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Abstract

Understanding the nutritional content of food from vi-
sual data is a challenging computer vision problem, with
the potential to have a positive and widespread impact on
public health. Studies in this area are limited to existing
datasets in the field that lack sufficient diversity or labels
required for training models with nutritional understand-
ing capability. We introduce Nutrition5k, a novel dataset
of 5k diverse, real world food dishes with corresponding
video streams, depth images, component weights, and high
accuracy nutritional content annotation. We demonstrate
the potential of this dataset by training a computer vision
algorithm capable of predicting the caloric and macronu-
trient values of a complex, real world dish at an ac-
curacy that outperforms professional nutritionists. Fur-
ther we present a baseline for incorporating depth sensor
data to improve nutrition predictions. We release Nutri-
tion5k in the hope that it will accelerate innovation in the
space of nutritional understanding. The dataset is avail-
able at https://github.com/google-research-

datasets/Nutrition5k.

1. Introduction

The nutritional composition of a person’s diet is inextri-

cably linked to health, happiness, and longevity. Making it

easier to understand and track the nutritional breakdown of

the food we eat enables us to make better dietary choices

and potentially live longer and healthier lives. Despite the

considerable impact that what we eat has on us, the tools for

trying to understand food are extremely cumbersome and

limited.

Currently, the main approach for an individual who

wants to record the nutritional content of their food intake is

to utilize a tracking app such as MyFitnessPal. These types

∗Work done while Wade Norris was at Google.

Figure 1. Example representation of data contained in Nutri-

tion5k.

of apps enable a user to set intake goals for total calories,

as well as for specific macronutrients (carbohydrate, pro-

tein, and fat), and provide an interface to log and aggregate

meals to see if these goals are met. When doing this type of

tracking, each ingredient or dish consumed must be individ-

ually logged along with the exact portion size. These logs

can then be automatically converted to nutritional content

using average per portion values saved in a database. Many

apps require a scale to individually weigh and log each in-

gredient the user eats, but this can be a tedious and time
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consuming process. Short of using a scale, users can also at-

tempt to perform visual portion size estimation themselves,

but this can be highly error-prone step [10, 18]. MyFitness-

Pal boasted over 19M monthly unique active users in early

2018 [20] despite these difficulties in data entry. The ability

to streamline food logging with a camera would not only

make this process easier for current active users, but it may

also unlock another large demographic of potential users.

As the impact of nutrition on our health grows more ap-

parent, more progress has been made in making this data

more accessible. Many chain restaurants now post the nutri-

tional content of menu items online and in stores. A variety

of promising techniques have leveraged this publicly avail-

able source of data to show the potential for classification

models to help with food logging. Such approaches demon-

strate a dramatic reduction in effort when logging meals by

enabling a user to take a photo of their dish rather than man-

ually entering nutritional content. However, this requires

that the dish belong to a set of known menu items with pre-

sumably fixed portion sizes and nutritional content. Fre-

quently, though, our meals are not on a list of known dishes

and current capabilities in this space are extremely limited.

We use the term generic food for dishes that are not nec-

essarily from a pre-determined set with known nutritional

content. Understanding the content of generic food requires

the ability to estimate portion sizes in addition to recogniz-

ing the ingredients present, making it a significantly more

difficult problem than classification alone.

One of the largest challenges to furthering progress in

this space is data collection. For many computer vision

problems, researchers are able to leverage the abundance of

data readily available on the internet to train their models.

Unfortunately for the nutritional understanding space, data

on the internet is sparse and often inaccurate. Images from

many sources are often plated and shot with an artistic in-

tention to increase appeal rather than represent realism. The

few large scale and diverse datasets, such as Recipe1M [12],

are mined from recipe websites. While these contain valu-

able dish level, ingredient level, and preparation attribute

annotations, they almost always lack annotations for the

portion sizes shown in the photos. Without accurate portion

size annotations, learning to predict the nutritional content

from the associated images is difficult and error prone. A

potential solution for building a nutrition dataset could be

to send web-mined images to human annotators and have

them estimate the portion size. However, our findings show

that this annotation task is extremely difficult, even for nu-

trition experts, and produces highly inaccurate labels.

