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Abstract

Consensus maximisation (MaxCon), which is widely

used for robust fitting in computer vision, aims to find the

largest subset of data that fits the model within some tol-

erance level. In this paper, we outline the connection be-

tween MaxCon problem and the abstract problem of finding

the maximum upper zero of a Monotone Boolean Function

(MBF) defined over the Boolean Cube. Then, we link the

concept of influences (in a MBF) to the concept of outlier

(in MaxCon) and show that influences of points belonging

to the largest structure in data would generally be smaller

under certain conditions. Based on this observation, we

present an iterative algorithm to perform consensus max-

imisation. Results for both synthetic and real visual data

experiments show that the MBF based algorithm is capa-

ble of generating a near optimal solution relatively quickly.

This is particularly important where there are large number

of outliers (gross or pseudo) in the observed data.

1. Introduction

The popular Maximum Consensus (MaxCon) criterion

for robust fitting (as typified by that of RANSAC [11]),

seeks the maximum sized feasible set. Here feasible means

that all data points belonging to a “structure” (the inlier set)

fits its model within a tolerance level.

Given a set of n data points D = {pi}
n
i=1 and a toler-

ance level ǫ, the MaxCon criterion for robust fitting can be

written as:

max
θ, I⊆D

|I|

subject to rpi
(θ) ≤ ǫ ∀pi ∈ I

where rpi
(θ) is the distance of pi from the model θ.

A subset I can be represented by length-n bit-vector, x,

where the i’th position of the bit vector denote the inclu-

sion (xi = 1) or exclusion (xi = 0) of the data point i.

The above shows that, each subset can be represented by

a vertex of the n-dimensional Boolean Cube. Therefore,

any statement about which of the subsets are feasible, is

a statement on the evaluation of a Boolean function over

the n-dimensional Boolean Cube. This Boolean function

f : {0, 1}n → {0, 1}, outputs 1 (for infeasible), or 0 (for

feasible) for any vertex of the Boolean Cube. Since Max-

Con is a search for the maximum sized feasible subset of

the data, it is inherently a search on the Boolean Cube.

Such a view immediately opens the huge theory and very

many associated mathematical tools, developed during the

study of Boolean functions; for the purposes of the analy-

sis of the MaxCon problem and for devising algorithms to

solve this problem.

Also, there is an additional significant observation. The

Boolean function associated with a MaxCon problem be-

longs to a special class of Boolean functions called the

Monotone Boolean Functions (MBF) [15].

Definition 1.1. A MBF of n variables is a mapping f :
{0, 1}n → {0, 1} such that α ≺ β implies that f (α) ≤
f (β). Here we apply the natural ordering relation on n-

dimensional Boolean Cube: β follows α (α ≺ β) if for any

i, the equality αi 6 βi is satisfied.

This is easy to see: If a subset is feasible, then adding

more data to that subset can only move the function to-

wards infeasibility and once infeasible adding more points

will not change the subset back to feasible. Likewise, delet-

ing points from a subset can move only towards feasible.

MaxCon, when viewed in the above sketched framework, is

nothing more than the search for the maximum upper zero

(see the definition below) of the above-mentioned mono-

tone infeasibility function.

Definition 1.2 (Upper zero of a MBF). Upper zero of the

MBF f (·) is a vertex α for which f (α) = 0 and, for all

α ≺ β the relation f (β) = 1 is satisfied.

Definition 1.3 (Maximum Upper zero of a MBF [16]).

Maximum Upper zero of the MBF f (·) is a vertex α for
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Figure 1: (a) An example of a 2D line fitting problem with

5 data points together with (b) the associated Boolean Cube

and MBF - represented in Hasse diagram format. The 5D

Boolean Cube is drawn flattened onto 2D and oriented so

that the higher up a vertex appears, the larger is the num-

ber of 1’s in the coordinates. A Boolean Function maps the

Boolean cube to 0 or 1. We illustrate by colouring: “white”

nodes map to 1, coloured nodes map to 0. This example is

a Monotone Boolean Function since moving up the picture,

the value of the function only ever increases, it never trans-

lates in the opposite direction. The red node is the maxi-

mum upper zero in this example.

which f (α) = 0 and, for all ‖β‖1 > ‖α‖1 the relation

f (β) = 1 is satisfied. Here, ‖α‖1 =
∑

i αi.

