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Abstract

The Information Bottleneck (IB) provides an information

theoretic principle for representation learning, by retaining

all information relevant for predicting label while minimiz-

ing the redundancy. Though IB principle has been applied

to a wide range of applications, its optimization remains a

challenging problem which heavily relies on the accurate

estimation of mutual information. In this paper, we present

a new strategy, Variational Self-Distillation (VSD), which

provides a scalable, flexible and analytic solution to essen-

tially fitting the mutual information but without explicitly

estimating it. Under rigorously theoretical guarantee, VSD

enables the IB to grasp the intrinsic correlation between

representation and label for supervised training. Further-

more, by extending VSD to multi-view learning, we in-

troduce two other strategies, Variational Cross-Distillation

(VCD) and Variational Mutual-Learning (VML), which sig-

nificantly improve the robustness of representation to view-

changes by eliminating view-specific and task-irrelevant in-

formation. To verify our theoretically grounded strategies,

we apply our approaches to cross-modal person Re-ID, and

conduct extensive experiments, where the superior perfor-

mance against state-of-the-art methods are demonstrated.

Our intriguing findings highlight the need to rethink the way

to estimate mutual information.

1. Introduction

The Information Bottleneck (IB) [35] has made remark-

able progress in the development of modern machine per-

ception systems such as computer vision [6], speech pro-

cessing [21], neuroscience [30] and natural language pro-

cessing [18]. It is essentially an information-theoretic prin-

ciple that transforms raw observation into a, typically lower-

dimensional, representation and this principle is naturally

extended to representation learning or understanding Deep

Neural Networks (DNNs) [31, 24, 9].

By fitting mutual information (MI), IB allows the learned

representation to preserve complex intrinsic correlation

structures over high dimensional data and contain the in-

formation relevant with downstream task [35]. However,

despite successful applications, there is a significant draw-

back in conventional IB hindering its further development

(i.e., estimation of mutual information).

In practice, mutual information is a fundamental quan-

tity for measuring the statistical dependencies [2] between

random variables, but its estimation remains a challenging

problem. To address this, traditional approaches [7, 5, 33,

16, 23, 15, 8, 14, 32, 22] mainly resort to non-parametric es-

timator under very limited problem setting where the prob-

ability distributions are known or the variables are discrete

[29, 2]. To overcome this constraint, some works [13, 6, 29]

adopt the trainable parametric neural estimators involving

reparameterization, sampling, estimation of posterior dis-

tribution [2], which, unfortunately, practically has very poor

scalability. Besides, the estimation of posterior distribution

would become intractable when the network is complicated.

Another obvious drawback of the conventional IB is that,

the optimization of IB is essentially a tradeoff between

having a concise representation and one with good pre-

dictive power, which makes it impossible to achieve both

high compression and accurate prediction [35, 1, 28, 38].

Consequently, the optimization of conventional IB becomes

tricky, and its robustness is also seriously compromised due

to the mentioned reasons.

In this paper, we propose a new strategy for the in-

formation bottleneck named as Variational Self-Distillation

(VSD), which enables us to preserve sufficient task-relevant

information while simultaneously discarding task-irrelevant

distractors. We should emphasize here that our approach

essentially fits the mutual information but without ex-

plicitly estimating it. To achieve this, we use variational

inference to provide a theoretical analysis which obtains an

analytical solution to VSD. Different from traditional meth-

ods that attempt to develop estimators for mutual informa-

tion, our method avoids all complicated designs and allows
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the network to grasp the intrinsic correlation between the

data and label with theoretical guarantee.

Furthermore, by extending VSD to multi-view learn-

ing, we propose Variational Cross-Distillation (VCD) and

Variational Mutual-Learning (VML), the strategies that im-

prove the robustness of information bottleneck to view-

changes. VCD and VML eliminate the view-specific and

task-irrelevant information without relying on any strong

prior assumptions. More importantly, we implement VSD,

VCD and VML in the form of training losses and they can

benefit from each other, boosting the performance. As a re-

sult, two key characteristics of representation learning (i.e.,

sufficiency and consistency) are kept by our approach.

