up-

date module is applied in a hierarchical iterative fashion (see

Fig. 2). At the lowest resolution l = M we only have 1 tile

hypothesis per location from the initialization stage, hence

n = 1. We apply the tile updates by summing the input tile

hypotheses and the deltas and upsample the tiles by a factor

of 2 in each direction. Thereby, the disparity d is upsam-

pled using the plane equation of the tile and the remaining

parts of the tile hypothesis dx, dy and p are upsampled us-

ing nearest neighbor sampling. At the next resolutionM−1
we now have two hypotheses: the one from the initialization

stage and the upsampled hypotheses from the lower resolu-

tion, hence n = 2. We utilize the wi to select the updated

tile hypothesis with highest confidence for each location.

We iterate this procedure until we reach the resolution 0,

which corresponds to tile size 4× 4 and full disparity reso-

lution in all our experiments. To further refine the disparity

map we use the winning hypothesis for the 4 × 4 tiles and

apply propagation module 3 times: for 4 × 4, 2 × 2, 1 × 1
resolutions, using n = 1. The output at tile size 1 × 1 is

our final prediction. More details about the network archi-

tecture are provided in the supplementary material.
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4. Loss Functions

Our network is trained end-to-end with ground truth dis-

parities dgt utilizing the losses described in the remainder

of this section. The final loss is a sum of the losses over all

the scales and pixels:
∑

l,x,y L
init
l + L

prop
l + Lslant

l + Lw
l .

4.1. Initialization Loss

Ground truth disparities are given with subpixel preci-

sion, however matching in initialization happens with inte-

ger disparities. Therefore we compute the matching cost for

subpixel disparities using linear interpolation. The cost for

subpixel disparities is then given as

ψ(d) = (d− ⌊d⌋)̺(⌊d⌋+ 1) + (⌊d⌋+ 1− d)̺(⌊d⌋), (9)

where we dropped the l, x, y subscripts for clarity. To com-

pute them at multiple resolutions we maxpool the ground

truth disparity maps to downsample them to the required

resolution. We aim at training the features E to be such that

the matching cost ψ is smallest at the ground truth disparity

and larger everywhere else. To achieve this, we impose an

ℓ1 contrastive loss [18]

Linit(dgt, dnm) = ψ(dgt) + max(β − ψ(dnm), 0), (10)

where β > 0 is a margin, dgt the ground truth disparity for

a specific location and

dnm = argmind∈[0,D]/{d:d∈[dgt−1.5,dgt+1.5]} ̺(d) (11)

the disparity of the lowest cost non match for the same loca-

tion. This cost pushes the ground truth cost toward 0 as well

as the lowest cost non match toward a certain margin. In all

our experiments we set the margin to β = 1. Similar con-

trastive losses have been used to learn the matching score in

earlier deep learning based approaches to stereo matching

[58, 35]. However, they either used a random non-matching

location as negative sample or used all the non matching

locations as negative samples, respectively.

4.2. Propagation Loss

During propagation we impose a loss on the tile geome-

try d, dx, dy and the tile confidence w. We use the ground

truth disparity dgt and ground truth disparity gradients dgtx
and dgty , which we compute by robustly fitting a plane to dgt

in a 9×9 window centered at the pixel. In order to apply the

loss on the tile geometry we first expand the tiles to a full

resolution disparities d̂ using the plane equation (d, dx, dy)
analogously to Eq. 5. The slant portion is also up-sampled

to full resolution using nearest neighbor approach before

slant loss is applied. We use the general robust loss func-

tion ρ(·) from [2] which resembles a smooth ℓ1 loss, i.e.,

Huber loss. Additionally, we apply a truncation to the loss

with threshold A

Lprop(d, dx, dy) = ρ(min(|ddiff |, A), α, c), (12)

where ddiff = dgt − d̂. Further we impose a loss on the

surface slant, as

Lslant(dx, dy) =

∥
∥
∥
∥

dgtx − dx
dgty − dy

∥
∥
∥
∥
1

χ|ddiff |<B , (13)

where χ is an indicator function which evaluates to 1 when

the condition is satisfied and 0 otherwise. To supervise the

confidence w we impose a loss which increases the confi-

dence if the predicted hypothesis is closer than a threshold

C1 from the ground truth and decrease the confidence if the

predicted hypothesis is further than a threshold C2 away

from the ground truth.

Lw(w) = max(1−w, 0)χ|ddiff |<C1
+max(w, 0)χ|ddiff |>C2

(14)

For all our experiments A = B = C1 = 1; C2 = 1.5.

For the last several levels, when only a single hypotheses is

available, loss is applied to all pixels ( A = ∞).