A simple example in Figure 1 illustrates the concepts in-

volved. The figure shows that, along paths going up the

Hasse diagram (a directed version of the Boolean cube),

the function can only stay constant or increase (never

decrease). The vertex “11110” (representing the subset

{p1,p2,p3,p4}) is the MaxCon solution for this problem

as it is the highest feasible subset in the Hasse diagram

(maximum upper zero). The vertex “11001” is an example

of an upper zero as there are no feasible nodes that follows

it (≻ ‘11001’) on the Hasse diagram (can be seen as a local

optimum).

Whilst Monotone Boolean Functions (MBFs) have been

extensively studied for a variety of application domains, in-

cluding learning theory [1] (and computer vision is, these

days, highly dominated by learning style approaches), there

appears to be relatively little attention to MBFs in computer

vision: and more specifically in model-based computer vi-

sion. Reference [27] appears to be a recent exception - but

even this is tackling very different considerations from our

main areas of interest (namely, [27] is concerned with ef-

ficient Conditional Random Field (CRF) calculations, and

CRF modelling is very different to the geometric modelling

we refer to).

In this paper, we present a novel view point on the Max-

Con problem using the Monotone Boolean Functions the-

ory and use that to develop some efficient solutions. For

this purpose, we concentrate on a property of all Boolean

Functions, called Influence [22] (definition in Section 2.1);

a property that has a particular relationship with the Fourier

Transform of a Boolean Function when that Boolean Func-

tion is Monotone. In summary our main contributions in-

clude:

1. We provide a precise (and abstract) definition of the

MaxCon problem in terms of finding the maximum up-

per zero of a Monotone Boolean Function defined over

the Boolean Cube where, vertices correspond to sub-

sets of data and the output of the MBF correspond to

whether the subset can be feasibly covered by a model

with set tolerance.

2. We link the concept of influences in a MBF to the

concept of outlier in MaxCon and provide theoretical

analysis to show that influences of points belonging to

the largest structure in data would be smallest under

“ideal” conditions (defined in Section 3).

3. Based on the above analysis, we derive a greedy algo-

rithm that searches for the maximum upper zero of a

MBF to efficiently solve the MaxCon problem.

2. Background

2.1. Boolean Functions and Influences

For any Boolean function f : {0, 1}n → {0, 1}, the

probability that the i’th coordinate in a random length-n bi-

nary vector, x, “affects” the output of the function is defined

as the influence [22]:

Infi [f ] = Pr
x∼{0,1}n

[

f (x) 6= f
(

x⊕i
)]

(1)

where x⊕i is equal to x with the i’th coordinate flipped. For

a MBF, the influence of the i’th coordinate is equal to the

degree-1 Fourier coefficient [22].

The most obvious strategy for influence approximation

would be to uniformly sample the cube.

Infi [f ] = E
x∼{0,1}n

δ
[

f (x) 6= f
(

x⊕i
)]

(2)

where δ [·] = 1 if the condition inside is true (0 otherwise).

However, in Section 4.1, we empirically show that this may

not be the most efficient when it comes to solving MaxCon.

A better approach would be to use the notion of weighted

influence [9]. In such an approach one typically defines a

Bernoulli measure µq(x) over the vertices of the Boolean
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Cube. Operationally, this can correspond to sampling by

selecting to “turn bits i” independently and with probability

q. Uniform sampling corresponds to q = 0.5. Sampling

with low q concentrates the measure towards the bottom of

the cube (small Hadamard norm) and high q towards the top.

The influences under µq distribution can now be defined as:

Inf
(q)
i [f ] = E

x∼µq(x)
δ
[

f (x) 6= f
(

x⊕i
)]

. (3)

The influences under different q values are analysed further

in Section 4.1.