To verify our theoretically grounded strategies, we ap-

ply our approaches to cross-modal person re-identification1,

a cross-modality pedestrian image matching task. Exten-

sive experiments conducted on the widely adopted bench-

mark datasets demonstrate the effectiveness, robustness and

impressive performance of our approaches against state-of-

the-arts methods. Our main contributions are summarized

as follows:

• We design a new information bottleneck strategy

(VSD) for representation learning. By using varia-

tional inference to reconstruct the objective of IB, we

can preserve sufficient label information while simul-

taneously getting rid of task-irrelevant details.

• A scalable, flexible and analytical solution to fitting

mutual information is presented through rigorous the-

oretical analysis, which fundamentally tackle the diffi-

culty of estimation of mutual information.

• We extend our approach to multi-view representation

learning, and it significantly improve the robustness

to view-changes by eliminating the view-specific and

task-irrelevant information.

2. Related Work and Preliminaries

The seminal work is from [35], which introduces the IB

principle. On this basis, [1, 6, 27] either reformulate the

training objective or extend the IB principle, remarkably fa-

cilitating its application.

In contrast to all of the above, our work is the first to pro-

vide an analytical solution to fitting the mutual information

without estimating it. The proposed VSD can better pre-

serve task-relevant information, while simultaneously get-

ting rid of task-irrelevant nuisances. Furthermore, we ex-

tend VSD to multi-view setting and propose VCD and VML

with significantly promoted robustness to view-changes.

To better illustrate, we provide a brief review of the IB

principle [35] in the context of supervised learning. Given

1We don’t explicitly distinguish multi-view and multi-modal through-

out this paper.

data observations V and labels Y , the goal of representation

learning is to obtain an encoding Z which is maximally in-

formative to Y , measured by mutual information:

I(Z;Y ) =

∫

p(z, y) log
p(z, y)

p(z)p(y)
dzdy. (1)

To encourage the encoding process to focus on the label

information, IB was proposed to enforce an upper bound

Ic to the information flow from the observations V to the

encoding Z, by maximizing the following objective:

max I(Z;Y ) s.t. I(Z;V ) ≤ Ic. (2)

Eq. (2) implies that a compressed representation can im-

prove the generalization ability by ignoring irrelevant dis-

tractors in the original input. By using a Lagrangian objec-

tive, IB allows the encoding Z to be maximally expressive

about Y while being maximally compressive about X by:

LIB = I(Z;V )− βI(Z;Y ), (3)

where β is the Lagrange multiplier. However, it has been

shown that it is impossible to achieve both objectives in Eq.

(3) practically [6, 1] due to the trade-off optimization be-

tween high compression and high mutual information.

More significantly, estimating mutual information in

high dimension imposes additional difficulties [26, 2, 29]

for optimizing IB. As a consequence, it inevitably intro-

duces irrelevant distractors and discards some predictive

cues in the encoding process. Next, we show how we de-

sign a new strategy to deal with these issues, and extend it

to multi-view representation learning.

3. Method

Let v ∈ V be an observation of input data x ∈ X ex-

tracted from an encoder E(v|x). The challenge of optimiz-

ing an information bottleneck can be formulated as finding

an extra encoding E(z|v) that preserves all label informa-

tion contained in v, while simultaneously discarding task-

irrelevant distractors. To this end, we show the key roles of

two characteristics of z, (i.e., sufficiency and consistency)

based on the information theory, and design two variational

information bottlenecks to keep both characteristics.

To be specific, we propose a Variational Self-Distillation

(VSD) approach, which allows the information bottle-

neck to preserve sufficiency of representation z, where the

amount of label information is unchanged after the encod-

ing process. In the design of VSD, we further find it can

be extended to multi-view task, and propose Variational

Cross-Distillation (VCD) and Variational Mutual-Learning

(VML) approaches based on the consistency of represen-

tations, both of which are able to eliminate the sensitivity

of view-changes and improve the generalization ability for
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multi-view learning. More importantly, the proposed VSD,

VCD and VML can benefit from each other, and essentially

fit the mutual information in the high dimension without ex-

plicitly estimating it through the theoretical analysis.

