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Figure 1: Some qualitative results of BoxInst with the ResNet-101 based model achieving 33.0% mask AP on COCO val2017. The

model is trained without any mask annotations and can infer at 17 FPS on a V100 GPU. Best viewed on screen.

Abstract

We present a high-performance method that can achieve

mask-level instance segmentation with only bounding-box

annotations for training. While this setting has been studied

in the literature, here we show significantly stronger perfor-

mance with a simple design (e.g., dramatically improving

previous best reported mask AP of 21.1% [13] to 31.6%

on the COCO dataset). Our core idea is to redesign the loss

of learning masks in instance segmentation, with no mod-

ification to the segmentation network itself. The new loss

functions can supervise the mask training without relying

on mask annotations. This is made possible with two loss

terms, namely, 1) a surrogate term that minimizes the dis-

crepancy between the projections of the ground-truth box

and the predicted mask; 2) a pairwise loss that can exploit

the prior that proximal pixels with similar colors are very

likely to have the same category label.

Experiments demonstrate that the redesigned mask loss

can yield surprisingly high-quality instance masks with only

box annotations. For example, without using any mask an-

notations, with a ResNet-101 backbone and 3× training

*Corresponding author.

schedule, we achieve 33.2% mask AP on COCO test-dev

split (vs. 39.1% of the fully supervised counterpart). Our ex-

cellent experiment results on COCO and Pascal VOC indi-

cate that our method dramatically narrows the performance

gap between weakly and fully supervised instance segmen-

tation.

Code is available at: https://git.io/AdelaiDet

1. Introduction

Instance segmentation requires the algorithm to predict

the pixel-wise masks and categories of instances of interest,

and is one of the most fundamental tasks in computer vision.

The performance of instance segmentation has been signif-

icantly advanced by a number of recent successful meth-

ods [5, 6, 11, 15, 28, 30, 31]. These methods have almost

made the previously much more challenging instance seg-

mentation task be as simple and fast as bounding-box object

detection. For example, built on the detector FCOS [29],

CondInst [28] only adds very compact dynamic mask heads

to predict instance masks, and thus only introduces less than

10% computation time, compared to FCOS. Instance seg-

mentation is able to provide more accurate and finer mask-

5443



image mask box mask

pairwise relationship

projection

loss term

pairwise

loss term
…

the 8 consistency maps

y1

y
0

x
0

x
1

Figure 2: The two proposed loss terms. Top row: the projections

onto x-axis and y-axis of the mask and the box, and the projections

should be the same, where (x0, y0) and (x1, y1) are the two cor-

ners of the box. Bottom row: the pairwise term. For each pixel,

we compute the pairwise label consistency between the pixel and

its 8 neighbours (with dilation rate 2). Thus each pixel has 8 edges

and we have 8 consistency maps in the right. The white locations

in the right figure are the edges we have the supervision derived

from the color similarity, and other edges are discarded in the loss

computation.

level object location than detection. Thus, given that the

extra computation cost is negligible, instance segmentation

should be preferred over bounding box detection in many

cases. For example, if a robot wants to grasp an object, an

accurate mask will be much more helpful than a box. Now

the main obstacle that impedes instance segmentation re-

placing box detection is the significantly heavier pixel-wise

mask annotations. Compared to box-level annotations re-

quired by object detection, annotating pixel-level masks is

notoriously time-consuming, as shown in [3,9,19]. Here we

aim to eliminate this obstacle by training instance segmen-

tation using box annotations only.

A few works [2, 7, 13, 17, 19, 22, 24, 26] attempted to ob-

tain (semantic or instance-level) mask prediction with box-

level annotations. Among them, most methods such as Box-

Sup [7] and Box2Seg [19] rely on the region proposals that

are generated by MCG [23] or GrabCut [25]. One draw-

back might be the slow training procedure since these algo-

rithms are hard to be parallelized by modern GPUs. More-

over, in order to achieve good performance, some meth-

ods often require iterative training, resulting in a compli-

cated training pipeline and more hyper-parameters. Most

importantly, none of these methods is able to show strong

weakly-supervised performance on large benchmarks such

as COCO [21]. Thus almost all of them are only evaluated

on small datasets such as Pascal VOC [9].

In this work, we propose a simple, single-shot and

high-performance box-supervised instance segmentation

method, built upon the recent fully convolutional instance

segmentation framework—CondInst [28]. Our core idea is

to replace the original pixel-wise mask losses in CondInst

with a carefully designed mask loss consisting of two terms.

