
RAFT-3D: Scene Flow using Rigid-Motion Embeddings

Zachary Teed and Jia Deng

Princeton University

{zteed,jiadeng}@cs.princeton.edu

Abstract

We address the problem of scene flow: given a pair of

stereo or RGB-D video frames, estimate pixelwise 3D mo-

tion. We introduce RAFT-3D, a new deep architecture for

scene flow. RAFT-3D is based on the RAFT model devel-

oped for optical flow but iteratively updates a dense field

of pixelwise SE3 motion instead of 2D motion. A key inno-

vation of RAFT-3D is rigid-motion embeddings, which rep-

resent a soft grouping of pixels into rigid objects. Integral

to rigid-motion embeddings is Dense-SE3, a differentiable

layer that enforces geometric consistency of the embed-

dings. Experiments show that RAFT-3D achieves state-of-

the-art performance. On FlyingThings3D, under the two-

view evaluation, we improved the best published accuracy

(δ < 0.05) from 34.3% to 83.7%. On KITTI, we achieve

an error of 5.77, outperforming the best published method

(6.31), despite using no object instance supervision.

1. Introduction

Scene flow is the task of estimating pixelwise 3D mo-

tion between a pair of video frames[43]. Detailed 3D mo-

tion is requisite for many downstream applications includ-

ing path planning, collision avoidance, virtual reality, and

motion modeling. In this paper, we focus on stereo scene

flow and RGB-D scene flow, which address stereo video

and RGB-D video respectively.

Many scenes can be well approximated as a collection

of rigidly moving objects. The motion of driving scenes,

for example, can be modeled as a variable number of cars,

buses, and trucks. The most successful scene flow ap-

proaches have exploited this structure by decomposing a

scene into its rigidly moving components[32, 45, 45, 47, 30,

1, 20, 19, 23]. This introduces a powerful prior which can

be used to guide inference. While optical flow approaches

typically assume piecewise smooth motion, a scene contain-

ing rigid objects will exhibit piecewise constant 3D motion

fields (Fig. 1).

Recently, many works have proposed integrating deep

learning into scene flow estimation pipelines. A common

approach has been to use object detection[1, 3] or segmen-

tation [1, 30, 29, 37] networks to decompose the scene into

a collection of potentially rigidly moving objects. Once the

scene has been segmented into its rigidly moving compo-

nents, more traditional optimization can be used to fit a mo-

tion model to each of the objects. One limitation of this

approach is that the networks require instance segmenta-

tions to be trained and cannot recover the motion of new un-

known objects. Object detection and instance segmentation

introduce non-differentiable components into the network,

making end-to-end training difficult without bounding box

or instance level supervision.

We introduce RAFT-3D, an end-to-end differentiable ar-

chitecture which estimates pixelwise 3D motion from stereo

or RGB-D video. RAFT-3D is built on top of RAFT [41], a

state-of-the-art optical flow architecture that builds all-pairs

correlation volumes and uses a recurrent unit to iteratively

refine a 2D flow field. We retain the basic iterative structure

of RAFT but introduce a number of novel designs.

The main innovation we introduce is rigid-motion em-

beddings, which are per-pixel vectors that represent a soft

grouping of pixels into rigid objects. During inference,

RAFT-3D iteratively updates the rigid-motion embeddings

such that pixels with similar embeddings belong to the same

rigid object and follow the same SE3 motion.

Integral to rigid-motion embeddings is Dense-SE3, a dif-

ferentiable layer that seeks to ensure that the embeddings

are geometrically meaningful. Dense-SE3 iteratively up-

dates a dense field of per-pixel SE3 motion by perform-

ing unrolled Gauss-Newton iterations such that the per-pixel

SE3 motion is geometrically consistent with the current es-

timates of rigid-motion embeddings and pixel correspon-

dence. Because of Dense-SE3, the rigid-motion embed-

dings can be indirectly supervised from only ground truth

3D scene flow, and our approach does not need any super-

vision of object boxes or masks.

Fig. 1 provides an overview of our approach. RAFT-3D

take a pair of RGB-D images as input. It extracts features

from the input images and builds a 4D correlation volume

by computing the visual similarity between all pairs of pix-

els. RAFT-3D maintains and updates a dense field of pix-

8375

R
esnet50

O
pt
ic
al
	F
lo
w

R
ot
at
io
n

Tr
an
sl
at
io
n

Im
ag
e-
D
ep
th
	1

Im
ag
e-
D
ep
th
	2

Figure 1. Overview of our approach. Features extracted from the input images are used to construct a 4D correlation volume. We initialize

the SE3 motion field, T, to be the identity at every pixel. During each iteration, the update operator uses the current SE3 motion estimate to

index from the correlation volume, using the correlation features and hidden state to produce estimates of pixel correspondence and rigid-

motion embeddings. These estimates are plugged into Dense-SE3, a least-squares optimization layer which uses geometric constraints to

produce an update to the SE3 field. After successive iterations we recover a dense SE3 field, which can be decomposed into a rotational

and translation component. The SE3 field can be projected onto the image to recover optical flow.

elwise SE3 motion. During each iteration, it uses the cur-

rent estimate of SE3 motion to index from the correlation

volume. A recurrent GRU-based update operator takes the

correlation features and produces an estimate of pixel cor-

respondence, which is then used by Dense-SE3 to generate

updates to the SE3 motion field.

RAFT-3D achieves state-of-the-art accuracy. On Fly-

ingThings3D, under the two-view evaluation [25], RAFT-

3D improves the best published accuracy (δ < 0.05) from

34.3% to 83.7%. On KITTI, RAFT-3D achieves an error of

5.77, outperforming the best published method (6.31), de-

spite using no object instance supervision.