3.1. Variational Self­Distillation

An information bottleneck is used to produce represen-

tations z for keeping all predictive information w.r.t label y

while avoiding encoding task-irrelevant information. It is

also known as sufficiency of z for y, which is defined as:

I(z; y) = I(v; y), (4)

where v is an observation containing all label information.

By factorizing the mutual information between v and z, we

can identify two terms [6]:

I(v; z) = I(z; y) + I(v; z|y), (5)

where I(z; y) denotes the amount of label information

maintained in the representation z, and I(v; z|y) represents

the irrelevant information encoded in z regarding given task

[6], i.e., superfluous information. Thus sufficiency of z

for y is formulated as maximizing I(z; y) and simultane-

ously minimizing I(v; z|y). Based on the data processing

inequality I(z; y) ≤ I(v; y), we have:

I(v; z) ≤ I(v; y) + I(v; z|y). (6)

The first term in the right of Eq. (6) indicates that preserv-

ing sufficiency undergoes two sub-processes: maximizing

I(v; y), and forcing I(z; y) to approximate I(v; y).
In this view, sufficiency of z for y is re-formulated as

three sub-optimizations: maximizing I(v; y), minimizing

I(v; y)−I(z; y) and minimizing I(v; z|y). Obviously, max-

imizing the first term I(v; y) is strictly consistent with the

specific task and the last two terms are equivalent. Hence

the optimization is simplified to:

min I(v; y)− I(z; y). (7)

However, it is hard to conduct min-max game in Eq. (5),

due to the notorious difficulty in estimating mutual infor-

mation in high dimension, especially when involving latent

variable optimization. To deal with this issue, we introduce

the following theory:

Theorem 1. Minimizing Eq. (7) is equivalent to minimizing

the subtraction of conditional entropy H(y|z) and H(y|v).
That is:

min I(v; y)− I(z; y) ⇐⇒ minH(y|z)−H(y|v),

where H(y|z) := −
∫
p(z)dz

∫
p(y|z) log p(y|z)dy.

Supported by 
Theorem.1

Supported by 
Theorem.1

Figure 1: Illustration of VSD, in which E and B denote the

encoder and the information bottleneck, respectively.

More specifically, given a sufficient observation v for y,

we have following Corollary:

Corollary 1. If the KL-divergence between the predicted

distributions of a sufficient observation v and the represen-

tation z equals to 0, then z is sufficient for y as well i.e.,

DKL[Pv||Pz] = 0 =⇒ H(y|z)−H(y|v) = 0,

where Pz = p(y|z), Pv = p(y|v) represent the predicted

distributions, and DKL denotes the KL-divergence.

Detailed proof and formal assertions can be found in sup-

plementary material. As a consequence, sufficiency of z for

y could be achieved by the following objective:

LV SD = min
θ,φ

Ev∼Eθ(v|x)
[
Ez∼Eφ(z|v) [DKL[Pv‖Pz]]

]
,

(8)

where θ, φ stand for the parameters of the encoder and

information bottleneck, respectively. On the other hand,

based on Eq. (6) and Eq. (5), the minimization of I(v; y)−
I(z; y) is equivalent to reducing I(v; z|y), indicating that

Eq. (8) also enables IB to eliminate irrelevant distrac-

tors. In this perspective, our approach is essentially a self-

distillation method that purifies the task-relevant knowl-

edge. More importantly, through using the variational in-

ference, we reformulate the objective of IB, and provide

a theoretical analysis which obtains an analytical solution

to fitting mutual information in high dimension. Hence we

name our strategy as Variational Self-Distillation, i.e., VSD.

Discussion. Compared with other self-distillation meth-

ods like [46], one primary advantage of our approach is that

VSD is able to retrieve those useful but probably discarded

information while simultaneously avoiding task-irrelevant

information under theoretically guaranteed. Different from

explicitly reducing I(v; z), we iteratively perform VSD to

make the representation sufficient for the task. Ideally,

when we have I(v; y) = I(z; y), we could achieve the suf-

ficient representation with minimized superfluous informa-

tion, i.e., optimal representation.