The first term minimizes the discrepancy between the hor-

izontal and vertical projections of the predicted mask and

the ground-truth box (see Fig. 2 top). This essentially

ensures that the tightest box covering the predicted mask

matches the ground-truth box. Since the ground-truth mask

and ground-truth box have the same projections on the two

axes1, this can be also viewed as a surrogate term that mini-

mizes the discrepancy between the projections of the pre-

dicted mask and ground-truth mask. This loss term can

be computed when we only have box annotations. Clearly,

with this projection term, multiple masks can be projected

to a same box. Therefore the projection loss alone would

not suffice. Thus, we introduce the second loss term, su-

pervising the pairwise label consistency in proximal pixels,

i.e., if two pixels have the same labels or not (Fig. 2 bot-

tom). At first glance, supervising the pairwise consistency

still requires mask annotations. With only box annotations

available, in principle this pairwise supervision signal is in-

evitably noisy. However, an important observation is that

the proximal pixels with similar colors are very likely to

have the same label. Thus, we show that it is empirically

plausible to determine a color similarity threshold such that

only confident pairs of pixels having a same label are used

in the loss computation (the white regions in the bottom

right of Fig. 2), thus largely eliminating supervision noises.

Using these two loss terms, we achieve stunning instance

segmentation results without using any mask annotations.

Some qualitative results are shown in Fig. 1.

Even though ideas that are relevant to either of our two

observations mentioned above were studied more or less

in the literature, ranging from non-deep learning methods

such as CRF [18] and GrabCut [25] to deep learning-based

methods such as Box2Seg [19] and BBTP [13], none of

these works effectively incorporates them into a simple

and appropriate framework. As a result, and more impor-

tantly, performance of existing methods on large challeng-

ing datasets (e.g., COCO) is far away from that of the full

potential of box-supervised instance segmentation that is

achievable, as we are going to reveal here. In summary, our

method, termed BoxInst, enjoys the following advantages.

• The proposed method can achieve instance seg-

mentation with box supervision by introducing two

loss terms to the instance segmentation framework

CondInst [28]. BoxInst is simple as it does not modify

the network model of CondInst at all, only using dif-

ferent loss terms. This means that the inference pro-

cess of the proposed BoxInst is exactly the same as

1This may not hold if the instance mask consists multiple disjointed

regions.
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CondInst, thus naturally inheriting all desirable prop-

erties of CondInst.

• BoxInst attains excellent instance segmentation perfor-

mance on the large-scale benchmark COCO. With the

ResNet-101 backbone and 3× training schedule, our

BoxInst achieves 33.2% mask AP on COCO with no

mask annotations used in training, outperforming a few

recent fully supervised methods using the same back-

bone and trained with mask annotations, including

YOLACT [4] (31.2% AP) and PolarMask [32] (32.1%

AP). We empirically show that in the semi-supervised

setting, mask AP of BoxInst can be further improved,

as expected (§3.6).

• Since instance masks can provide much more precise

localization than boxes, we envision that BoxInst can

be used in many downstream tasks to boost their per-

formance without extra effort of annotating ground-

truth masks. For example, we can obtain text masks

using BoxInst (see the supplementary), which often

help text recognition. BoxInst can also help annotate

the mask-level training data for the fully-supervised

settings.

Instance segmentation has long been believed to be much

more challenging to solve than bounding box detection. Our

strong performance of instance segmentation using only

box supervision shows that it may not necessarily be the

case.

1.1. Related Work

Box-supervised Semantic Segmentation. A few works at-

tempted to obtain semantic masks using box annotations.

For example, BoxSup [7] uses the region proposals from

MCG as the pseudo labels to train an FCN, and an itera-

tive training algorithm is used to refine the estimated masks.

The recent Box2Seg [19] method employs the masks gen-

erated by GrabCut to supervise training of the mask predic-

tion model. In addition, a per-class attention map is also

predicted by the model to make the per-pixel cross entropy

loss focus on foreground pixels and refine the segmentation

boundaries. This method shows excellent performance on

Pascal VOC [9]. Authors of [26] propose to use the unsu-

pervised CRF [18] to generate the segment proposals. Ad-

ditionally, a class-wise filling rate loss to supervise the mod-

els for training, resulting in improved segmentation perfor-

mance. One of the crucial steps in these methods is to em-

ploy the pseudo labels generated by unsupervised segmen-

tation methods such as MCG [23] or GrabCut [25]. This is

because these method all rely on pixel-wise mask loss func-

tions, thus not being able to work without mask annotations.