2. Related Work

The task of reconstructing a 3D motion field from video

is often referred to as estimating “scene flow”.

Optical Flow: Optical flow is the problem of estimating

dense 2D pixel-level motion between a pair of frames. Early

work formulated optical flow as a energy minimization

problem, where the objective was a combination of a data

term—encouraging the matching of visually similar image

regions—and a regularization term—favoring piecewise

smooth motion fields. Many early scene flow approaches

evolved from this formulation, replacing piecewise smooth

flow priors with a piecewise constant rotation/translation

field prior[46, 32]. This greater degree of structure allowed

scene flow methods to outperform approaches which treated

optical flow or stereo separately[45].

Recently, the problem of optical flow has been reformu-

lated in the context of deep learning. Many works have

demonstrated that a neural network can be directly trained

to estimate optical flow between a pair of frames, and a large

variety of network architectures have been proposed for the

task [9, 18, 39, 36, 28, 49, 41]. RAFT[41] is a recurrent net-

work architecture for estimating optical flow. RAFT builds

a 4D correlation volume by computing the visual similarity

between all pairs of pixels; then, during inference, a recur-

rent update operator indexes from the correlation volume to

produce a flow update. A unique feature of RAFT is that a

single, high resolution, flow field is updated and maintained.

Our approach is based on the RAFT architecture, but in-

stead of a flow field, we estimate a SE3 motion field, where

a rigid body transformation is estimated for each pixel.

When projected onto the image, our SE3 motion vectors

give more accurate optical flow than RAFT.

Rectified Stereo: Rectified stereo can be viewed as a 1-

dimensional analog to optical flow, where the correspon-

dence of each pixel in the left image is constrained to lie on

a horizontal line spanning the right image. Like optical flow,

traditional methods treated stereo as an energy minimiza-

tion problem[17, 35] often exploiting planar information[2].

Recent deep learning approaches have borrowed many

core concepts from conventional approaches such as the

use of a 3D cost volume [22], replacing hand-crafted fea-

tures and similarity metrics with learned features, and cost

volume filtering with a learned 3D CNN. Like optical

flow, a variety of network architectures have been proposed

[22, 51, 14, 5]. Here we use GA-Net[51] to estimate depth

between the each left/right image pair.

Scene Flow: Like optical flow and stereo, scene flow can

be approached as a energy minimization problem. The ob-

jective is to recover a flow field such that (1) visually sim-

ilar image regions are aligned and (2) the flow field maxi-

mizes some prior such as piecewise rigid motion and piece-

8376

wise planar depth. Both variational optimization[34, 20, 19]

and discrete optimization[32, 19] approaches have been ex-

plored for inference. Our network is designed to mimic the

behavior an optimization algorithm. We maintain an esti-

mate of the current motion field which is updated and re-

fined with each iteration.

Jaimez et al.[20] proposed an alternating optimization

approach for scene flow estimation from a pair of RGB-D

images, iterating between grouping pixels into rigidly mov-

ing clusters and estimating the motion model for each of the

cluster. Our method shares key ideas with this approach,

namely the grouping of pixels into rigidly moving objects,

however, we avoid a hard clustering by using rigid-motion

embeddings, which softly and differentiably group pixels

into rigid objects.

Recent works have leveraged the object detection and se-

mantic segmentation ability of deep networks to improve

scene flow accuracy[30, 3, 37, 1, 12]. In these works,

an object detection or instance segmentation network is

trained to identify potentially moving objects, such as cars

or buses. While these approaches have been very effective

for driving datasets such as KITTI where moving objects

can be easily identified using semantics, they do not gener-

alize well to novel objects. An additional limitation is that

the detection and instance segmentation introduces non-

differentiable components into the pipeline, requiring these

components to be trained separately on ground truth anno-

tation. Ma et al. [30] was able to train an instance segmen-

tation network jointly with optical flow estimation by dif-

ferentiating through Gauss-Newton updates; however, this

required additional instance supervision and pre-training on

Cityscapes[7]. On the other hand, our network outperforms

these approaches without using object instance supervision.

Yang and Ramanan[50] take a unique approach and use a

network to predict optical expansion, or the change in per-

ceived object size. Combining optical expansion with op-

tical flow gives normalized 3D scene flow. The scale am-

biguity can be recovered using Lidar, stereo, or monocular

depth estimation. This approach does not require instance

segmentation, but also cannot directly enforce rigid motion

priors.

Another line of work has focused on estimating 3D mo-

tion between a pair [25, 48, 13] or sequence[26, 10] of

point clouds. These approaches are well suited for Lidar

data where the sensor produces sparse measurements. How-

ever, these works do not directly exploit scene rigidity. As

we demonstrate in our experiments, reasoning about object

level rigidity is critical for good accuracy.

3. Approach

We propose an iterative architecture for scene flow esti-

mation from a pair of RGB-D images. Our network takes

in two image/depth pairs, (I1, Z1), (I2, Z2), and outputs a

dense transformation field T ∈ SE(3)H×W which assigns

a rigid body transformation to each pixel. For stereo im-

ages, the depth estimates Z1 and Z2 are obtained using an

off-the-shelf stereo network.

3.1. Preliminaries

We use the pinhole projection model and assume known

camera intrinsics. We use an augmented projection func-

tion which maps a 3D point to its projected pixel coordi-

nates, (x, y), in addition to inverse depth d = 1/Z. Given a

homogeneous 3D point X = (X,Y, Z, 1)

(x, y, d) = π(X) =





fx(X/Z) + cx
fy(Y/Z) + cy

1/Z



 (1)

where (fx, fy, cx, cy) are the camera intrinsics.