2.2. Determining feasibility and the concept of a
basis

Searching for the upper zeros of a MBF will require the

evaluation of the function on a given subset. In the case of

MaxCon, this involves finding if a given subset is feasible

or infeasible. The feasibility/infeasibility of a subset can be

obtained efficiently via solving the following minmax prob-

lem and checking if the resulting objective value is within ǫ
[14, 5]:

min
θ

max
i

rpi
(θ) (4)

The above can be solved exactly for cases where rpi
(θ) is

quasiconvex using algorithms based on bisection [10]. The

solution of equation (4) for a subset I(j), will return three

quantities: the optimal objective value g(j), basis B(j) and

the fitted model θ(j). A basis for a set, is a small subset such

that the value of the final objective on that subset is equal to

the final objective on the whole set [7]. Intuitively, a basis

in the MaxCon setting is a subset of points “that prevents

the enclosing structure from shrinking further”. The cardi-

nality of the basis in MaxCon is connected to the concept of

“combinatorial dimension” and we denote it by p + 1 (p is

the minimum number of data points required for the unique

determination of the model).

2.3. Related work in computer vision

Consensus maximisation is widely used for robust fitting

in computer vision. Early work mostly focused on solving

the consensus maximisation using randomised hypothesise-

and-test techniques [11, 18, 26]. More recently, some focus

has shifted towards finding globally optimal solutions [5,

33, 2, 19, 4, 20]. As MaxCon is known to be NP-hard, the

run time of the global methods scale exponentially in the

general case [6]. This has led to the search for deterministic

and/or near optimal algorithms [3, 25, 17, 32].

To the best of our knowledge, ours is the first work in

computer vision that explicitly poses the MaxCon problem

in terms of finding the maximum upper zero of a MBF. An

investigation into Quantum Computing calculations of In-

fluence for Maxcon [8] was recently published. Moreover,

there are several works that are related, in some sense, to
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Figure 2: An example 2D line-fitting problem and the cor-

responding influences. The data generation procedure is de-

scribed in detail in Section 4.1. Influences are estimated us-

ing equation (3) with m = 1000 and q = 0.5. Data points

are sorted such that inliers comes before outliers.

the proposed framework. Though not expressed that way in

the original works, the A∗ “tree searches” of [2] and [5] are

in fact searches on this cube (where nodes reached by dif-

ferent paths become repeated nodes in the tree constructed

by starting from the top of the Hasse Diagram). In this con-

text, it is interesting to note that RANSAC (and it’s many

derivatives) search amongst subsets towards the bottom of

the Hasse Diagram (minimal sized subsets or p-sized); and

use these to “index” up to higher subsets by greedily in-

cluding all data points that fit within tolerance of the model

found on the p-subset. Furthermore, the methods that use

the L∞-Norm (equation 4) for outlier removal in the con-

text of geometric fitting, can also be seen as traversing the

Boolean cube [28, 23, 20, 24]. However, the above methods

do not explicitly utilize the theory and tools associated with

MBF.

3. Proposed Method

As described in the introduction, MaxCon can be seen

as finding the maximum upper zero of a MBF. This paper

is devoted to the exploitation of information embedded in

the Influence function to find the maximum upper zero, ef-

ficiently. To explain the method, we first note that the in-

fluence of an inlier data point is likely to be smaller than

the influence of an outlier data point. An example of this

relationship for a 2D line-fitting problem is shown in Fig-

ure 2. The essential and intuitive reason is that inclusion

of an outlier, into a feasible subset, most likely turns that

subset infeasible (thereby “influencing” the function). In

contrast adding an inlier leaves the set feasible. It is the

“breaking” or “creation” of an infeasible p + 1 sized ba-

sis that is responsible for flipping the outcome of the MBF

and therefore the addition/deletion of an outlier triggers this

more than that of an inlier. Below, we prove that the above

property of influences hold under “ideal” conditions. The

proofs of theorems in the following text are available in the

supplementary materials.
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3.1. Ideal single structure case

We first formally define an ideal structure in data. Let

Lk := {x ∈ {0, 1}n : ‖x‖1 = k} be the level k in the n-

dimensional Boolean cube and, L≤k the levels below k+1.

Definition 3.1. Given a monotone Boolean function f , for

xk ∈ Lk (p < k ≤ n), f is called ideal with respect to xk

if

f (x) =

{

0 ∀x ∈ Bxk ∪ L≤p

1 others
(5)

where Bxk =
{

x ∈ {0, 1}n : d
(

x,xk
)

= l,x ∈ Lk−l

}

for

all 0 ≤ l ≤ k − p− 1, is the Boolean sub-cube determined

by xk. Here, d (·, ·) is the Hamming distance.