In this work, we remove the dependency on pixel-wise mask

losses, as a result, eliminating the region proposals. Our

new loss functions ensure that mask prediction can still be

imperfectly supervised without using any mask annotations.

Box-supervised Instance Segmentation. In the context

of deep learning, instance segmentation with box annota-

tions has not explored too much yet. SDI [17] might be

the first instance segmentation framework with box anno-

tations. Similar to the methods for semantic segmentation,

SDI also relies on the region proposals generated by MCG.

Then they make use of an iterative training procedure to fur-

ther refine the segmentation results. Recently, BBTP [13]

formulates the box-supervised instance segmentation into a

multiple instance learning (MIL) problem. BBTP is built

on Mask R-CNN and samples the positive and negative

bags according to the ROIs on CNN feature maps. In con-

trast, our method is built on ROI-free CondInst [28] and

employs the proposed projection loss term to supervise the

mask learning, eliminating the need for sampling. BBTP

also makes use of the pairwise term. However, their pair-

wise term is defined on the set containing all neighboring

pixel pairs with the oversimplified assumption of spatially

neighboring pixel pairs being encouraged to have the same

label, inevitably introducing heavily noisy supervision. The

crucial prior derived from proximal pixels’ colors was not

exploited in BBTP. Our experiments in Table 1a show that,

the heavily noisy supervision can have a negative impact on

accuracy.

As a result, we significantly outperform the mask AP of

BBTP on COCO by an absolute 10%.

2. Approach

Conditional Convolutions for Instance Segmentation

(CondInst) Here, we briefly describe CondInst [28]. The

main goal of CondInst is to solve instance segmentation in

an RoI-free fully convolutional way. In CondInst, they be-

lieve that the most challenging piece in instance segmenta-

tion is that the prediction of each pixel varies according to

the instance to be predicted. For example, when the model

is predicting the mask for instance A, the pixels of instance

B should be predicted as background. However, when the

target instance is B, the pixels of B turn to be foreground.

This poses the main challenge for the FCNs’ application

on instance segmentation because the traditional FCNs can

only make deterministic prediction for each pixel.

CondInst [28] proposes to employ dynamic filters [16]

to address the above issues. Instead of using a fixed mask

head as in Mask R-CNN, according to the instance to be

predicted, CondInst dynamically adapts the weights of the

mask heads, as shown in Fig. 3, thus bypassing the above is-

sue. With the instance-aware mask heads, CondInst can ob-

tain the mask of each instance in the fashion of FCNs, elim-

inating the RoI operations. Notably, CondInst can generate

the full-image instance masks, not only the masks within

RoIs as in Mask R-CNN, as shown in Fig. 3. This has

played a crucial role in the box-supervised settings. Also,

the mask head only predicts class-agnostic masks. The in-
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Figure 3: Illustration of CondInst [28]. CondInst employs the

instance-aware dynamically-generated mask heads to obtain the

full-image instance masks. We refer readers to [28] for more de-

tails.

stance’s category is determined by the detector’s classifica-

tion branch.

2.1. Projection and Pairwise Affinity Mask Loss

Projection loss term. As mentioned before, the first

term supervises the horizontal and vertical projections of

the predicted mask using the ground-truth box annotation,

which ensures that the tightest box covering the predicted

mask matches the ground-truth box. Formally, let bbb ∈
{0, 1}H×W be the mask generated by assigning 1 to the

locations in the ground-truth box and 0 otherwise, as shown

in Fig. 2 (top-right). Then we have

Projx(bbb) = lllx, Projy(bbb) = llly, (1)

where Projx : R
H×W → R

W and Projy : R
H×W → R

H

indicate that projecting the mask onto x-axis and y-axis,

respectively. lllx ∈ {0, 1}W denotes the 1-D segmentation

mask on x-axis and the same applies to llly . The process of

projection is illustrated in Fig. 2 (top row).

The projection operation can be implemented by a max
operation along with each axis. Formally, we define

Projx(bbb) = maxy(bbb) = lllx,

Projy(bbb) = maxx(bbb) = llly,
(2)

where maxy and maxx are the max operations along with

y-axis and x-axis, respectively.

Let m̃mm ∈ (0, 1)H×W be the network predictions for the

instance mask, which can be viewed as the probabilities be-

ing foreground (i.e., the label is 1). We apply the same pro-

jection operations of Eq. (2) to the mask predictions and ob-

tain the corresponding projections l̃llx and l̃lly . We then com-

pute the loss between the projections of the ground-truth

box and the predicted mask. The projection loss term is

defined as:

Lproj = L(Projx(m̃mm),Projx(bbb)) + L(Projy(m̃mm),Projy(bbb))

= L(maxy(m̃mm),maxy(bbb)) + L(maxx(m̃mm),maxx(bbb))

= L(̃lllx, lllx) + L(̃llly, llly),
(3)

where L(·, ·) is the Dice loss as in CondInst2. Note that all

the operations in the last equation are (sub-)differentiable.