This paper explores an alternative approach to dataset

construction: incrementally weighing, scanning, and log-

ging each item as it’s added to a plate in real world cafete-

rias immediately before consumption. A variety of weight

and imagery sensors are used for the scanning process and

the ingredient breakdown is logged via the item recipe, en-

abling the calculation of near exact nutrition annotations.

The end result is Nutrition5k, a dataset of five thousand

unique, real world, generic food dishes and their associated

video captures, depth images, component weights, and high

accuracy nutritional information. We demonstrate the util-

ity of this dataset by training deep CNNs to predict nutri-

tional content from a single RGB image, achieving an accu-

racy that even surpasses a trained nutritionist’s ability to do

so visually. Additionally, we make use of depth sensor data

as an additional signal to greatly improve our portion size

predictions and nutrition regression accuracy.

2. Related Work

Many prior works [3, 13, 15, 19] follow the approach of

classifying a dish into one of a known set of menu items,

where each instance of an item is assumed to have approx-

imately the same nutritional breakdown. Such an approach

is scalable to some extent (as many as 2,500 unique dishes

are classified in [15]), but is limited to classifying an entire

dish image as a single food item. Bolanos et al. [3] ex-

tended this to support images with multiple dishes present

at once by using a two stage system that first detects indi-

vidual dishes, and then classifies those regions.

Another set of techniques utilize the abundance of web

data for recipes to help understand images of dishes [4, 14,

17, 16]. These approaches leverage web labels to train em-

bedding models that retrieve similar recipes, or use the at-

tribute labels for classification. However, they make no at-

tempt at portion estimation and therefore aim to predict rela-

tive nutritional information but cannot compute the absolute

nutritional content from the given dish image.

Approaches such as [6, 7] explicitly tackle the portion

estimation problem by fitting geometric shapes to detected

food items in order to predict volume. These approaches

provide accurate results but focus on datasets with limited

variation. Other works employ progress in dense labeling

techniques to perform portion annotation via segmentation.

Myers et al. [15] combine a segmentation network with a

depth prediction network and convert voxels to food vol-

ume estimates, but their evaluation of this method is lim-

ited to plastic food replicas used for training nutritionists.

Ciocca et al. [5] introduce a dataset with 1,027 tray images

and segmentation masks for 73 food categories but with no

portion annotations.

The authors of [15] claim that once food volume has

been retrieved, nutritional density datasets can be used to

calculate mass, calorie, and macronutrients. Ando et al. [1]

build on [15] by using an on-device smartphone depth sen-

sor to estimate volume from overhead imagery and learning

food item density to predict mass, but are ultimately limited

in their food density data and only show successful exper-

iments for three food items. Similarly, Gao et al. [8] use
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Name Unique Mixed Depth Public

MenuMatch[2] 41 Y N Y

ECUSTFD[11] 160 N N Y

Fang et al.[6] 3 Y N N

Ando et al.[1] 3 Y Y Y

Nutrition5k [Ours] 5,066 Y Y Y

Table 1. Summary of nutrition datasets (i.e. contain portion and

calorie annotations). Here we define unique as the number of

dishes with a unique combination of ingredients so that it has a

different underlying nutritional breakdown (e.g. different ingredi-

ents or different portion sizes thereof). Mixed refers to multiple

ingredients per dish.

on-device sensors to estimate food volume but make no at-

tempts to determine food density/mass.

Liang et al. [11] present a dataset with 2,978 images of

160 unique pieces of food and use a FasterRCNN network

to predict the mass. These are mostly whole foods such as

an entire apple or tomato, one per plate. Many of these ap-

proaches also utilize a fudicial marker for scale; for example

[11] uses a Yuan coin and [6] uses a checkered square.