Given a dense depth map Z ∈ R+
H×W , we can use the

inverse projection function.









X
Y
Z
1









= π−1(x, y, d) =
1

d









(x− cx)/fx
(x− cy)/fy

1
d









(2)

which maps from pixel (x, y, d) to the point (X,Y, Z, 1),
again with inverse depth d = 1/z.

Mapping Between Images: We use a dense transforma-

tion field, T ∈ SE(3)H×W to represent the 3D motion

between a pair of frames. Using T, we can construct a

function which maps points in frame I1 to I2. Letting

xi = (xi, yi, di) be the pixel coordinate at index i then the

mapping

x
′
i = (x′

i, y
′
i, d

′
i) = π(Ti ·Xi), Xi = π−1(xi) (3)

can be used to find the correspondence of xi in I2.

A flow vector can be obtained by taking the difference

x
′
i − xi. The first two components of the flow vector give

us the standard optical flow. The last component provides

the change in inverse depth between the pair of frames. The

focus of this paper is to recover T given a pair of frames.

Jacobians: For optimization purposes, we will need the Ja-

cobian of the Eqn. 3. Using the chain rule, we can compute

the Jacobian of Eqn. 3 as the product of the projection Ja-

cobian

Jπ =
∂π(X′)

∂X′
=





fxd
′ 0 −fxX

′d′
2

0 fyd
′ −fyY

′d′
2

0 0 −d′
2



 (4)

and the transformation Jacobian

JT = (I3×3, (X
′)∧) , w

∧ =





0 -w3 w2

w3 0 -w1

-w2 w1 0



 (5)

8377

using local coordinates defined by the retraction exp(δ∧) ·
T. Giving the Jacobian of Eqn. 3 as J = Jπ · JT ∈ R

3×6.

Optimization on Lie Manifolds: The space of rigid-body

transformations forms a Lie group, which is a smooth man-

ifold and a group. In this paper, we use the Gauss-Newton

algorithm to perform optimization steps over the space of

dense SE3 fields.

Given a weighted least squares objective

E(x) =
∑

i

wi · (fi(x)− yi)
2 (6)

the Gauss-Newton algorithm linearizes the residual terms,

and solves for the update

J
T diag(w) J∆x = J

T
r(x) (7)

ri = fi(x)− yi Ji =
∂fi(exp(δ

∧)x)

∂δ

∣

∣

∣

∣

δ=0

(8)

The update is found by solving Eqn. 8 and applying the re-

traction T
′ = exp(∆x

∧) ·T. Eqn. 8 can be rewritten as the

linear system

H∆x = b H = J
T diag(w) J, b = J

T
r(x) (9)

and H and b can be constructed without explicitly forming

the Jacobian matrices

H =
∑

i

wi · J
T
i Ji, b =

∑

i

wi · J
T
i ri(x). (10)

This fact is especially useful when solving optimization

functions with millions of residual terms. In this setting,

storing the full Jacobian matrix becomes impractical.

3.2. Network Architecture

Our network architecture is based on RAFT[41]. We

construct a full 4D correlation volume by computing the vi-

sual similarity between all pairs of pixels between the two

input images. During each iteration, the network uses the

current estimate of the SE3 field to index from the correla-

tion volume. Correlation features are then fed into an re-

current update operator which estimates a dense flow field.

We provide an overview of the RAFT architecture here, but

more details can be found in [41].

Feature Extraction: We first extract features from the two

input images. We use two separate feature extract networks.

The feature encoder, fθ, is applied to both images with

shared weights. fθ extracts a dense 128-dimension feature

vector at 1/8 resolution. It consists of 6 residuals blocks, 2

at 1/2 resolution, 2 at 1/4 resolution, and 2 at 1/8 resolution.

We provide more details of the network architectures in the

appendix.

The context encoder extracts semantic and contextual in-

formation from the first image. Different from the origi-

nal RAFT[41], we use a pretrained ResNet50[16] with a

skip connection to extract context features at 1/8 resolution.

The reason behind this change is that grouping objects into

rigidly moving regions requires a greater degree of seman-

tic information and larger receptive field. During training,

we freeze the batch norm layers in the context encoder.

Computing Visual Similarity: We construct a 4D correla-

tion volume by computing the dot product between all-pairs

of feature vectors between the input images

Cijkh(I1, I2) = 〈fθ(I1)ij , fθ(I2)kh〉 ∈ R
H×W×H×W

(11)

We then pool the last two dimensions of the correlation vol-

ume 3 times using average pooling with a 2 × 2 kernel, re-

sulting in a correlation pyramid {C1,C2,C3,C4} with

Ck ∈ R
H×W×H/2k−1

×W/2k−1

(12)

Indexing the Correlation Pyramid: Given a current esti-

mate of correspondence x′ = (u, v), we can index from the

correlation volume to produce a set of correlation features.

First we construct a neighborhood grid around x

Nx = {(u+ du, v + dv) | du, dv ∈ {−r, ..., r} } (13)

and then use the neighboorhood to sample from the cor-

relation volume using bilinear sampling. We note that the

constructing and indexing from the correlation volume is

performed in an identical manner to RAFT[40].

Update Operator: The update operator is a recurrent

GRU-unit which retrieves features from the correlation vol-

ume using the indexing operator and outputs a set of revi-

sions. RAFT uses a series of 1x5 and 5x1 GRU units; we

use a single 3x3 unit but use a kernel composed of 1 and 3

dilation rates. We provide more details on the architecture

of the update operator in the appendix.