5. Experiments

We evaluate the proposed approach on popular bench-

marks showing competitive results at a fraction of the com-

putational time compared to other methods. We consider

the following datasets: SceneFlow [37], KITTI 2012 [15],

KITTI 2015 [38], ETH3D [44], Middlebury dataset V3

[42]. Following the standard evaluation settings we con-

sider the two popular metrics: the End-Point-Error (EPE),

which is the absolute distance in disparity space between

the predicted output and the groundtruth; the x-pixels error,

which is the percentage of pixels with disparity error greater

than x. For the EPE computation on SceneFlow we adopt

the same methodology of PSMNet [7], which excludes all

the pixel with ground truth disparity bigger than 192 from

the evaluation. Unless stated otherwise we use a HITNet

with 5 levels, i.e. M = 4.

In this section we focus on comparisons with state-

of-art on popular benchmarks, detailed ablation stud-

ies, run-time breakdown, cross-domain generalization

and additional evaluations, are provided in the sup-

plementary material. The trained models used for

submission to benchmarks and evaluation scripts can

be found at https://github.com/google-research/google-

research/tree/master/hitnet

5.1. Comparisons with Stateoftheart

SceneFlow. On the synthetic dataset SceneFlow “final-

pass” we achieve the remarkable End-Point-Error (EPE) of

0.36, which is 2X better than state-of-art at time of writ-

ing (see supplementary materials for details of L and XL

versions). Representative competitors are reported in Tab.

1. The PSMNet algorithm [7] performs multi-scale fea-

ture extraction similarly to our method, but in contrast they

use a more sophisticated pooling layer. Here we show that
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Figure 3: Qualitative results on SceneFlow and KITTI 2012. Note how the model is able to recover fine details, textureless

regions and crisp edges.

Method EPE px Runtime s

HITNet XL 0.36 0.114

HITNet L 0.43 0.054

EdgeStereo [48] 0.74 0.32

LEAStereo [8] 0.78 0.3

GA-Net [59] 0.84 1.6

PSMNet [7] 1.09 0.41

StereoNet [25] 1.1 0.015

Table 1: Comparisons with state-of-the-art methods on

Scene Flow “finalpass” dataset, lower is better.

Method EPE px Bad 1 Bad 2 Runtime

HITNet (ours) 0.20 2.79 0.80 0.02 s

R-Stereo 0.18 2.44 0.44 0.81 s

DN-CSS 0.22 2.69 0.77 0.31 s

AdaStereo [47] 0.26 3.41 0.74 0.40 s

Deep-Pruner [9] 0.26 3.52 0.86 0.16 s

iResNet [32] 0.24 3.68 1.00 0.20 s

Stereo-DRNet [6] 0.27 4.46 0.83 0.33 s

PSMNet [7] 0.33 5.02 1.09 0.54 s

Table 2: Comparisons with state-of-the-art methods on

ETH3D stereo dataset. For all metrics lower is better.

our architecture is more effective. Compared to GA-Net

[59], we do not need complex message passing steps such

as SGM. The results we obtain show that our strategy is

also achieving a very similar inference. Finally, a represen-

tative fast method, StereoNet [25] is considered, which we

consistently outperform. As result our method achieves the

lowest EPE while still maintaining real-time performance.

See Figure 3 for qualitative results.

Middlebury Stereo Dataset v3. We evaluated our

method with multiple state-of-art approaches on the Mid-

dlebury stereo dataset v3, see Table 4 and the official bench-

mark website.2. As we can observe we outperform all the

other end-to-end learning based approaches on most of the

metrics, we rank among the top 10 when considering also

hand-crafted approaches and in particular we rank first for

bad 0.5 and A50, second for bad 1 and avgerr. In addition,

we note that our average error is impacted by specifically

one image, DjembL, which is due to the fact that we do

not explicitly handle harsh lighting variations between in-

put pairs. For visual results on the Middlebury datasets and

details regarding the training procedure we refer the reader

to the supplementary material.

ETH3D two view stereo. We evaluated our method with

multiple state-of-art approaches on the ETH3D dataset, see

Tab. 2. At time of submission to benchmark, HITNet ranks

1st-4rd on all the metrics published on the website. In par-

ticular, our method ranks 1nd on the following metrics: bad

0.5, bad 4, average error, rms error, 50% quantile, 90%
quantile: this shows that HITNet is resilient to the partic-

ular measurement chosen, whereas competitive approaches

exhibits substantial differences when different metrics are

selected. See the submission website for details.3.