3.2. Variational Cross­Distillation and Variational
Mutual­Learning

As more and more real-world data are collected from di-

verse sources or obtained from different feature extractors,

multi-view representation learning has gained increasing at-

tention. In this section, we show VSD could be flexibly ex-

tended to multi-view learning.
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Consider v1 and v2 as two observations of x from dif-

ferent viewpoints. Assuming that both v1 and v2 are suf-

ficient for label y, thus any representation z containing all

the information accessible from both views would also con-

tain the necessary label information. More importantly, if z

only captures the cues that are accessible from both v1 and

v2, it would eliminate the view-specific details and is robust

to view-changes [6].

Motivated by this, we define consistency w.r.t z1, z2 ob-

tained from an information bottleneck as:

Definition 1. Consistency: z1 and z2 are view-consistent

if and only if I(z1; y) = I(v1v2; y) = I(z2; y).

Intuitively, z1 and z2 are view-consistent only when they

possess equivalent amount of predictive information. Anal-

ogous to Eq. (5), we first factorize the mutual information

between the observation v1 and representation z1 to clearly

reveal the essence of consistency:

I(v1; z1) = I(v1; z1|v2)
︸ ︷︷ ︸

view-specific

+ I(z1; v2)
︸ ︷︷ ︸

consistent

. (9)

Suggested by [6], I(v1; z1|v2) represents that, the informa-

tion contained in z1 is unique to v1 and is not predictable by

observing v2, i.e., view-specific information, and I(z1; v2)
denotes the information shared by z1 and v2, which is

named as view-consistent information.

To obtain view-consistent representation with mini-

mal view-specific details, we need to jointly minimize

I(v1; z1|v2) and maximize I(z1; v2). On the one hand, to

reduce view-specific information and note that y is constant,

we can use the following equation to approximate the upper

bound of I(v1; z1|v2) (proofs could be found in supplemen-

tary material).

min
θ,φ

Ev1,v2∼Eθ(v|x)Ez1,z2∼Eφ(z|v) [DKL[Pz1‖Pz2 ]] , (10)

where Pz1 = p(y|z1) and Pz2 = p(y|z2) denote the pre-

dicted distributions. Similarly, we have the following ob-

jective to reduce I(v2; z2|v1):

min
θ,φ

Ev1,v2∼Eθ(v|x)Ez1,z2∼Eφ(z|v) [DKL[Pz2‖Pz1 ]] . (11)

By combining Eq. (10) and Eq. (11), we introduce the fol-

lowing objective to minimize the view-specific information

for both z1 and z2:

LVML = min
θ,φ

Ev1,v2∼Eθ(v|x)Ez1,z2∼Eφ(z|v) [DJS [Pz1‖Pz2 ]] ,

(12)

in which DJS represents Jensen-Shannon divergence. In

practice, Eq. (12) forces z1, z2 to learn from each other,

thus we name it variational mutual-learning.

Supported by 
Theorem.2

Supported by 
Theorem.2

Supported by 
Theorem.2

Figure 2: Illustration of LV CD and LVML, where the sub-

scripts are used to denote different views and ES , BS re-

fer to the parameter-shared encoder and information bottle-

neck.

On the other hand, by using the chain rule to subdivide

I(z1; v2) into two components [6], we have:

I(z1; v2) = I(v2; z1|y)
︸ ︷︷ ︸

superfluous

+ I(z1; y)
︸ ︷︷ ︸

predictive

. (13)

Combining with Eq. (9), we have:

I(v1; z1) = I(v1; z1|v2)
︸ ︷︷ ︸

view-specific

+ I(v2; z1|y)
︸ ︷︷ ︸

superfluous

+ I(z1; y)
︸ ︷︷ ︸

predictive

. (14)

Eq. (14) implies that the view-consistent information also

includes superfluous information. Therefore, based on the

above analysis, we give the following theorem to clarify

view-consistency:

Theorem 2. Given two different sufficient observations

v1, v2 of an input x, the corresponding representations z1
and z2 are view-consistent when the following conditions

are satisfied::

I(v1; z1|v2) + I(v2; z1|y) ≤ 0,

I(v2; z2|v1) + I(v1; z2|y) ≤ 0.