Intuitively, an ideal structure has only one structure:

points are either inlier or outliers to that single structure,

and no other structure exists other than the trivial with p or

less points.

Theorem 3.1. If a monotone Boolean function f is ideal

with respect to xk ∈ Lk, then

Infi [f ] =







Cn−1
p −Ck−1

p

2n if i is inlier
Cn−1

p +
∑k

l=p+1 Ck
l

2n if i is outlier
(6)

Corollary 3.1.1.

Infj [f ]− Infi [f ] =
1

2n

k
∑

l=p+1

Ck
l + Ck−1

p > 0 (7)

where i is any inlier and j is any outlier.

The above shows that for an ideal structure case the in-

fluence of an inlier is strictly smaller than the influence of

an outlier.

3.2. Ideal Kstructure case

In what follows, we generalize the above result to the

ideal K-structure (K ≥ 1), namely there are K upper zeros

only and the Boolean sub-cubes determined by these upper

zeros are disjoint above level p.

Definition 3.2. Let f be a monotone Boolean function and
{

xkr
}K

r=1
are upper zeros, where p < k1 ≤ k2 ≤ · · · ≤

kK ≤ n, then f is called K-ideal with respect to
{

xkr
}K

r=1
if

1) d
(

B
x
ki \ L≤p, Bx

kj \ L≤p

)

> 0 ∀ki 6= kj

2) f (x) =

{

0 ∀x ∈
⋃K

r=1 Bxkr ∪ L≤p

1 others

(8)

The first condition states that the sub-cubes determined

by xkr have no elements in common. Let Sc
xkr

be the set of

inlier (if c = 1) or the set of outliers (if c = 0) to xkr . Then

we can define

Sc1c2···cK =
K
⋂

r=1

Scr
xkr

cr ∈ {0, 1} (9)

which represent the index set of inlier to structures where

bit string c1c2 · · · cK is one. For example, S11···1 is the in-

dex set of points that are inliers with respect to all xkr , and

S00···0 is the index set of points that are outliers with respect

to all xkr .

Theorem 3.2.

2nInfSc1···cK
[f ] = Cn−1

p +
∑

cr=0
1≤r≤K

kr
∑

l=p+1

Ckr

l −
∑

cr=1
1≤r≤K

Ckr−1
p

(10)

where InfSc1···cK
[f ] denote the influence Infi [f ] of i ∈

Sc1···cK .

Corollary 3.2.1. The influences have the following ordered

relationship

∀α, β ∈ {0, 1}K , α > β ⇒ InfSα
[f ] < InfSβ

[f ] (11)

which means Infx [f ] is a real-valued monotone decreasing

Boolean function. If any S• = ∅ then InfS•
[f ] is not de-

fined.

Following Corollary 3.2.1 and the Definition 3.2 we can

see that the influence of a point that belongs to a structure

with a higher upper zero is smaller than that of a point that

belongs to a structure with a lower upper zero.

3.3. Finding the maximum upper zero

The above theoretical analysis shows that influences

of points belonging to the largest structure in data would

be smallest under “ideal” conditions. Thus, in the ideal

case, a very simple process of estimation of the influences,

followed by thresholding, would immediately lead to the

sought after MaxCon solution. However, we need to recog-

nise that:

• The non-ideal case (which applies to all realistic data

sets) will be a perturbation away from this, where the

influences of inlier and outlier come closer together.

• We can only work with estimated influences, not the

actual influences. Thus we need to assume that the

estimated influences largely follow the ordering given

mathematically in our derivations, and according with

the above intuition.
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Nonetheless, continuity of behaviour arguments suggest the

departure from ideal will be only partial for many data sets;

and that relatively standard ways for attacking such scenar-

ios, should still be viable. We empirically verify that this is

often true in our experiments.