3. Dataset

3.1. Goals

Nutrition5k is intended to be a diverse dataset of food

dishes with in-depth, high accuracy annotations, and scale

sufficient to train a high capacity neural network. The

hope is that this will spur innovative research into new

approaches to automatic nutritional understanding in the

generic food space and provide a benchmark for future eval-

uation. The following were important motivations when

collecting the dataset:

• Diversity For an approach to generalize to the culinary

diversity seen in the real world, the training dataset

must cover a wide variety of ingredients, portion sizes,

and dish complexities.

• Realistic By capturing photographs of real food, in ac-

tual campus cafeterias, the data simulates real world

conditions where logging meals would occur.

• Challenging As in real world dishes, images in Nutri-

tion5k contain ambiguities and challenges that may not

be possible to fully overcome (e.g. ingredients may be

partially or fully occluded by others).

• High accuracy To surpass human ability in visual nu-

trition estimation, it is important to gather data that

gives a more accurate understanding of the contents

of a plate (i.e. depth images and component weighing)

than visual estimation alone.

Non-goals The intent of this dataset is to focus on the

more challenging generic food space, and not to replace ap-

proaches where a dish can be classified into a set of known

menu items with known portion sizes, as is done in some

of the aforementioned related works [3, 13, 15, 19]. Re-

trieval and classification style approaches, when possible,

will inherently produce higher accuracy results than those

intended for generic food, and as such we see the challenges

as distinct.

Figure 2. RGB image examples from Nutrition5k.

Figure 3. Depth image examples from Nutrition5k.

3.2. Scale and Splits

Nutrition5k contains 20k short videos generated from

roughly 5000 unique dishes constructed from more than

250 different ingredients. Each dish has a full breakdown

of ingredient labels, their quantities, and their macronutri-

ent information computed using the USDA Food and Nu-

trient Database [9]. Furthermore, 3.5k out of the 5k dishes

also include overhead RGB-D images captured from an In-

8905



Mean Standard Average Deviation

Deviation from Mean

Calorie 255 220 136

Total Mass(g) 215 161 114

Fat(g) 12.7 13.5 6.93

Carbs(g) 19.4 21.6 10.3

Protein(g) 18.0 20.0 10.7

Table 2. Mean, standard deviation, and average deviation from

mean for each metric in Nutrition5k.

tel RealSense camera. As far as we are aware, Nutrition5k

is the largest nutrition dataset with portion annotations.

The data is divided into training and testing subsets. We

partition 10% of the dishes into the test set, and leave the

remainder as train. We call these corresponding sets Nutri-

Train and Nutri-Test.

3.3. Data Distribution

The dishes in Nutrition5k vary drastically in portion

sizes and dish complexity, with dishes ranging from just

a few calories to over 1000 calories and from a single in-

gredient to up to 35 with an average of 5.7 ingredients per

plate. Table 2 shows the variety in nutritional breakdown

of the dishes used. Figure 4 shows the 30 most common

ingredients in Nutrition5k by mass. Sorting ingredients by

mass instead of frequency gives a more intuitive look at the

common ingredients used, as the most frequently occurring

ingredients are basics such as salt, pepper, olive oil, and

vinegar.

3.4. Supervision Labels

Our Nutrition5k dataset can be represented as D =
{Ii, Yi}

N
i=1

, in which Ii is the image, Yi is the supervision

labels, and N is the number of examples. The supervision

labels Yi = (ywi , Y
m
i , ycali ) consist of three types: total

weight label ywi , macronutrient labels Y m
i , and a calorie

label ycali . Note that all of the supervision labels are a func-

tion of the weight (in grams) of each ingredient Kl where l

is an index running over all ingredients as follows:

• ywi represents the total weight of each dish.

• Y m
i is a vector of the weights of each macronutrient,

i.e. Let M = {carb, fat, protein}, then ∀j ∈ M ,

ymij = Fmacro(Kl, j) where Fmacro is a function that

calculates the amount of each macronutrient.

• ycali = Fcalorie(Kl) where Fcalorie is a function

which calculates the total number of calories from per

ingredient weights.