This loss function is applied to all the instances in a train-

ing image and the final loss is their average. As shown in

our experiments, by using this projection loss term, we can

already obtain decent instance segmentation results without

using any mask annotations.

Pairwise affinity loss term. In almost all instance seg-

mentation frameworks such as Mask R-CNN and CondInst,

they supervise the predicted masks in a per-pixel fashion.

The pixelwise supervision becomes unavailable if we do not

have the mask annotations. Here, we attempt to supervise

the mask in a pairwise way, and we will show this supervi-

sion can be partially available even if we do not have any

mask annotations.

Now, assume we have the ground-truth masks. Consider

an undirected graph G = (V,E) built on an image, where

V is the set of the pixels in the image, and E is the set of

the edges. Each pixel is connected with its K × K − 1
neighbours (the dilation trick may be applied), as shown in

Fig. 2 (bottom left). Then we define ye ∈ {0, 1} be the label

for the edge e, where ye = 1 means the two pixels linked

by the edge have the same ground-truth label and ye = 0
means their labels are different. Let pixels (i, j) and (l, k)
be the two endpoints of the edge e. The network prediction

m̃mmi,j ∈ (0, 1) can be viewed as the probability of pixel (i, j)
being foreground. Then the probability of ye = 1 is

P (ye = 1) = m̃mmi,j · m̃mmk,l + (1− m̃mmi,j) · (1− m̃mmk,l), (4)

and P (ye = 0) = 1 − P (ye = 1). By convention, the

probability distribution from the network prediction can be

trained with the binary cross entropy (BCE) loss. Thus, the

loss function is

Lpairwise = −
1

N

∑

e∈Ein

ye logP (ye = 1)

+(1− ye) logP (ye = 0),

(5)

where Ein is the set of the edges containing at least one

pixel in the box. Using Ein instead of E here can prevent

the loss from being dominated by a large number of the pix-

els outside the box. N is the number of the edges in Ein.

If only the pairwise loss is used to supervise the mask

learning (in the fully-supervised setting), ideally, two possi-

ble solutions may be obtained. The first one is the same as

2One can also use the cross-entropy loss here.
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the ground-truth mask mmm, which is desirable. The second

solution is the inverse 1−mmm. Fortunately, the second solu-

tion can be easily eliminated as long as we have a resolved

label for any pixel. This can be achieved by the projection

loss term because it ensures that the pixels outside the box

is background. Note that the edges in Ein still involve some

pixels outside the box, which are of great importance to help

the model get rid of the undesirable solutions. Overall, the

total loss for mask learning can be formulated as

Lmask = Lproj + Lpairwise. (6)

We will show in experiments that the redesigned mask loss

can have similar performance to the original pixelwise one

in the fully-supervised settings.

2.2. Learning without Mask Annotations

So far, we have shown that we can employ Eq. (6) to su-

pervise the masks. In Eq. (6), the first term Lproj is always

valid no matter we have box or mask annotations. At first

glance, the second term Lpairwise still requires the mask

annotations to compute the edge’s label ye. However, an

important observation is that if two pixels have similar col-

ors, they are very likely to have the same labels as well (i.e.,

the corresponding edge’s label is 1). Thus, we may deter-

mine a color similarity threshold τ such that the edge’s label

is 1 with a high probability if its color similarity is above τ .

Formally, let us define the color similarity as

Se = S(ccci,j , cccl,k) = exp

(

−
||ccci,j − cccl,k||

θ

)

, (7)

where Se be the color similarity of the edge e, and ccci,j and

cccl,k are, respectively, the color vectors of the two pixels

(i, j) and (l, k) linked by the edge. Here we use the LAB

color space as it is closer to human perception. θ is a hyper-

parameter, being 2 in this work.

In order to confirm our hypothesis above, we visual-

ize the proportion of the positive edges in all the edges

with color similarity above the threshold τ on the COCO

val2017 split. Fig. 4 (blue curve) shows that the propor-

tions of the positive edges in all the edges with Se ≥ τ as

the threshold τ increases. As shown in figure, if the thresh-

old is 0.1, more than 98% of the edges are positive. The pro-

portion can be further improved if we continue to increase

τ , but an overlarge threshold would reduce the number of

the supervised edges (red curve in Fig. 4). In experiments,

we found that the threshold is not sensitive to the final per-

formance.