Using the above intuition (“influences of points belong-

ing to the largest structure in data would be smallest”) we

formulate an algorithm - MBF-MaxCon (Algorithm 1) that

starts with the set of all data points and then gradually re-

moves one data point at a time (data point with the largest

influence) until the remaining set of points is within the ǫ
band. In the algorithm, we also use the notion that: If there

are outliers in a subset of data, then at least one of them

should belong to the basis returned by solving equation (4)

[28]. This additional constraint enables us to compute only

p+ 1 influences per elimination of a data point (rather than

for all points in subset) which leads to a more efficient al-

gorithm.

The estimation of Influence introduces some noise to the

proposed algorithms, and the solution returned by them may

not include all the inlier points of a given structure. To par-

tially overcome this, we introduce a local expansion step

(Algorithm 2). In this step, starting from the initial solution,

at each iteration, the distance-1 upper neighborhood (Hasse

Diagram) of the current solution is explored and the current

solution is updated if there is any feasible set. This process

is repeated until there are no feasible subsets in the distance-

1 upper neighborhood. This local update guarantees that the

algorithm will find an upper zero (local optimal).

Algorithm 1 MBF-MaxCon - algorithm for finding the

maximum consensus set using influences of BMFs.

Require: {pi}
n
i=1, ǫ, m, q.

1: x← [1, . . . , 1][1×n]

2: repeat

3: I(t) ← {i : xi = 1}
4: Solve equation (4) for subset I(t) and obtain B(t)

5: Estimate Inf
(q)
i [f ] ∀i ∈ B(t) using equation (3)1.

6: e← argmax
i∈B(t)

Inf
(q)
i [f ]

7: xe ← 0
8: until f(x) = 0
9: x← Run local expansion step in (Algorithm 2)

10: return I ← {i : xi = 1}

It is important to note that one needs to re-estimate the

influences at each iteration, t of algorithm 1. If Inf
[t]
i [f ] is

the influence of point i at iteration t of the algorithm, then

Inf
[t]
i [f ] 6= Inf

[t−1]
i [f ]. This is because the function at level

1When estimating influences, one can use the monotonic nature of f to

save some computations (In a MBF, the function value before the bit flip

has some information regarding the value after). The algorithm used for

estimating the influences is available in supplementary materials.

Algorithm 2 Local expansion step.

Require: {pi}
n
i=1, m, initial feasible set x.

1: repeat

2: updated← false

3: for all i : xi = 0 do

4: x̄← x; x̄i ← 1
5: if f(x̄) = 0 then x← x̄; updated← true; break;

6: end for

7: until updated=false

8: return x

t is a restricted version of the function at level t− 1 and the

relationship between influences at different levels is derived

in supplementary materials. Another allied intuition is that

though, as mentioned before, noise (from both the estima-

tion process and from the departure of the data from that of

being ideal) will raise the level of the influence of some in-

liers (and decrease the values of some outliers) to the point

where the estimated influences of some inliers will be above

those of some outliers: at each stage we only remove the

largest influence data point which will be away from the

“polluted” data division; and that re-estimation afterwards

allows the possibility for the re-estimated influences to be

“cleaner”.

4. Results

We evaluated the performance of the proposed algo-

rithms, on both synthetic and real data experiments, and

compared those with the state-of-the-art techniques. All ex-

periments were executed in MATLAB on a computer with

Intel Xeon E5-1650 CPU, 16GB RAM and Ubuntu 16.04

OS. The publicly available codes were used to obtain the

results for improved A∗ tree search2 (A∗-NAPA-DIBP) [2]

and Lo-RANSAC3 [18]. Our implementation is publicly

available at https://github.com/RuwanT/MBF-

MaxCon.

4.1. Influence estimation

Estimating the influences via equation (3) requires two

hyper-parameters: The number of randomly sampled bit-

vectors m and, the sampling probability q of the Bernoulli

measure µq(x). In this section we explore the effects of the

two hyper-parameters on influence estimation using a 2D-

line fitting problem. Here, the number of data points (n) is

set to 15, out of which 25% would be outliers (no). The

number of points is chosen to be relatively small as the ex-

act influence calculation time increases exponentially with

n. A subset of (n − no) randomly selected points (inliers)

were then perturbed with uniformly distributed noise in the

2Code: MaxConTreeSearch
3Code: Consensus-maximization-with-biconvex-programming
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range [−0.1, 0.1]. The remaining no data points (outliers)

were then perturbed with uniformly distributed noise from

[−5,−0.1) ∪ (0.1, 5]. The inlier threshold ǫ was set to 0.1
for all the experiments in this section.