Using Eqn. 3, we can use the current estimate of T to

estimate 2D correspondences x
′ = π(T · π−1(x)). The

following features are used as input to the GRU

– Flow field: x′ − x

– Twist field: logSE3(T)

– Depth residual: d′ − d̄
′

– Correlation features: LC(x
′)

In the depth residual term, the inverse depth d′i is obtained

from the depth component of x′
i, i.e. the backprojected pixel

i expressed in the coordinate system of frame 2. The inverse

depth d̄′i is obtained by indexing the inverse depth map of

frame 2 using the correspondence x′
i of pixel i. If pixel

i is non-occluded, an accurate SE3 field T should result

in a depth residual of 0. Each of the derived features are

processed through 2 convolutional layers and then provided

as input to the convolutional GRU.

8378

The hidden state is then used to predict the inputs to the

Dense-SE3 layer. We apply two convolutional layers to hid-

den state to output a rigid-motion embedding map V. We

additionally predict a “revision map” rx, ry, rz and corre-

sponding confidence maps wx,wy,wz ∈ [0, 1]. The re-

visions rx and ry correspond to corrections that should be

made to the optical flow induced by the current SE3 field.

In other words, the network is trying to get a new estimate

of pixel correspondence, but is expressing it on top of the

flow induced by the SE3 field. The revisions rz is the cor-

rections that should be made to the inverse depth in frame

2 when the inverse depth is used by Dense-SE3 to enforce

geometric consistency. This is to account for noise in the

input depth as well as occlusions. The embedding map and

revision maps are taken as input to the Dense-SE3 layer to

produce an update to the SE3 motion field.

SE3 Upsampling: The SE3 motion field estimated by the

network is at 1/8 of the resolution. We use convex up-

sampling [41] to upsample the transformation field to the

full input resolution. In RAFT[41], the high resolution flow

field was taken to be the convex combination of 3× 3 grids

at the lower resolution with combination weights predicted

by the network. However, the SE3 field T lies on a mani-

fold and is not closed under linear combinations. Instead we

perform upsampling by first mapping T to the Lie algebra

using the logarithm map, performing convex upsampling in

the lie algebra, and then mapping back to the manifold using

the exponential map.

3.3. Dense­SE3 Layer

The key ingredient to our approach is the Dense-SE3

layer. Each application of the update module produces a

revision map r = (rx, ry, rz). The Dense-SE3 layer is a

differentiable optimization layer which maps the revision

map to a SE3 field update.

The rigid-motion embedding vectors are used to softly

group pixels into rigid objects. Given two embedding vec-

tors vi and vj , we compute an affinity aij ∈ [0, 1] by taking

the sigmoid of the negative L2 distance

aij = 2 ∗ σ(−||vi − vj ||
2) ∈ [0, 1] (14)

Objective Function: Using the affinity terms, we define an

objective function based on the reprojection error

E(δ) =
∑

i∈Ω

∑

j∈Ni

aije
2
ij(δi) (15)

e2ij(δi) = ||rj + π(TjXj)− π(eδiTiXj)||
2
wj

(16)

with ||x||2w = x
T diag(w)x. The objective states that for

every pixel i, we want a transformation Ti which describes

the motion of pixels in a neighborhood j ∈ Ni. However,

not every pixel j ∈ Ni belongs to the same rigidly moving

object. That is the purpose for the embedding vector. Only

pairs (i, j) with similar embeddings significantly contribute

to the objective function.

Efficient Optimization: We apply a single Gauss-Newton

update to Eqn. 16 to generate the next SE3 estimate. Since

the Dense-SE3 layer is applied after each application of the

update operator, 12 iterations of the update operator yields

12 Gauss-Newton updates.

The objective defined in Eqn. 16 can result in a very

large optimization problem. We generally use a large neigh-

borhood Ni in practice; in some experiments we take Ni to

be the entire image. For the FlyingThings3D dataset, with

540 × 960 resolution, this results in 200 million equations

and 50,000 variables (Dense-SE3 layer operators at 1/8 the

input resolution). Trying the store the full system would

exceed available memory.

However, each term in Eqn. 16 only includes a single

Ti. This means that instead of solving a single optimization

problem with H ×W × 6 variables, we can instead solve a

set of H×W problems each with only 6 variables. Further-

more, we can leverage Eqn. 10 and build the linear system

in place without explicitly constructing the Jacobian. When

implemented directly in Cuda, a Gauss-Newton update of

Eqn. 16 can be performed very quickly and is not a bottle-

neck in our approach.

3.4. bi­Laplacian Embedding Optimization

Since our architecture operates primarily at high reso-

lution, it can be difficult for the network to group pixels

which span large objects. We implement a differentiable

bi-Laplacian optimization layer in order to smooth embed-

ding vectors within motion boundaries. Vogel et al. [44]

used a similar differentiable optimization layer to smooth

optical flow within motion boundaries; however, they use

iterative methods to solve the linear system while we use

direct Cholesky factorization which allows us to reuse the

factorization for each channel of the embedding vector.

Given an embedding map V ∈ R
H×W×C , we have the

GRU predict additional edge weights wx,wy ∈ R
H×W
+ and

define the objective

u
∗ = min

u

{

||Dxu||
2
wx

+ ||Dxu||
2
wy

+ ||u− v||2
}

(17)

where Dx and Dy are linear finite difference operators, and

v is the flattened feature map.