KITTI 2012 and 2015. At time of writing, among the

published methods faster than 100ms, HITNet ranks #1 on

KITTI 2012 and 2015 benchmarks. Compared to other

state-of-the-art stereo matchers (see Tab. 3), our approach

2See “HITNet” entry on the official dataset website.
3See the ETH3D Website at https://www.eth3d.net/low res two view

for the complete metrics.
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KITTI 2012 [15] KITTI 2015 [38]

Method 2-noc 2-all 3-noc 3-all
EPE

noc

EPE

all
D1-bg D1-fg D1-all Run-time

HITNet (ours) 2.00 2.65 1.41 1.89 0.4 0.5 1.74 3.20 1.98 0.02s

LEAStereo [8] 1.90 2.39 1.13 1.45 0.4 0.5 1.40 2.91 1.65 0.3s

GANet-deep [59] 1.89 2.50 1.19 1.6 0.4 0.5 1.48 3.46 1.81 1.8s

EdgeStereo-V2 [48] 2.32 2.88 1.46 1.83 0.4 0.5 1.84 3.30 2.08 0.32s

GC-Net [24] 2.71 3.46 1.77 2.30 0.6 0.7 2.21 6.16 2.87 0.9s

SGM-Net [45] 3.60 5.15 2.29 3.50 0.7 0.9 2.66 8.64 3.66 67s

ESMNet [17] 3.65 4.30 2.08 2.53 0.6 0.7 2.57 4.86 2.95 0.06s

MC-CNN-acrt [58] 3.90 5.45 2.09 3.22 0.6 0.7 2.89 8.88 3.89 67s

RTSNet [29] 3.98 4.61 2.43 2.90 0.7 0.7 2.86 6.19 3.41 0.02s

Fast DS-CS [54] 4.54 5.34 2.61 3.20 0.7 0.8 2.83 4.31 3.08 0.02s

StereoNet [25] 4.91 6.02 - - 0.8 0.9 4.30 7.45 4.83 0.015s

Table 3: Quantitative evaluation on KITTI 2012 and KITTI 2015. For KITTI 2012 we report the percentage of pixels with

error bigger than x disparities in both non-occluded (x-noc) and all regions (x-all), as well as the overall EPE in both non

occluded (EPE-noc) and all the pixels (EPE-all). For KITTI 2015 We report the percentage of pixels with error bigger than

1 disparity in background regions (bg), foreground areas (fg), and all.

Method RMS AvgErr Bad 0.5 Bad 1.0 Bad 2.0 Bad 4.0 A50 Run-time

HITNet (ours) 9.97 1.71 34.2 13.3 6.46 3.81 0.40 0.14 s

LEAStereo [8] 8.11 1.43 49.5 20.8 7.15 2.75 0.53 2.9 s

NOSS-ROB [30] 12.2 2.08 38.2 13.2 5.01 3.46 0.42 662s (CPU)

LocalExp [50] 13.4 2.24 38.7 13.9 5.43 3.69 0.43 881s (CPU)

CRLE [52] 13.6 2.25 38.1 13.4 5.75 3.90 0.42 1589s (CPU)

HSM [53] 10.3 2.07 50.7 24.6 10.2 4.83 0.56 0.51 s

MC-CNN [58] 21.3 3.82 40.7 17.1 8.08 4.91 0.45 150 s

EdgeStereo [48] 9.84 2.67 55.6 32.4 18.7 10.8 0.72 0.35 s

Table 4: Comparisons with state-of-the-art methods on Middlebury V3 dataset. For all metrics lower is better.

compares favorably to GC-Net [24], [39] and many others.

Recent methods such as GA-Net [59] and HSM [53] are

obtaining slightly better metrics, although they require 1.8
and 0.15 seconds respectively. Note also that HSM [53] has

been trained with additional external high resolution data.

Similarly, GA-Net [59] is pre-trained on SceneFlow and

fine-tuned on KITTI benchmarks, whereas our approach is

fully trained on the small data available on KITTI. Com-

pared to fast methods such as StereoNet [25] and RTSNet

[29], our method consistently outperforms them by a con-

siderable margin, showing that it can be employed in la-

tency critical scenarios without sacrificing accuracy.4.

6. Conclusion

We presented HITNet, a real-time end-to-end architec-

ture for accurate stereo matching. We presented a fast

initialization step that is able to compute high resolution

matches using learned features very efficiently. These tile

initializations are then fused using propagation and fusion

steps. The use of slanted support windows with learned

4See the KITTI Website at http://www.cvlibs.net/datasets/kitti/eval stereo.php

for the complete metrics.

descriptors provides additional accuracy. We presented

state-of-the art accuracy on multiple commonly used bench-

marks. A limitation of our algorithm is that it needs to be

trained on a dataset with ground truth depth. To address this

in the future we are planning to investigate self-supervised

methods and self-distillation methods to further increase the

accuracy and decrease the amount of training data that is

required. A limitation of our experiments is that different

datasets are trained on separately and use slightly different

model architectures. To address this in the future, a single

experiment is required that aligns with Robust Vision Chal-

lenge requirements.
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