First, we compare the estimated influences with the ex-

act influences for different combinations of m and q. The

exact influences, Infi [f ], are computed by taking the ex-

pectation in equation (2) over all 2n vertices of the Boolean

cube. The estimation error of all influence values can then

be calculated as: 1
n

∑

i∈[n]

(

Inf
(q)
i [f ]− Infi [f ]

)2

.

The results in Figure 3 shows that, for all q values, the

influence estimation error is high when only a few samples

are used. However, the error decreases exponentially with

increasing the number of samples. We can also see that the

estimated influences are closest to their exact values when

q = 0.5. When q is varied in either direction, the error in-

creases. This is because at q = 0.5, the computed values are

an unbiased estimate of the influences. Changing the sam-

pling distribution changes the definition of the orthonormal

basis and hence introduces a bias [9].

However, in solving MaxCon we do not seek for an un-

biased estimate of the influences. What we are after is a

definition of influences where the separation between influ-

ences of inliers and ourliers are maximum. We used the

same synthetic experiment to analyse the separation. Here

we define the separation as:

Separation = min
i∈Dout

Inf
(q)
i [f ]− min

j∈Din

Inf
(q)
j [f ] (12)

where Din is the set of inlier data points and Dout =
D \ Din. The results in Figure 4 show that the separation

increase with m. However, in relation to q, the separation is

maximum when the q value is small. Using q < (p+ 1)/n
will also decrease the separation as most samples at this

probability will be trivially feasible. In summary, changing

q leads to different measures of influence where the order

(influences of inliers are smaller than outliers) is much the

same, though the separation can vary. In our experiments,

we use a q value between (p+ 1)/n and 0.3.

4.2. Controlled experiments with synthetic data

To study the behaviour of the proposed algorithm under a

controlled setting, similar to [2], we conducted experiments

on an 8-dimensional robust linear regression problem with

synthetically generated data. First, a set of n = 200 data

points on a randomly instantiated model θ ∈ R
8 was gen-

erated. The data set was then perturbed using the same pro-

cess described in Section 4.1 to get a data set that is cor-

rupted by noise and outliers. In our experiments, the num-

ber of outliers, no, were varied in the range of [5, 40] (upper

bound determined by computation time of A∗-NAPA-DIBP

used for obtaining ground truth inliers/outliers). The error

of a method is computed by comparing the cardinality of the

100 200 500 1000 2500 5000

0

2

4

6

8
10
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Figure 3: The variation of the influence estimation error

with the number of samples used (m) and the sampling

probability (q). The figure show the statistics across 100

random runs for each combination.
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Figure 4: The variation in the separation (between influ-

ences of inliers and outliers) with the number of samples

used (m) and the sampling probability (q). The figure show

the statistics across 100 random runs for each combination.

MaxCon solution found by that method (|I•|) to the ground

truth cardinality obtained using A∗-NAPA-DIBP (|IA∗ |).

Ablation study: To identify the importance of each compo-

nent in our overall algorithm, we conduct an ablation study

using the above data. Here, we analyse four variants of our

algorithm: 1) MBF-MaxCon-nR: Simple algorithm where

all the influences are computed at the start and the data point

with the largest estimated influence is removed iteratively

until the remaining subset is feasible (no re-estimation of

influences at each iteration). 2) MBF-MaxCon-nB: Same as

MBF-MaxCon-nR but the influences of all remaining points

are recomputed (not just points in the basis) at the end of

each iteration. 3) MBF-MaxCon-nL: Same as algorithm 1

without the local expansion in line 9. 4) MBF-MaxCon:

Proposed algorithm 1.

The error of each variant and the computation times are

shown in Fig. 5. The results show that re-estimating in-

fluences at the end of each iteration has a significant effect

on the final outcome (see section 3.3 for explanation). Fur-

thermore, the results show that, on average, the use of both

local expansion and basis has helped to move the solutions

closer to the global optimal. The results also show that the

most significant contribution in terms of the use of basis is
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Figure 5: Results of the ablation study for 8-dimensional

robust linear regression with synthetic data (a) Number of

inliers found compared with the global optimal (obtained

using A∗) and (b) Variation of computational time with

number of outliers. The experiments were repeated 100

times and the error-bars indicate the 0.05-th and 0.95-th per-

centile.

in computational efficiently.