In other words, we want to solve for a new embedding

map u which is smooth within motion boundaries and close

to the original embedding map v. At boundaries, the net-

work can set the weights to 0 so that edges do not get

smoothed over. Eqn. 17 can be solved in closed form using

sparse Cholesky decomposition and we use the Cholmod

library[6]. Using nested dissection[11] factorization can be

performed in O((HW)
1.5

) time and backsubstition can be

8379

image flow τ φ

Figure 2. Visualization of the predicted motion fields on FlyingThings3D (top) and KITTI (bottom). Our network outputs a dense SE3

motion field, which can be used to compute optical flow. We visualize the SE3 field as the twist field where (τ, φ) = log
SE3

(T). Note

that the twist fields are piecewise constant—pixels from the same rigid object are assigned the same SE3 motion.

performed in O(C · (HW)
1.5

) time. In the appendix, we

derive the gradients of Eqn. 17. Since the optimization layer

is differentiable, the inputs wx and wy don’t require direct

supervision.

3.5. Supervision

We supervise our network on a combination of ground

truth optical flow and inverse depth change. Our network

outputs a sequences of {T1,T2, . . . ,TK}. For each trans-

formation, Tk, we computed the induced optical flow and

inverse depth change

f
k
est = π(Tk · π−1(x))− x (18)

where x is a dense coordinate grid in I1. We compute the

loss as the sequence over all estimations

L =

N
∑

k=1

γN−k||fkest − fgt||1 (19)

with γ = 0.9. Note that no supervision is applied to the em-

bedding vectors, and that rigid-motion embeddings are im-

plicitly learned by differentiating through the dense SE(3)
update layer. We also apply an additional loss directly to

the revisions predicted by the GRU with 0.2 weight.

4. Experiments

We evaluate our approach on a variety of real and syn-

thetic datasets. For all experiments we use the AdamW

optimizer[27] with weight decay set to 1 × 10−5 and un-

roll 12 iterations of the update operator. All components

of the network are trained from scratch, with the exception

of the context encoder which uses ImageNet [8] pretrained

weights.

Training RAFT-3D involves differentiating a computa-

tion graph which consists of both Euclidean tensors (e.g.

network weights, feature activation) and Lie Groups ele-

ments (e.g. SE3 transformation field). We use the LieTorch

library[42] to perform backpropagation in the tangent space

of manifold elements in the computation graph.

4.1. FlyingThings3D

The FlyingThings3D dataset was introduced as part of

the synthetic Scene Flow datasets by Mayer et al. [31]. The

dataset consists of ShapeNet [4] shapes with randomized

translation and rotations placed in a scene populated with

background objects. While the dataset is not naturalistic,

it offers a challenging combination of camera and object

motion, each of which span all 6 degrees of freedom.

We train our network for 200k iterations with a batch size

of 4 and a crop size of [320, 720]. We perform spatial aug-

mentation by random cropping and resizing and adjust in-

trinsics accordingly. We use an initial learning rate of .0001

and decay the learning rate linearly during training.

We evaluate our network using 2D and 3D end-point-

error (EPE). 2D EPE is defined as the euclidean distance

between the ground truth optical flow and the predicted op-

tical flow which can be obtained from the 3D transforma-

tion field using Eqn. 3. 3D EPE is the euclidean distance

between the ground truth 3D scene flow and the predicted

scene flow. We also report threshold metrics, which mea-

sure the portion of pixels which lie within a given threshold.

In Tab. 2 we compare to point cloud based scene

flow methods[25, 48, 33] using the split proposed in

8380

Method Input
2D Metrics 3D Metrics

δ2D <1px EPE δ3D < .05 δ3D < 0.10 EPE

RAFT [41] RGB 79.4% 3.53 - - -

RAFT (2D flow backprojected) RGB-D 78.8% 3.42 50.6% 55.7% 5.442

RAFT (2D flow + depth change) RGB-D 75.2% 3.66 33.9% 47.2% 1.218

RAFT (3D flow) RGB-D 73.6% 4.42 36.2% 55.4% 0.266

Ours RGB-D 86.4% 2.46 87.8% 91.5% 0.062

Table 1. Results on the FlyingThings3D dataset using the images from the FlowNet3D split. We evaluate on the full images (excluding

pixels at infinity and extremely fast moving regions with flow > 250px)

Method Input δ3D < .05 δ3D < 0.10 EPE3D

FlowNet3D [25] XYZ 25.4% 57.9% 0.169

FlowNet3D++[48] RGB-D 30.3% 63.4% 0.137

FLOT[33] XYZ 34.3% 64.3% 0.156

Ours RGB-D 83.7% 89.2% 0.064

Table 2. 3D scene flow results on the FlyingThings3D dataset us-

ing the split proposed by Liu et al [25] where only non-occluded

points with depth <35m are considered for evaluation. Our

method outperforms existing point-based scene flow networks by

a large margin.

FlowNet3D[25] containing roughly 2000 test examples

sampled from the FlyingThings3D test set. In this evalu-

ation setup, only non-occluded pixels with depth <35 me-

ters are used for evaluation. Our method improves the 3D

δ < 0.05 accuracy from 34.3% to 83.7%.

In Tab. 1 we compare to RAFT[41] and several baselines

we implement to extend RAFT to predict 3D motion. All

RAFT baselines use the same network architecture as our

approach, including the pretrained ResNet-50. All baselines

are provided with inverse depth as input which is concate-

nate with the input images. We also experiment with di-

rectly provided depth as input, but found that inverse depth

gives the best results.

RAFT (2D flow backprojected) uses the depth maps to

backproject 2D motion into a 3D flow vector, but this only

works for non-occluded pixels, which is the reason for the

very large 3D EPE error. RAFT (2D flow + depth change)

predicts 2D flow in addition to inverse depth change, which

can be used to recover 3D flow fields. Finally, we also test a

version of RAFT which predicts 3D motion fields directly;

RAFT(3D flow). We find that our method outperforms all

these baselines by a large margin, particularly on the 3D

metrics. This is because our network operates directly on

the SE3 motion field, which offers a more structured repre-

sentation than flow fields and we produce analytically con-

strained updates which the other baselines lack.