3.5. Collection Procedure

To capture and record data, we utilize a custom sensor

array to weigh and scan each dish in Nutrition5k (see Fig-

ure 5). Robotic automation was used to manipulate and trig-

ger all of the sensors simultaneously to reduce the time re-

quired for each scan.

In curating complex dishes with accurate nutrition la-

bels, items from the buffet style cafeterias were added one

at a time to a plate or bowl, followed by a scan after each

item was added. An item corresponds to either an individ-

ual ingredient or a prepared food with a known recipe, and

thus known per gram ingredient breakdowns. Per gram nu-

trition content for each item was calculated using the per

gram ingredient breakdown and the USDA Food and Nu-

trient Database. This value is then multiplied by the incre-

mental weight measurement as the item is added to the plate

to generate the ground truth annotation for nutrition con-

tent. As items were added, dishes grew from simple, single

recipe plates to much more complex and challenging mixed

recipe dishes. However, even a single item dish could be a

quite complex recipe menu item.

Note that the data splits respect the incremental nature of

scans, such that all dishes belonging to a single incremental

scan will exist in either Nutri-Train or Nutri-Test. In this

way, we ensure that the test and training sets do not have

any overlapping images of the same plate.

For each scan, the following data was recorded: the

recipe or ingredient of the item added, four RGB video

recordings, an overhead RGB-D image, and an incremen-

tal weight measurement. The five cameras are oriented

above and around the plate, with one pointing down from

directly overhead and the remaining four from each side of

the dishes. The four side-angle cameras all sweep 90 de-

grees simultaneously, capturing the full 360 degrees, and

are alternated at approximately 30 degrees and 60 degrees

down from the horizon. Each camera records in 1920×1080
resolution for approximately 8 seconds per sweep, and the

depth image is generated by averaging over the 8 second pe-

riod to remove noise and holes from the capture. We use an

Intel RealSense D435 to collect overhead depth data, with

depth units of 1e−4. A digital scale under the plate captures

the incremental weight within +/- 1 gram of precision.

3.6. Challenges

While this dataset strives to achieve a high fidelity un-

derstanding of the nutritional content of dishes captured via

per item mass and volume measurements, there are ways

in which potential error could still accumulate. For ex-

ample, picking out and removing specific ingredients from

an established recipe could skew the nutrition content log,

though such behavior was discouraged.

The complexity of collecting in depth annotations with

specialized hardware limited our collection efforts for this

dataset to a single real world cafeteria. While the cafeteria

had a diverse and daily updating set of menu items from var-

ious cultural cuisines, the limited geographic nature of the
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Figure 4. Top 30 ingredients by mass in Nutrition5k.

Figure 5. Robotic device for rapid data capture.

collection inherently skews the food seen to mostly western

style dishes. We leave adding scans from more geographi-

cally and culturally diverse cafes for future work.

There are also some potential biases introduced by lever-

aging robotic automation for efficient data collection. The

relatively small set of viewing distances and the sensor sup-

port structures seen in the background could potentially

be used by an algorithm to assist in portion size estima-

tion. Our experiments show, however, that providing ex-

plicit depth information to models still proves to be a sig-

nificant factor in portion estimation.

4. Experiments

This section details our experiments in developing com-

puter vision models based on data collected in Nutrition5k.

We sample RGB frames and depth images from the dataset,

and train models to predict the nutritional content of a dish.

We present metrics to assess model performance based on

prediction method, model architecture, and the subsequent

impact each had on end-to-end nutritional understanding.

We then compare our performance in portion estimation to

estimates made by both expert (nutritionists) and novice an-

notators on a subset of the data.

4.1. Metrics

Given the unique portion annotations and depth data

available in Nutrition5k, we conduct 3 novel experiments.