Given the high proportion of positive edges, during train-

ing, we can safely assume that all the edges with Se ≥ τ are

positive and then only compute the pairwise loss for them.

Other edges are discarded during the loss computation. As
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Figure 4: The relationship between the edges’ labels and the

color similarity thresholds. ‘blue curve’: the proportion of the

positive edges in all the edges with color similarity above the

threshold. ‘red curve’: the proportion of the supervised positive

edges in all the positive edges. The number of positive edges

are computed with the ground-truth masks of the COCO val2017

split.

a result, the pairwise loss becomes

Lpairwise = −
1

N

∑

e∈Ein

✶{Se≥τ} logP (ye = 1), (8)

where ✶{Se≥τ} is the indicator function, being 1 if Se ≥ τ
and 0 otherwise. Eq. (8) only involves the term in Eq. (5)

for positive edges because we can only infer that an edge e
is positive if Se ≥ τ . If Se < τ , the label is agnostic. As we

only have positive labels in Eq. (8), one may note this would

result in two possible trivial solutions, i.e., the masks of all

the pixels being 0 or 1. However, the masks with all pixels

being 0 do not meet the projection term; and the masks of

all pixels being 1 almost never appear since the pairwise

term encourages the pixels near the box boundaries to be

negative if their colors are similar to that of the negative

pixels outside the box.

3. Experiments

We conduct experiments on COCO [21] and Pascal

VOC [9]. For COCO, the models are trained with

train2017 (115K images) and the ablation experiments

are evaluated on val2017 (5K images). Unless specified,

only box annotations are used during training. Our main re-

sults are reported on test-dev. For Pascal VOC, following

previous works [13, 17], we train the models on the aug-

mented Pascal VOC 2012 dataset [10] with 10, 582 training

images, and evaluate them on Pascal VOC 2012 val split

with 1, 449 images.

3.1. Implementation Details

Our proposed method only requires to change the mask

loss in CondInst. Other training and testing details are kept
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prop. AP AP50 AP75 APS APM APL

fully-sup. - 35.4 55.9 37.6 17.0 38.8 50.7

τ = 0 94.1% 9.4 30.3 3.3 7.6 10.3 11.4

τ = 0.1 98.3% 30.7 52.2 31.1 13.8 33.1 45.7

τ = 0.2 98.4% 30.6 52.6 30.9 13.9 32.8 45.5

(a) Varying the color similarity threshold τ .

size dilation AP AP50 AP75 APS APM APL

3 1 29.7 52.0 29.6 13.4 32.3 44.4

3 2 30.7 52.2 31.1 13.8 33.1 45.7

5 1 30.5 52.3 30.7 13.7 33.0 45.7

5 2 29.9 51.9 30.0 13.8 32.1 45.0

(b) Varying the size and dilation of the local patches (with τ = 0.1).

Table 1: Ablation study on the hyper-parameters in the proposed mask loss on the COCO val2017 split. “prop.” is the proportion of

the positive edges in the edges with Se ≥ τ . “fully-sup.”: fully-supervised results. As shown in Table 1a, by using τ = 0.1, BoxInst can

achieve 30.7 mask AP with only box annotations, which is close the fully-supervised mask AP (35.4%) and significantly better localization

precision than boxes (10.6% mask AP as shown in Table 3). Table 1b shows the experiment results by varying the neighbours of each pixel.

mask loss AP AP50 AP75 APS APM APL

Dice loss 35.6 56.3 37.8 16.9 38.9 51.0

proposed 35.4 55.9 37.6 17.0 38.8 50.7

Table 2: The projection and pairwise affinity mask loss vs. the

original pixelwise one in the fully-supervised settings. As we

can see here, they attain very similar mask AP on the COCO split

val2017.

as similar as possible to the original CondInst. On COCO,

unless specified, we use the following training details. The

models are trained for 90K iterations with batch size 16 on

8 V100 GPUs (2 images per GPU). The initial learning rate

is set to 0.01 and reduced by a factor of 10 at step 60K

and 80K, respectively. ResNet-50 [12] is used as the back-

bone and is initialized with the ImageNet [8] pre-training

weights. The newly added layers are initialized as in [28].