Comparative analysis: Next, we compare the performance

of the proposed method with the most relevant methods

in literature: A∗-NAPA-DIBP [2], RANSAC [11] and Lo-

RANSAC [18]. Both RANSAC variants were run with the

number of RANSAC iterations set to match the computa-

tion time of MBF-MaxCon. The computation time for the

above methods are shown in Figure 6b. The figure shows

that when the number of outliers are low (< 30) A∗-NAPA-

DIBP converges to a solution relatively quickly. However,

the computational time of A∗-NAPA-DIBP increases expo-

nentially with the number of outliers. On the other hand,

the computational time of the proposed algorithms increase

linearly with the number of outliers4. This is clearly pre-

dictable as our algorithms take one step across each level

and the deeper down is the MaxCon solution, proportionally

longer is the “search”. A∗-NAPA-DIBP has a much more

sophisticated search that allows backtracking of routes ex-

plored and this causes the exponential behaviour when that

is heavily exercised. Figure 6a shows the difference be-

tween the number of inliers returned by A∗-NAPA-DIBP

and other methods. On average the proposed method MBF-

MaxCon returns a solution with usually close to the same

number of inliers as the A* method. The figure also shows

the 0.05th and 0.95th percentile distances from A∗ solu-

tion over 100 random runs. This shows that in few cases

the solution returned by MBF-MaxCon can be up to 2-4

inliers away from the optimal solution (around 1% error).

The main summary is that the proposed methods never “go

exponential”, unlike A∗, in runtime, but compares often

4Our main extra computational cost compared to other l∞ methods,

sampling the Boolean cube and counting “flips of feasibility”, is also triv-

ially parallelizable.
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Figure 6: Results for 8 dimensional robust linear regression

with synthetic data (a) Number of inliers found compared

with the global optimal (obtained using A∗) and (b) Vari-

ation of computational time with number of outliers. The

experiments were repeated 100 times and the error-bars in-

dicate the 0.05-th and 0.95-th percentile.

favourably in terms of accuracy.

4.3. Linearized fundamental matrix estimation

In this section we examine the performances of the pro-

posed methods for linearized fundamental matrix estima-

tion. Provided that the point matches between two views

are given as [p1, p2] where pj = (xj , yj , 1)
⊤ is a coordi-

nate of a point in view j, each rigid motion in the scene

can be modeled using the fundamental matrix F ∈ R3×3

as [29]: p⊤
1 Fp2 = 0. In our experiments we use the lin-

earized version presented in [5] together with the algebraic

error ([13] chapter 11). For each image pair, the input is

a set of SIFT [21] feature matches generated using VLFeat

[30].

Single dominant motion: Following [2], we used the first

five crossroads image pairs from the sequence “00” of the

KITTI Odometry dataset [12] in our experiments. The inlier

threshold ǫ is set to 0.03 for all image pairs. The Number

of inliers returned by each method (ni) and the computa-

tion times are shown in the first part of Table 1. The results

reported for the probabilistic methods are the mean (max,

min) over 100 random runs. The results show that the pro-

posed methods on average have produced solutions that are

close to the optimum solution returned by A∗-NAPA-DIBP

[2].

The distribution of errors by each algorithm over 100 re-

peated runs for all the frames in sequence “00” of the KITTI

Odometry data set is shown in Figure 7. The main mes-

sage is that we operate in a time cost regime a little better

than A∗-NAPA-DIBP and around the same as we allowed

for Lo-RANSAC but we generally get much closer to A∗-

NAPA-DIBP performance - including often finding the op-

timal, which RANSAC or Lo-RANSAC rarely do in this

experiment.
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Table 1: Linearized fundamental matrix estimation result. “Same Comp.” refers to running RANSAC with the same time

budget as MBF-MaxCon and, “sp=0.99” refers to running RANSAC with the success probability 0.99.

A*-NAPA
-DIBP MBF-MaxCon

RANSAC
Same Comp.

Lo-RANSAC
Same Comp.