In this experiment, we evaluate over all pixels (exclud-

ing extremely fast moving objects with flow >250 pixels).

Since we decompose the scene into rigidly moving compo-

nents, our method can estimate the motion of occluded re-

gions as well. We provide qualitative results in Fig. 2. These

examples show that our network can segment the scene into

rigidly moving regions, producing piecewise constant SE3

motion fields, even though no supervision is used on the

embeddings.

4.2. KITTI

Using our model trained on FlyingThings3D, we fine-

tune on KITTI for an additional 50k iterations with an ini-

tial learning rate of 5 × 10−5. We use a crop size of [288,

960] and perform spatial and photometric augmentation. To

estimate disparity, we use GA-Net[51], which provides the

input depth maps for our method.

We submit our method to the KITTI leaderboard and

report results from our method and other top performing

methods in Tab. 3. Our approach outperforms all pub-

lished methods. DRISP [30] is the next best performing

approach, and combines PSMNet[5], PWC-Net[39], and

Mask-RCNN[15]. Mask-RCNN is pretrained on Cityscapes

and fine-tuned on KITTI using bounding box and instance

mask supervision. Our network outperforms DRISP despite

only training on FlyingThings3D and KITTI, and uses no

instance supervision.

4.3. Ablations

We ablate various components of our model on the Fly-

ingThings dataset and report results in Tab. 4. For all ab-

lations, we use our network without bi-Laplacian optimiza-

tion as the baseline architecture.

Iterations: We evaluate the performance of our model as

function of the number of application of the update operator.

We find that more iterations gives better performance up to

about 16, after which we observe a slight degradation.

Neighborhood Radius: The Dense-SE3 layer defines an

objective which such at all pairs of pixels within a specific

radius r contribute to the objective. Here, we train networks

where r is set to {8, 64, 256,∞}. In the last case, all pairs of

pixels in the image contribute to the objective. We find that

256 gives the better performance than smaller radii; how-

ever, using the full image gives worse performance. This

is likely due to the fact that most rigid objects will be less

than 512 pixels in diameter, and imposing a restriction on

the radius is a useful prior.

8381

Disparity 1 Disparity 2 Optical Flow Scene Flow

Methods Runtime bg fg all bg fg all bg fg all bg fg all

OSF [32] 50 mins 4.54 12.03 5.79 5.45 19.41 7.77 5.62 18.92 7.83 7.01 26.34 10.23

SSF [37] 5 mins 3.55 8.75 4.42 4.94 17.48 7.02 5.63 14.71 7.14 7.18 24.58 10.07

Sense [21] 0.31s 2.07 3.01 2.22 4.90 10.83 5.89 7.30 9.33 7.64 8.36 15.49 9.55

DTF Sense [38] 0.76 sec 2.08 3.13 2.25 4.82 9.02 5.52 7.31 9.48 7.67 8.21 14.08 9.18

PRSM* [47] 5 mins 3.02 10.52 4.27 5.13 15.11 6.79 5.33 13.40 6.68 6.61 20.79 8.97

OpticalExp [50] 2.0 sec 1.48 3.46 1.81 3.39 8.54 4.25 5.83 8.66 6.30 7.06 13.44 8.12

ISF [1] 10 mins 4.12 6.17 4.46 4.88 11.34 5.95 5.40 10.29 6.22 6.58 15.63 8.08

ACOSF [24] 5mins 2.79 7.56 3.58 3.82 12.74 5.31 4.56 12.00 5.79 5.61 19.38 7.90

DRISF[30] 0.75 sec (2 GPUs) 2.16 4.49 2.55 2.90 9.73 4.04 3.59 10.40 4.73 4.39 15.94 6.31

Ours 2.0 sec 1.48 3.46 1.81 2.51 9.46 3.67 3.39 8.79 4.29 4.27 13.27 5.77

Table 3. Results of the top performing methods on the KITTI leaderboard. Ours ranks first on the leaderboard among all published methods.

Experiment Configuration
2D Metrics 3D Metrics

δ2D <1px EPE δ3D < .05 δ3D < 0.10 EPE

Iterations

1 62.1 6.05 56.0 65.9 0.212

3 82.8 2.95 80.5 85.7 0.098

8 85.5 2.47 86.4 90.5 0.062

16 85.8 2.43 87.1 91.0 0.059

32 85.7 2.50 87.0 90.9 0.061

Neighborhood Radius (px)

8 73.2 4.01 38.7 59.0 0.192

64 83.8 2.52 78.1 86.6 0.078

256 85.8 2.43 87.1 91.0 0.059

Full Image 83.3 2.91 83.2 88.1 0.078

Revision Factors
Flow 86.1 2.29 84.6 88.7 0.081

Flow + Inv. Depth 85.8 2.43 87.1 91.0 0.059

bi-Laplacian Smoothing
No 85.8 2.43 87.1 91.0 0.059

Yes 86.3 2.45 87.8 91.5 0.062

Table 4. Ablation experiments, details of the individual experiments are provided in 4.3

with bi-Laplacian without bi-Laplacian

Figure 3. Impact of bi-Laplacian optimization layer on motion

fields. This layer improves the ability of the network to aggregate

embedding vectors within motion boundaries.

Revision Factors: The update operator produces a set of

revisions which are used as input to the Dense-SE3 layer.

Here we experiment with different revisions. In Flow we

only use the optical flow revisions rx and ry . In flow + inv.

depth we include inverse depth revisions. We find that in-

cluding inverse depth revisions leads to better performance

on 3D metrics because it leverages depth consistency.

bi-Laplacian Optimization: Here we test the impact bi-

Laplacian optimization layer. Our pooling layer improves

the accuracy of the threshold metrics improving 1px accu-

racy from 85.8 to 86.3, and 3D accuracy from 87.1 to 87.8

and gives comparable average EPE. In Fig. 3 we see that

the pooling layer produces qualitatively better results, par-

ticularly over large objects.