We use exactly the same data augmentation as in CondInst

(e.g., left-right flipping and multi-scale training). For the

dynamic mask heads, we use 3 conv. layers as in CondInst,

but we increase the channels of the mask heads from 8 to

16, which can result in better performance with negligible

extra computational overheads, and the compared baselines

are adjusted accordingly. Following CondInst, the output

mask is up-sampled to 1/4 resolution of the input image.

For the pairwise loss term, we compute the pairwise rela-

tionship within 3× 3 patches with the dilation rate being 2.

On Pascal VOC, following [13], we use batch size 8 and the

number of iterations is 20K. The learning rate is reduced by

a factor of 10 at step 15K. Only left-right flipping is used

as the data augmentation during training. Other settings are

the same as on COCO. The inference is the same as the

original CondInst on both benchmarks. The performance is

evaluated with the COCO-style mask AP.

3.2. Projection and Pairwise Affinity Loss for Mask
Learning

We first demonstrate that the redesigned mask loss can

have similar performance to the original pixelwise mask

loss in the fully-supervised settings. The experiments are

conducted on COCO. We replace the original Dice loss for

Lproj Lpairwise AP AP50 AP75 APS APM APL

box mask 10.6 32.2 4.6 5.7 11.3 15.6

X 21.2 45.2 17.7 10.0 21.4 32.5

X X 30.7 52.2 31.1 13.8 33.1 45.7

Table 3: The mask AP on COCO val2017 by applying the

different loss terms. “box mask”: using the masks generated by

boxes. If both terms are not used, the model can only provide the

box-level localization precision (10.6% mask AP).

mask training in CondInst with the proposed one, and keep

other settings exactly the same. As shown in Table 2, the

proposed mask loss can have similar performance (35.4%

vs. 35.6% mask AP), which suggests that using the pro-

posed loss for mask learning is feasible.

3.3. Box­supervised Instance Segmentation

The key advantage of the proposed mask loss is that it

can still supervise the predicted masks with only box anno-

tations. We confirm this here and conduct experiments to

investigate the hyper-parameters in the proposed mask loss.

Varying the threshold of color similarity. As mentioned

before, we use a color similarity threshold τ to determine

the edges that will be used to compute the pairwise loss.

Here, we conduct experiments by varying τ . When τ = 0,

all of the edges defined by the size of neighborhood are con-

sidered positive and used in the loss computation, as shown

in Eq. (8). As shown in Table 1a, in this case, 94.1% of the

edges are truly positive, and ∼6% of the edges are actually

negative. Thus, the loss computation would introduce ∼6%

noisy labels and all of the truly negative edges are wrongly

labelled positive. Unsurprisingly, this experiment yields a

trivial solution with poor performance (9.4% mask AP) that

almost all pixels in the box are predicted as foreground. If

we increase τ to 0.1, the proportion of the truly positive

edges are improved to 98.3%, and only less than ∼2% of

the edges are wrongly labelled. As a result, the model can

yield high-quality instance masks, achieving 30.7% mask

AP (vs. fully-supervised counterpart 35.4%). This result

is even better than that of some fully-supervised methods

such as YOLACT and PolarMask. Some qualitative results

are shown in Fig. 1. If we further increase the threshold τ
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method backbone aug. sched. AP AP50 AP75 APS APM APL

fully supervised methods:

Mask R-CNN [11] ResNet-50-FPN X 3× 37.5 59.3 40.2 21.1 39.6 48.3

CondInst [28] ResNet-50-FPN X 3× 37.8 59.1 40.5 21.0 40.3 48.7

Mask R-CNN ResNet-101-FPN X 3× 38.8 60.9 41.9 21.8 41.4 50.5

YOLACT-700 [4] ResNet-101-FPN X 4.5× 31.2 50.6 32.8 12.1 33.3 47.1

PolarMask [32] ResNet-101-FPN X 2× 32.1 53.7 33.1 14.7 33.8 45.3

CondInst ResNet-101-FPN X 3× 39.1 60.9 42.0 21.5 41.7 50.9

box-supervised methods:

BBTP† [13] (prev. best) ResNet-101-FPN 1× 21.1 45.5 17.2 11.2 22.0 29.8

BoxInst† ResNet-101-FPN 1× 31.6 54.0 31.9 13.9 34.2 48.2

BoxInst ResNet-50-FPN X 3× 32.1 55.1 32.4 15.6 34.3 43.5

BoxInst ResNet-101-FPN X 1× 32.5 55.3 33.0 15.6 35.1 44.1

BoxInst ResNet-101-FPN X 3× 33.2 56.5 33.6 16.2 35.3 45.1

BoxInst ResNet-101-BiFPN [27] X 3× 33.9 57.7 34.5 16.5 36.1 46.6

BoxInst ResNet-DCN-101-BiFPN [34] X 3× 35.0 59.3 35.6 17.1 37.2 48.9

Table 4: Comparisons with state-of-the-art methods on the COCO test-dev split. “†” means that the results are on the COCO val2017

split. BBTP only reported the results on the val2017 split. Our BoxInst outperforms the previous best reported mask AP by over absolute