RANSAC
sp=0.99

Lo-RANSAC
sp=0.99

104-108
ni 289

288.52
(289, 285)

282.03
(286, 277)

284.54
(287, 283)

271.18
(282, 254)

281.41
(284, 276)

Time (s) 10.96 1.78 1.78 1.78 0.004 0.04

198-201
ni 296

293.10
(296, 291)

291.88
(294, 290)

292.87
(294, 291)

287.00
(293, 272)

290.35
(293, 287)

Time (s) 4.04 2.05 2.05 2.05 0.004 0.04

417-420
ni 366

364.44
(366, 359)

363.54
(365, 361)

364.02
(365, 363)

357.38
(364, 343)

362.33
(364, 359)

Time (s) 7.93 2.59 2.59 2.59 0.004 0.06

579-582
ni 523

520.68
(523, 514)

518.04
(521, 511)

520.89
(522, 520)

502.31
(519, 463)

517.30
(512, 497)

Time (s) 4.28 3.22 3.22 3.22 0.004 0.11

738-742
ni 462

460.97
(462, 457)

455.02
(459, 451)

457.24
(460, 455)

438.55
(455, 409)

451.35
(459, 435)

Time (s) 2.97 2.72 2.72 2.72 0.005 0.1

breadcube
ni ∼

64.36
(68, 58)

61.77
(65, 59)

63.66
(66, 61)

59.04
(65, 55)

62.17
(66, 59)

Time (s) >3600 19.07 19.07 19.07 0.993 1.07

breadtoy
ni ∼

107.48
(115, 102)

105.24
(111, 102)

107.23
(111, 104)

100.31
(107, 93)

105.21
(109, 101)

Time (s) >3600 38.37 38.37 38.37 0.526 0.68

cubetoy
ni ∼

58.51
(61, 52)

54.54
(58, 52)

56.14
(58, 55)

52.20
(56, 48)

55.24
(57, 52)

Time (s) >3600 15.38 15.38 15.38 0.45 0.65

Figure 7: The distribution of errors by each algorithm over

100 repeated runs for all the frames in sequence “00” of the

KITTI Odometry data set.

Multiple motions: The above data set contains a single

dominant motion and the number of outliers are limited

(around 13-22). To study the behaviour of the proposed

algorithm in the presence of multiple structures, we con-

ducted experiments on three sequences from the Adelai-

deRMF data-set [31]. The inlier threshold ǫ was set to 0.015
for all image pairs. In these sequences, there are two rigidly

moving objects. The results in the second part of Table 1

show that the method A∗-NAPA-DIBP did not find a so-

lution after 3600s (1 hour), where as the proposed methods

found solutions in around 15-40 seconds. Once again, when

compared to Lo-RANSAC, we generally obtain higher con-

sensus sets (and thus implicitly closer to what A∗ is capa-

ble of, but on these data sets, would require astronomically

more computation.

5. Conclusion

We have applied a new perspective to the long standing

problem of MaxCon. This perspective recognises that the

underlying mathematical object is a Monotone Boolean In-

feasibility function, defined over the Boolean Cube. Such

a perspective immediately identifies a rich mathematical

theory that can be applied. Very probably, we have only

scratched that surface here. But we have been able to take at

least one element of the theory (i.e. Influence) and link that

concept to the concept of outlier (in MaxCon) and shown

that already, without borrowing further from the rich the-

ory, that we can derive algorithms that are already at least

competitive, in some aspects. Specifically:

1. The approach sometimes achieves the true MaxCon,

whereas RANSAC rarely achieves the MaxCon solu-

tion. Indeed, it is well known that this is a feature of

RANSAC based methods in general.

2. The approach can (mostly) achieve close to A∗ (prov-

ably optimal) in a similar time budget or faster.

3. Unlike A∗ the approach will never go exponential in

runtime or memory requirements, and - as above - un-

like RANSAC variants, it can more reliably obtain the

optimal or close to optimal result - given a similar time

budget.

The proposed algorithm can be used on model fitting

problems where the residuals, rp1 (θ), are quasi-convex and

the run-time of the algorithm would depend on the ex-

istence of the an efficient oracle to evaluate the feasibil-

ity/infeasibility of a subset of points.
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