The proof of Theorem 2 can be found in supplementary

material.

According to Theorem 1 and Corollary 1, the following

objective can be introduced to promote consistency between

z1 and z2:

LV CD = min
θ,φ

Ev1,v2∼Eθ(v|x)Ez1,z2∼Eφ(z|v) [DKL[Pv2‖Pz1 ]] ,

(15)

where Pz1 = p(y|z1) and Pv2 = p(y|v2) denote the pre-

dicted distributions. Based on Theorem 1 and Corollary 1,

Eq. (15) enables the representation z1 to preserve predic-

tive cues, while simultaneously eliminating the superfluous

information contained in I(z1; v2) (vice versa for z2 and

I(z2; v1)), and is named as variational cross-distillation.

Discussion. Notice that MIB [6] is also a multi-view in-

formation bottleneck approach. However, there are three
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fundamental differences between ours and MIB: 1) our

strategy essentially fits the mutual information without es-

timating it through the variational inference. 2) our method

does not rely on the strong assumption proposed in [6] that

each view provides the same task-relevant information. In-

stead, we explore both the complementarity and consistency

of multiple views for representation learning. 3) MIB is es-

sentially an unsupervised method and hence it keeps all con-

sistent information in various views due to the lack of label

supervision. However, with the predictive information, our

method is able to discard superfluous information contained

in consistent representation, and hence show improved ro-

bustness.

3.3. Multi­Modal Person Re­ID

In this section, we show how we apply VSD, VCD and

VML to multi-modal learning (i.e., Multi-Modal Person Re-

ID). In this context, there are two kinds of images from dif-

ferent modals (i.e., infrared images xI and visible images

xV ). The essential objective of Multi-Modal Person Re-ID

is to match the target person from a gallery of images from

another modal.

In particular, we use two parallel modal-specific

branches equipped with VSD to handle the images from a

specific modal. Besides, as shown in Fig. 3, a modal-shared

branch trained with VCD and VML is deployed to produce

modal-consistent representations. To facilitate Re-ID learn-

ing, we also adopt some commonly-used strategies in the

Re-ID community. Thus the overall loss is given as:

Ltrain = LReID + β · (LV SD + LV CD + LVML). (16)

More specifically, LReID can be further divided into the

following terms,

LReID = Lcls + Lmetric + α · LDML, (17)

where Lcls, Lmetric, LDML denote the classification loss

with label smooth [34], metric constraint [39] and deep mu-

tual learning loss [47].

4. Experiments

In this section, we conduct a series of experiments to

present a comprehensive evaluation of the proposed meth-

ods. To promote the culture of reproducible research, source

codes (implemented in MindSpore) will be released later.

4.1. Experimental settings

Dataset: The proposed method is evaluated on two

benchmarks, i.e., SYSU-MM01 [41] and RegDB [25].

Specifically, SYSU-MM01 is a widely adopted benchmark

dataset for infrared-visible person re-identification. It is

collected from 6 cameras of both indoor and outdoor en-

vironments. It contains 287,628 visible images and 15,792

Figure 3: Network architecture for Multi-Modal Re-ID.

EI/S/V and BI/S/V represent the encoder (ResNet-50) and

information bottleneck (multi-layer perceptrons), respec-

tively. v and z denote the observations and representations

from encoder and information bottleneck, respectively

infrared images of 491 different persons in total, each of

which is at least captured by two cameras. RegDB is col-

lected from two aligned cameras (one visible and one in-

frared) and it totally includes 412 identities, where each

identity has 10 infrared images and 10 visible images.

Evaluation Metric: On both datasets, we follow the

most popular protocol [44, 19, 17, 37] for evaluation, where

cumulative match characteristic (CMC) and mean average

precision (mAP) are used. On SYSU-MM01, there are

two search modes, i.e., all-search mode and indoor-search

mode. For all-search mode, the gallery consists of all

RGB images (captured by CAM1, CAM2, CAM4, CAM5)

and the probe consists of all infrared images (captured by

CAM3, CAM6). For indoor-search mode, the difference is

the gallery only contains images captured from indoor scene

(excluding CAM4 and CAM5). On both search modes, we

evaluate our model under the single-shot setting [44, 19].