Parameter Count and Timing: RAFT-3D has 45M train-

able parameters. The ResNet50 backbone has 40M param-

eters, while the feature extractor and update operator make

up the remaining 5M parameters.

We provide a breakdown of the inference time in Tab.

5. Timing results are computed on 540x960 images with a

GTX 1080Ti GPU using 16 updates. Inference on 540x960

images requires 1.6G of GPU memory, which is mainly re-

quired to store the 4D correlation volume.

Component Time (ms)

Feature Extraction 52ms

Cost Volume 4ms

Update Operator (GRU) 208ms (13ms/iter)

Gauss Newton Iteration 120ms (7.5ms/iter)

SE3 Upsampling 2ms

Total 386ms

Table 5. Forward pass timing for different components.

5. Conclusion

We have introduced RAFT-3D, an end-to-end network

for scene flow. RAFT-3D uses rigid-motion embeddings,

which represent a soft grouping of pixels into rigidly mov-

ing objects. We demonstrate that these embeddings can be

used to solve for dense and accurate 3D motion fields.

Acknowledgements: This research is partially supported

by the National Science Foundation under Grant IIS-

1942981.

8382

References

[1] Aseem Behl, Omid Hosseini Jafari, Siva Karthik

Mustikovela, Hassan Abu Alhaija, Carsten Rother, and

Andreas Geiger. Bounding boxes, segmentations and

object coordinates: How important is recognition for 3d

scene flow estimation in autonomous driving scenarios?

In International Conference on Computer Vision (ICCV),

volume 6, 2017. 1, 3, 8

[2] Michael Bleyer, Christoph Rhemann, and Carsten Rother.

Patchmatch stereo-stereo matching with slanted support win-

dows. In Bmvc, volume 11, pages 1–11, 2011. 2

[3] Zhe Cao, Abhishek Kar, Christian Hane, and Jitendra Ma-

lik. Learning independent object motion from unlabelled

stereoscopic videos. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5594–

5603, 2019. 1, 3

[4] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:

An information-rich 3d model repository. arXiv preprint

arXiv:1512.03012, 2015. 6

[5] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo

matching network. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5410–

5418, 2018. 2, 7

[6] Yanqing Chen, Timothy A Davis, William W Hager, and

Sivasankaran Rajamanickam. Algorithm 887: Cholmod, su-

pernodal sparse cholesky factorization and update/downdate.

ACM Transactions on Mathematical Software (TOMS),

35(3):1–14, 2008. 5

[7] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 3213–3223, 2016. 3

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009. 6

[9] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip

Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van

Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:

Learning optical flow with convolutional networks. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 2758–2766, 2015. 2

[10] Hehe Fan and Yi Yang. Pointrnn: Point recurrent neural

network for moving point cloud processing. arXiv preprint

arXiv:1910.08287, 2019. 3

[11] Alan George. Nested dissection of a regular finite element

mesh. SIAM Journal on Numerical Analysis, 10(2):345–363,

1973. 5

[12] Ariel Gordon, Hanhan Li, Rico Jonschkowski, and Anelia

Angelova. Depth from videos in the wild: Unsupervised

monocular depth learning from unknown cameras. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 8977–8986, 2019. 3

[13] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and

Panqu Wang. Hplflownet: Hierarchical permutohedral lattice

flownet for scene flow estimation on large-scale point clouds.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3254–3263, 2019. 3

[14] Xiaoyang Guo, Kai Yang, Wukui Yang, Xiaogang Wang,

and Hongsheng Li. Group-wise correlation stereo network.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3273–3282, 2019. 2

[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 2961–2969, 2017. 7

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 4

[17] Heiko Hirschmuller. Accurate and efficient stereo processing

by semi-global matching and mutual information. In Com-

puter Vision and Pattern Recognition, 2005. CVPR 2005.

IEEE Computer Society Conference on, volume 2, pages

807–814. IEEE, 2005. 2

[18] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keu-

per, Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0:

Evolution of optical flow estimation with deep networks. In

IEEE conference on computer vision and pattern recognition

(CVPR), volume 2, page 6, 2017. 2

[19] Mariano Jaimez, Mohamed Souiai, Javier Gonzalez-

Jimenez, and Daniel Cremers. A primal-dual framework for

real-time dense rgb-d scene flow. In Robotics and Automa-

tion (ICRA), 2015 IEEE International Conference on, pages

98–104. IEEE, 2015. 1, 3

[20] Mariano Jaimez, Mohamed Souiai, Jörg Stückler, Javier

Gonzalez-Jimenez, and Daniel Cremers. Motion coopera-

tion: Smooth piece-wise rigid scene flow from rgb-d images.

In 2015 International Conference on 3D Vision, pages 64–

72. IEEE, 2015. 1, 3

[21] Huaizu Jiang, Deqing Sun, Varun Jampani, Zhaoyang Lv,

Erik Learned-Miller, and Jan Kautz. Sense: A shared en-

coder network for scene-flow estimation. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 3195–3204, 2019. 8

[22] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter

Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.

End-to-end learning of geometry and context for deep stereo

regression. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 66–75, 2017. 2

[23] Suryansh Kumar, Yuchao Dai, and Hongdong Li. Monocular

dense 3d reconstruction of a complex dynamic scene from

two perspective frames. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 4649–4657,

2017. 1

[24] Congcong Li, Haoyu Ma, and Qingmin Liao. Two-stage

adaptive object scene flow using hybrid cnn-crf model. In

International Conference on Pattern Recognition (ICPR),

2020. 8

[25] Xingyu Liu, Charles R Qi, and Leonidas J Guibas.