First, we train a portion independent regression model

where calories and macronutrients per gram of food are pre-

dicted from a single RGB image. Next, we predict the pre-

cise nutritional content of a dish, portion (i.e. mass) in-

cluded, from a single RGB image. Finally, we augment the

RGB input to this direct prediction with depth data in an

attempt to improve upon our 2D baseline. We measure the

regression accuracy of calorie, total mass, and individual

macronutrient mass using the mean absolute error (MAE),

which is defined as:

MAE =
1

N

N∑

i=1

|ŷi − yi| (1)

where ŷi is the predicted value for a given test image Ii
for each metric. Caloric values are measured in standard

kilocalories units, while macronutrient and total masses are

measured in grams. We present the MAE as a direct value in

its respective units and as a percentage of the mean ground

truth value.

4.2. Experimental Setup

Base architecture Our architecture is based on an Incep-

tionV2 [22] backbone encoder. The input resolution to the

network is a 256x256 image, where images were downsized

and center cropped in order to retain the most salient dish

region. We optimize our network using the RMSProp al-

gorithm, with an initial learning rate of 1e−4, momentum

of 0.9, decay of 0.9, and epsilon of 1.0. All models are

pretrained using JFT-300M [21].
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Figure 6. Overview of network architecture for our multi-task learning experiments.

Multi-task learning For each regression task (calorie,

macronutrients, and optionally mass), we train a separate

multi-task head. The multi-task learning architecture uti-

lizes the mixed5c outputs from the InceptionV2 base and

applies a [3, 3] average pooling kernel with stride 2 and

valid padding. Two 4096-dimensional fully connected (FC)

layers follow, and all tasks share weights up until this point.

For each regression task, a final third and fourth FC lay-

ers follows (with dimension 4096 and 1, respectively) and

the appropriate loss for the given task is used, as defined in

Equation 2. Figure 6 provides an overview of the network

architecture.
We learn the weights W for the multi-task network by

minimizing the loss function lmulti defined as:

lmulti(D|W ) =
1

N

N∑

i=1

[lm(Ii, Y
m
i |W )

+ lc(Ii, y
cal
i |W )

+ lw(Ii, y
w
i |W )]

lm(I, Y m|W ) =
1

|M |

∑

j∈M

|ŷm
j − y

m
j |

lc(I, y
cal|W ) =|ŷcal − y

cal|

lw(I, y
w|W ) =|ŷw − y

w|

(2)

The overall loss lmulti is a weighted combination of three

sub-task loss functions: macronutrient regression loss lm,

calorie regression loss lc, and total weight loss lw. lm, lc,

and lc use mean absolute error (MAE) as the regression loss.

ŷmj , ŷcal, and ŷw are the predicted label values for the three

sub-tasks while ymj , ycal, and yw are the ground-truth val-

ues.

Experiment Data The partitions between Nutri-Train and

Nutri-Test remain constant for all experiments. For 2D only

models, the rotating videos are sampled and every 5th frame

is used for training. For the depth aware models, only the

subset of dishes with RealSense RGB-D images are used.

4.3. Nutrition Understanding from 2D Images

Portion Independent Model The multi-task learning

framework was first applied to predicting the caloric con-

tent and macronutrient breakdown of a dish independent of

portion size. This was done by normalizing the caloric and

macronutrient values by the mass of the overall dish, which

converts units to calories per gram, carbohydrates per gram,

fat per gram and protein per gram. In order to compare

these predictions to our other models in Table 3, we multi-

ply these predictions by the ground truth mass to generate

caloric and macronutrient values in standard units (kilocalo-

ries and grams, respectively).

This network achieves an MAE of 9.5% when predict-

ing calories per gram and an average MAE of 14.7% when

predicting macronutrients per gram.

Direct Prediction While the portion independent model

provides insight into the nutritional breakdown of a meal,

a much more valuable use case is to predict the absolute

values of calories and macronutrients of the dish. We ap-

ply the same architecture and multitask learning methods

to directly regress these absolute values, as well as total

mass. This model is able to predict calories with an MAE
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Calorie MAE Mass MAE Fat MAE Carb MAE Protein MAE

Baseline 150.8 / 60.2% 124.6 / 58.5% 8.2 / 67.6% 12.5 / 62.1% 10.5 / 62.1%

2D Portion Independent Model 24.1 / 9.5% - 2.3 / 18.3% 2.7 / 13.9% 2.2 / 12.0%

2D Direct Prediction 70.6 / 26.1% 40.4 / 18.8% 5.0 / 34.2% 6.1 / 31.9% 5.5 / 29.5%