10% mask AP. Ours even outperforms two recent fully supervised methods, YOLACT and PolarMask, and is close to state-of-the-art

fully-supervised results. ‘DCN’: deformable convolutions [34]. ‘1×’ means 90K iterations.

to 0.2, the performance slightly drops to 30.6% mask AP.

This might be because the number of the supervised posi-

tive edges decreases as we increase the threshold, as shown

in Fig. 4.

Varying the neighborhood of the pixels. We conduct ex-

periments with the different neighbours for each pixel. The

size (i.e., K) defines how many surrounding pixels of each

pixel are used to compute the pairwise loss with the pixel.

Additionally, we may use the dilation trick to enlarge the

scope (as in dilated convolutions). As shown in Table 1b,

by increasing the size from 3× 3 to 5× 5, the performance

is boosted from 29.7% to 30.5%. This suggests that a rel-

atively long-distance pairwise relationship is important to

the final performance. However, using 5× 5 requires more

computational overheads in the training. Thus, we apply

the dilation rate 2 to the 3× 3 patches. This can capture the

long-distance relationship without increasing the computa-

tional overheads and achieves similar performance (30.7%).

The performance cannot be further improved by applying

the dilation trick to the 5 × 5 patches because the assump-

tion, two pixels with similar colors probably have the same

label, might not hold if the two pixels are far from each

other.

The contribution of each loss term. Table 3 shows the

contribution of each loss term. Even if only the first projec-

tion term is used, we can also achieve decent performance

(21.2% mask AP), which can already provide much higher

localization precision than boxes (10.6% mask AP). By fur-

ther using the proposed pairwise term, high-quality instance

masks can be obtained and the performance is largely im-

proved to 30.7%.

Failure cases. We also show some failure cases in Fig. 5.

BoxInst sometimes fails to predict the correct masks (shown

Figure 5: Some failure cases on COCO. The incorrect parts are

in the red boxes.

in the red boxes) because there are still multiple masks sat-

isfying the constraints imposed by the two loss terms. It is

not trivial to eliminate these wrong masks, which will be

left for a future research.

3.4. Comparisons with State­of­the­art on COCO

We compare BoxInst with state-of-the-art fully/box su-

pervised instance segmentation methods on the COCO

dataset. As shown in Table 4, with the same backbone

and training settings, BoxInst significantly surpasses the

previous best reported result [13] by absolute 10.5% mask

AP (e.g., from 21.1% to 31.6%). BoxInst, without using

any mask annotations, performs even better than some re-

cent fully-supervised methods such as PolarMask [32] and

YOLACT [4], with the same backbones as well as simi-

lar training and testing settings (32.5% with R-101 1× vs.

PolarMask 32.1% R-101 2× and YOLACT-700 31.2% R-

101 4.5×). BoxInst also demonstrates competitive perfor-

mance with top-performing fully-supervised instance seg-

mentation methods. For example, with the same back-

bone ResNet-50-FPN and 3× training schedule, BoxInst

achieves 32.1% mask AP (vs. 37.8% of the fully-supervised

CondInst [28]). With BiFPN [27] and DCN [34], the per-

formance can be further boosted to 35.0% mask AP. Some

qualitative results are shown in Fig. 1. The excellent perfor-
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method backbone AP AP50 AP75

GrabCut [25] ResNet-101 17.8 37.8 15.5

SDI [17] VGG-16 - 44.8 16.3

BBTP [13] ResNet-101 23.1 54.1 17.1

BBTP w/ CRF ResNet-101 27.5 59.1 21.9

BBTP∗ ResNet-101 20.5 51.1 14.3

BBTP∗ w/ CRF ResNet-101 25.0 56.9 18.9

BoxInst ResNet-50 32.2 58.1 31.0

BoxInst ResNet-101 34.4 60.1 34.6

Table 5: Results on Pascal VOC val2012. Here, BBTP∗ de-

notes the results after we fix the issue [1] in its Matlab evaluation

code. Clearly, BoxInst achieves significantly improved mask AP,

outperforming previous best by about 10%. Here, the GrabCut

obtains the instance masks by taking as input the boxes generated

by BoxInst. Thus, the only difference between the GrabCut and

BoxInst is the way to obtain the masks.

mance shows that BoxInst dramatically narrows the perfor-

mance gap between the fully supervised and box-supervised

instance segmentation, and for the first time, the great po-

tential of box-supervised instance segmentation is revealed.