On RegDB, following [45], we report the average result by

randomly splitting of training and testing set 10 times.

4.2. Implementation Details

Critical Architectures. As visualized in Fig. 3, we de-

ploy three parallel branches, each of which is composed of

a ResNet50 backbone [12] and an information bottleneck.

Notice that we drop the last fully-connected layer in the

backbone and modify the stride as 1 in last block. Fol-

lowing recent multi-modal Re-ID works [19, 3, 17, 44], we

adopt the strong baseline [20] with some training tricks, i.e.,

warm up [10] (linear scheme for first 10 epochs) and label

smooth [34]. The information bottleneck is implemented

with multi-layer perceptrons of 2 hidden ReLU units of size

1,024 and 512 respectively with an output of size 2×256

that parametrizes mean and variance for the two Gaussian

posteriors for the conventional IB principle.

Training. All experiments are optimized by Adam opti-

mizer with an initial learning rate of 2.6×10−4. The learn-

ing rate decays 10 times at 200 epochs and we totally train

300 epochs. Horizontal flip and normalization are utilized

to augment the training images, where the images are re-
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Table 1: Performance of the proposed method compared with state-of-the-arts. Note that all methods are measured by CMC

and mAP on SYSU-MM01 under single-shot mode.

Settings All Search Indoor Search

Type Method Venue Rank-1 Rank-10 Rank-20 mAP Rank-1 Rank-10 Rank-20 mAP

Network Design Zero-Pad [41] ICCV’17 14.80 54.12 71.33 15.95 20.58 68.38 85.79 26.92

Metric Design TONE [43] AAAI’18 12.52 50.72 68.60 14.42 20.82 68.86 84.46 26.38

Metric Design HCML [43] AAAI’18 14.32 53.16 69.17 16.16 24.52 73.25 86.73 30.08

Metric Design BDTR [45] IJCAI’18 17.01 55.43 71.96 19.66 - - - -

Network Design cmGAN [4] IJCAI’18 26.97 67.51 80.56 31.49 31.63 77.23 89.18 42.19

Metric Design D-HSME [11] AAAI’18 20.68 32.74 77.95 23.12 - - - -

Generative D2LR [40] CVPR’19 28.9 70.6 82.4 29.2 - - - -

Metric Design MAC [42] MM’’19 33.26 79.04 90.09 36.22 36.43 62.36 71.63 37.03

Generative AlignGAN [36] ICCV’19 42.4 85.0 93.7 40.7 45.9 87.6 94.4 54.3

Generative X-modal [17] AAAI’20 49.92 89.79 95.96 50.73 - - - -

Generative JSIA-ReID [37] AAAI’20 38.1 80.7 89.9 36.9 52.9 43.8 86.2 94.2

Network Design cm-SSFT [19] CVPR’20 52.4 - - 52.1 - - - -

Network Design Hi-CMD [3] CVPR’20 34.94 77.58 - 35.94 - - - -

Network Design DDAG [44] ECCV’20 54.75 90.39 95.81 53.02 61.02 94.06 98.41 67.98

Representation ours - 60.02 94.18 98.14 58.80 66.05 96.59 99.38 72.98

Table 2: Comparison with the state-of-the-arts on RegDB

dataset under visible-thermal and thermal-visible settings.