Depth as 4th Channel 47.6 / 18.8% 40.7 / 18.9% 2.27 / 18.1% 4.6 / 23.8% 3.7 / 20.9%

Volume Scalar 41.3 / 16.5% 29.4 / 13.7% 3.0 / 25.5% 4.5 / 22.0% 5.2 / 31.1%

Table 3. Mean absolute error (MAE) and mean absolute error as a percent of the respective mean for that field. Evaluations are run on test

set. Caloric MAE is measured in calories, all others are measured in grams. Baseline is the error for an approach that always predicts the

mean value for each field.

of 26.1% and macronutrients with an aggregate MAE of

31.9%.

4.4. Depth and Volume for Portion Estimation

RGB-D Input In an attempt to improve upon the direct pre-

diction of calories and macronutrients, we also explored

ways to incorporated the depth images from Nutrition5k

into the training and regression process. First, we naively

augmented the input image with depth as a 4th channel,

which is sampled to a 3 channel tensor and input into

the model. Using this RGB-D input for direct prediction

method yielded a calorie MAE of 18.8% and an aggregate

macronutrient MAE 20.9%, as shown in Table 3.

RGB with Volume Estimate Input Additionally, we ex-

perimented with factoring the end-to-end nutrition under-

standing problem into two disjoint challenges: portion in-

dependent regression and portion estimation. We use our

highly effective portion independent model from Table 3

for the former, and train an independent mass regression

network for the latter. To bolster our mass regression net-

work, we explicitly calculate an estimate for food volume

from the depth image, leveraging this as a prior input to the

portion estimation model.

We follow after [1] to generate food volume estimates

from overhead depth images. Given the distance between

camera and capture plane (35.9 cm), and the per-pixel sur-

face area at this distance (5.957× 10−3 cm2), we calculate

the per-pixel volume measurement and sum over all food

pixels (using a binary foreground/background food segmen-

tation model) to determine the final food volume estimate.

This volume estimation method is performed for each dish

in the Nutrition5k collection using the overhead RealSense

RGB and depth images. We then train an InceptionV3 [22]

network (followed by two fully connected layers of 64 and

1 dimension) to learn mass regression directly from the in-

put overhead RGB image, volume estimation, and per-dish

food mass annotations.

In the baseline variant (Image-only), only the image is

used as input during training and evaluation. We evalu-

ate the impact of adding volume as an additional signal

by concatenating the volume estimation value to the out-

put of the InceptionV3 backbone, before the following two

Total Mass MAE

Image-only 38.1g / 29.5%

Image+volume 29.4g / 13.7%
Table 4. Mean absolute error for mass regression from an RGB

(and optionally volume estimate) input.

fully connected layers. Similar to the previous experiments,

we report accuracy for mass estimation in terms of absolute

and relative MAE. Despite volume being a derived estimate

from the raw depth data, Table 4 shows that the volume es-

timate prior significantly improves performance in mass es-

timation.

Finally, we combine the predictions from our Im-

age+volume mass estimation with the separate portion in-

dependent per-gram model predictions to show a complete,

end to end direct nutrition prediction with a calorie MAE

of 16.5% and aggregate macronutrient MAE of 26.2%, as

shown in Table 3.

4.5. Analysis

Table 3 shows the disparity in accuracy between portion

independent prediction and direct nutrition prediction. Pre-

dicting direct calories compared to calories per gram in-

creases the MAE nearly 3x from 9.5% to 26.1%. This

demonstrates the substantial increase in complexity of the

challenge when portion estimation is required. While these

portion independent models can be accurate, they still re-

quire the user to measure or weigh out their meals in order

to keep an accurate nutrition diary and therefore offers lim-

ited benefits over existing online nutrition trackers such as

MyFitnessPal. In our depth and volume experiments, we

show how the unique large scale depth data offered in Nu-

trition5k can be used to approach this problem. Our first

attempt of integrating depth information already shows sig-

nificant improvements on our baseline 2D direct nutrition

model. However, using the depth map to calculate a volume

scalar, which is provided as a separate input to direct mass

regression, brings the error down from 18.7% to 13.7%.