Flownet3d: Learning scene flow in 3d point clouds. In Pro-

8383

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 529–537, 2019. 2, 3, 6, 7

[26] Xingyu Liu, Mengyuan Yan, and Jeannette Bohg. Meteor-

net: Deep learning on dynamic 3d point cloud sequences. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 9246–9255, 2019. 3

[27] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. arXiv preprint arXiv:1711.05101, 2017. 6

[28] Yao Lu, Jack Valmadre, Heng Wang, Juho Kannala,

Mehrtash Harandi, and Philip Torr. Devon: Deformable vol-

ume network for learning optical flow. In The IEEE Win-

ter Conference on Applications of Computer Vision, pages

2705–2713, 2020. 2

[29] Zhaoyang Lv, Kihwan Kim, Alejandro Troccoli, Deqing

Sun, James M Rehg, and Jan Kautz. Learning rigidity in

dynamic scenes with a moving camera for 3d motion field

estimation. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 468–484, 2018. 1

[30] Wei-Chiu Ma, Shenlong Wang, Rui Hu, Yuwen Xiong, and

Raquel Urtasun. Deep rigid instance scene flow. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3614–3622, 2019. 1, 3, 7, 8

[31] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,

Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A

large dataset to train convolutional networks for disparity,

optical flow, and scene flow estimation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4040–4048, 2016. 6

[32] Moritz Menze and Andreas Geiger. Object scene flow for au-

tonomous vehicles. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3061–

3070, 2015. 1, 2, 3, 8

[33] Gilles Puy, Alexandre Boulch, and Renaud Marlet. FLOT:

Scene Flow on Point Clouds Guided by Optimal Transport.

In European Conference on Computer Vision, 2020. 6, 7

[34] Julian Quiroga, Thomas Brox, Frédéric Devernay, and James

Crowley. Dense semi-rigid scene flow estimation from rgbd

images. In European Conference on Computer Vision, pages

567–582. Springer, 2014. 3

[35] Rene Ranftl, Stefan Gehrig, Thomas Pock, and Horst

Bischof. Pushing the limits of stereo using variational stereo

estimation. In 2012 IEEE Intelligent Vehicles Symposium,

pages 401–407. IEEE, 2012. 2

[36] Anurag Ranjan and Michael J Black. Optical flow estima-

tion using a spatial pyramid network. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4161–4170, 2017. 2

[37] Zhile Ren, Deqing Sun, Jan Kautz, and Erik Sudderth. Cas-

caded scene flow prediction using semantic segmentation. In

2017 International Conference on 3D Vision (3DV), pages

225–233. IEEE, 2017. 1, 3, 8

[38] René Schuster, Christian Unger, and Didier Stricker. A

deep temporal fusion framework for scene flow using a

learnable motion model and occlusions. arXiv preprint

arXiv:2011.01603, 2020. 8

[39] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.

Pwc-net: Cnns for optical flow using pyramid, warping,

and cost volume. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 8934–

8943, 2018. 2, 7

[40] Zachary Teed and Jia Deng. Deepv2d: Video to depth with

differentiable structure from motion. In International Con-

ference on Learning Representations ICLR, 2020. 4

[41] Zachary Teed and Jia Deng. RAFT: recurrent all-pairs field

transforms for optical flow. In European conference on com-

puter vision, pages 402–419. Springer, 2020. 1, 2, 4, 5, 7

[42] Zachary Teed and Jia Deng. Tangent space backpropagation

for 3d transformation groups. In Conference on Computer

Vision and Pattern Recognition, 2021. 6

[43] Sundar Vedula, Simon Baker, Peter Rander, Robert Collins,

and Takeo Kanade. Three-dimensional scene flow. In Com-

puter Vision, 1999. The Proceedings of the Seventh IEEE In-

ternational Conference on, volume 2, pages 722–729. IEEE,

1999. 1

[44] Christoph Vogel, Patrick Knöbelreiter, and Thomas Pock.

Learning energy based inpainting for optical flow. In Asian

Conference on Computer Vision, pages 340–356. Springer,

2018. 5

[45] Christoph Vogel, Konrad Schindler, and Stefan Roth. 3d

scene flow estimation with a rigid motion prior. In Com-

puter Vision (ICCV), 2011 IEEE International Conference

on, pages 1291–1298. IEEE, 2011. 1, 2

[46] Christoph Vogel, Konrad Schindler, and Stefan Roth. Piece-

wise rigid scene flow. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 1377–1384,

2013. 2

[47] Christoph Vogel, Konrad Schindler, and Stefan Roth. 3d

scene flow estimation with a piecewise rigid scene model. In-

ternational Journal of Computer Vision, 115(1):1–28, 2015.

1, 8

[48] Zirui Wang, Shuda Li, Henry Howard-Jenkins, Victor

Prisacariu, and Min Chen. Flownet3d++: Geometric losses

for deep scene flow estimation. In The IEEE Winter Con-

ference on Applications of Computer Vision, pages 91–98,

2020. 3, 6, 7

[49] Gengshan Yang and Deva Ramanan. Volumetric correspon-

dence networks for optical flow. In Advances in neural in-

formation processing systems, pages 794–805, 2019. 2

[50] Gengshan Yang and Deva Ramanan. Upgrading optical flow

to 3d scene flow through optical expansion. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 1334–1343, 2020. 3, 8

[51] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and

Philip HS Torr. Ga-net: Guided aggregation net for end-

to-end stereo matching. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

185–194, 2019. 2, 7

8384