3.5. Experiments on Pascal VOC

We also conduct experiments on Pascal VOC. As shown

in Table 5, BoxInst achieves state-of-the-art instance seg-

mentation with only box annotations. With the same back-

bone and training settings, BoxInst outperforms BBTP both

in AP50 and AP75 by a large margin. Notably, the AP75

is improved by more than relative 200% (14.3% vs. 34.6%

mask AP), which suggests BoxInst can produce the masks

of much higher quality. BoxInst is even much better than the

BBTP with CRF. Additionally, BoxInst also performs much

better than SDI [17]. We also compare BoxInst with the tra-

ditional unsupervised segmentation method GrabCut [25].

In the experiment, GrabCut takes as input the bounding-

boxes predicted by the ResNet-101 based FCOS in BoxInst.

Thus the only difference between BoxInst and GrabCut is

the way of obtaining instance masks. As shown in Table 5,

BoxInst is far better than GrabCut (17.8% vs. 34.4% mask

AP). Moreover, BoxInst is fully convolutional and can ben-

efit from the highly-efficient GPUs, thus inferring tens of

times faster than GrabCut.

3.6. Semi­supervised Instance Segmentation

In this section, we show that our method can also help

the model generalize to unseen categories in the semi-

supervised setting where only partial classes have the mask

annotations. Following previous works [14, 20, 33] in this

setting, we conduct the experiments on the COCO dataset

and split the 80 classes in COCO into two groups – 20

classes present in Pascal VOC and 60 classes not in Pas-

cal VOC. Then the models are trained with the mask an-

notations of the classes in one group, and another group

of classes only have the box annotations. The generaliza-

Lproj Lpairwise
all 80 classes 60 unseen classes

AP AP50 AP75 AP AP50 AP75

24.7 44.6 24.2 19.9 38.3 18.5

X 31.8 52.5 33.2 29.7 49.3 31.0

X X 32.5 53.0 34.0 30.9 50.1 32.4

box supervised 30.7 52.2 31.1 29.6 49.7 30.4

Table 6: BoxInst for semi-supervised instance segmentation.

These models are trained with the 20 classes mask annotations

and the other 60 classes (i.e., unseen classes) are only with box

annotations.

Lproj Lpairwise
all 80 classes 20 unseen classes

AP AP50 AP75 AP AP50 AP75

32.1 51.6 33.9 25.5 45.5 25.1

X 33.1 53.8 34.3 31.6 57.4 30.0

X X 33.8 54.3 35.7 35.9 60.9 36.3

box supervised 30.7 52.2 31.1 29.6 49.7 30.4

Table 7: BoxInst for semi-supervised instance segmentation.

The models are trained with the 60 classes mask annotations and

other 20 classes (i.e., unseen classes) are only with box annota-

tions.

tion ability is evaluated with the mask AP averaged over

the group of classes without mask annotations (i.e., unseen

classes).

We first train the model with the 20 classes mask an-

notations. As shown in Table 6 (1st row), if our proposed

loss terms are not used, where the mask loss is only com-

puted for the instances with mask annotations and other in-

stances are discarded during the mask learning, the model

can only achieve 19.9% mask AP on the unseen categories.

This low performance suggests that the model is difficult to

generalize to unseen classes. If we use the Lproj term for

the 60 classes without the mask annotations during train-

ing, as shown in the table (2nd row), the performance can

be dramatically improved to 29.7%. If we further apply the

pairwise term Lpairwise, the performance can be boosted to

30.9%. Moreover, compared to the setting only using the

box annotations (last row in Table 6), the performance on

the unseen classes is also improved from 29.6% to 30.9%,

which suggests that the box-supervised model can benefit

from the partial mask annotations. Additionally, the exper-

imental results with the 60 classes masks are shown in Ta-

ble 7, and the same conclusions can be drawn.

4. Conclusions

In this work, we have proposed BoxInst that can achieve

high-quality instance segmentation with only box annota-

tions. The core idea of BoxInst is to replace the original

pixelwise mask loss with the proposed projection and pair-

wise affinity mask loss. With the proposed mask loss, we

show excellent instance segmentation performance without

using any mask annotations on COCO and Pascal VOC, sig-

nificantly improving the state-of-the-art.
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