And combining this volume-assisted mass prediction net-

work with our most accurate nutrition model of calories per

gram gives us an end-to-end calorie prediction pipeline with

an MAE or 16.5%. To our knowledge, no other research
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has produced similar accuracy in regressing nutrition val-

ues from images and depth in the generic food space. We

hypothesize that this is due to the lack of a sufficiently di-

verse and accurately annotated dataset to facilitate such an

approach prior to Nutrition5k.

4.6. Human Performance

In many computer vision datasets, images are first col-

lected at scale and then annotated after the fact by human

raters, who are able to accomplish their annotation task

given the context in the image. However, this methodol-

ogy is insufficient for nutrition datasets. To evaluate the

necessity of manually weighing food items at capture time,

as was done in Nutrition5k, we establish a baseline for mass

estimation by people visually estimating portion sizes. We

follow the current behavior of many nutrition tracking app

users when logging consumption, as described in Section 1.

For comparison, we show the resulting mass prediction of

human portion estimation versus our model’s predictions.

10 images were sampled from Nutri-Test, 6 with

one ingredient per plate (in order: chicken, broccoli,

cucumber, bell pepper, cantaloupe, pineapple) and 4

with three different ingredients per each plate (in or-

der: oatmeal/lemon/berries, asparagus/olives/pineapple,

sausage/olives/ham, and broccoli/tofu/ham). These com-

plexity of these dishes err on the side of simplicity com-

pared to the average dish in Nutrition5k in order to pro-

vide the human raters a better chance at estimating portions.

These images were displayed to two groups: 16 amateurs

(non-nutritionists) and 4 professionals (nutritionists). We

asked them to estimate the mass1 of each ingredient present

on the plate and subsequently converted these values into

nutrition estimates using the same USDA [9] values we used

to create our dataset. Reference points were also provided

to help with estimations; for example, survey instructions

indicated that a US quarter and an average cell phone weigh

5.6 and 113 grams, respectively.

We then computed both the absolute error of each in-

dividual’s total dish mass estimate utilizing known ground

truth values and the mean per dish error across the two

groups (non-nutritionist vs nutritionist). Figure 7 com-

pares mass estimation performance between human error

collected from estimation surveys with the results of our

2D only direct prediction. The graph reports percent error

of total mass to perform a relative comparison.

The average percent error for non-nutritionists is 53%,

which is consistent with previous reports of high human

inaccuracy when performing visual portion size estimation

[10, 18]. The nutritionists had a lower average percent error

rate of 41%. While this survey is not an exhaustive study on

1We additionally surveyed a third group of 32 non-nutritionists for vol-

ume estimates, but their assessments were slightly less accurate than the

mass based survey.
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Figure 7. MAE of human estimates and MAE of model estimates

as a percent of the total calories for the respective plate. The X-

axis label for each plate also includes its ground truth caloric value.

the ability of human prediction performance, the magnitude

of the error values this provides evidence that human rater

portion annotation is not a viable method of data collection

in the nutrition space.

5. Conclusion

In this paper, we present Nutrition5k, the first nutritional

understanding dataset of its size, diversity, and depth of la-

beling. We provide evidence of the challenging nature of

visual annotation in our human portion size estimation stud-

ies, demonstrating the limitations of typical data annotation

approaches in this space. We validate the effectiveness of

our approach to data collection and the resulting Nutrition5k

dataset by training a neural network that can outperform

professional nutritionists at caloric and macronutrient es-

timation in the generic food setting. We further introduce

multiple baseline approaches of incorporating depth data to

significantly improve upon our direct nutritional prediction

from 2D images alone. Our hope is that the release of this

dataset will inspire further innovation in the automatic nu-

tritional understanding space and provide a benchmark for

evaluation of future techniques.
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