Settings Visible to Thermal Thermal to Visible

Method Venue Rank-1 mAP Rank-1 mAP

Zero-Pad [41] ICCV’17 17.8 18.9 16.6 17.8

HCML [43] AAAI’18 24.4 20.1 21.7 22.2

BDTR [45] IJCAI’18 33.6 32.8 32.9 32.0

D-HSME [11] AAAI’18 50.8 47.0 50.2 46.2

D2LR [40] CVPR’19 43.4 44.1 - -

MAC [42] MM’’19 36.4 37.0 36.2 36.6

AlignGAN [36] ICCV’19 57.9 53.6 56.3 53.4

X-modal [17] AAAI’20 62.2 60.2 - -

JSIA-ReID [37] AAAI’20 48.5 49.3 48.1 48.9

cm-SSFT [19] CVPR’20 62.2 63.0 - -

Hi-CMD [3] CVPR’20 70.9 66.0 - -

DDAG [44] ECCV’20 69.3 63.5 68.1 61.8

ours - 73.2 71.6 71.8 70.1

sized to 256 × 128. The batch size is set to 64 for all ex-

periments, in which it contains 16 different identities, and

each identity includes 2 RGB images and 2 IR images. For

the hyper-parameters, α and β in Eq. (17) and Eq. (16) are

fixed to 8, 2 for all experiments. In order to facilitate the

comparison between the conventional IB and the proposed

methods, Jensen-Shannon IJS [13, 29, 6, 2] is introduced

in the estimation of mutual information, which has shown

better performance.

4.3. Comparison with State­of­the­art Methods

In this section, we demonstrate the effectiveness of our

approach against state-of-the-art methods. The comparison

mainly consists of three categories, i.e., multi-branch net-

work, metric and adversary learning based methods.

As shown in Tab. 1 and Tab. 2, we are able to draw

the following conclusions: 1) With recent achievements of

generative adversarial network (GAN), generative methods

[36, 37, 17, 40], have dominated this community, compared

with metric methods [45, 11, 42]. However, despite the

promising performance, their success partly attributes to so-

phisticated designs, (e.g., image/modality generation, aux-

iliary branches, local feature learning, attention block) and

therefore result in better performance. 2) Our approach sig-

nificantly outperforms all the competitors on both datasets.

More importantly, we do not require any modality genera-

tion process [40, 36, 37, 17], which implicitly enlarges the

training set. Our optimization is quite efficient since the es-

timation of mutual information are avoided. The complex-

ity comparison would be illustrated in ablation study. 3)

Our method is essentially a representation learning method,

and is most relevant to the metric methods. However, our

method is based on the information theory to extract predic-

tive information for representation learning, rather than the

distance between samples. As a result, our method comple-

ments with the metric learning and is able to further boost

their performance. To our knowledge, this is the first work

to explore the informative representation.

4.4. Ablation Study

In this subsection, we conduct ablation study to show

the effectiveness of each component in our approach. For a

fair comparison, we follow the same architecture to analyze

the influence of sufficiency and consistency for cross-modal

person Re-ID.

We first clarify various settings in this study. As shown

in Tab. 3, “ES/I/V ” denotes that whether we use model-

shared/infrared/visible branch, where we use LReID to train

each branch. “BS/I/V ” denotes that in each branch whether

we utilize the information bottleneck architecture. “CIBS”

denotes we adopt conventional IB for training. “VSD”,

“VML” and “VCD” denote our approaches. It is noteworthy

that the results reported in this table are achieved by using

observation v or representation z alone.

Main Results. As illustrated in Tab. 3, we have the

following observations:

1) Add model-specific branch and concatenate the fea-

tures could bring obvious performance improvement (see

1st-3rd row in Tab. 3), which achieves 48.82@Rank-1 and

49.95@mAP. This three-branch network can be considered

as a new strong baseline.

2) By using information bottleneck, the performance is

further boosted (see 4th-6th row in Tab. 3). With such
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Table 3: Accuracy of the representation z and observation v when using different training strategies. Note that we evaluate

the model on SYSU-MM01 under all-search single-shot mode.

Settings Accuracy of v Accuracy of z

ES EI and EV BS BI and BV CIBS VSD VCD+VML Rank-1 mAP Rank-1 mAP

1
√

- - - - - - 44.95 46.27 - -

2 -
√

- - - - - 47.25 48.31 - -

3
√ √

- - - - - 48.82 49.95 - -

4
√

-
√

- - - - 47.20 47.03 38.33 41.81

5 -
√

-
√

- - - 53.27 51.92 41.15 43.60

6
√ √ √ √

- - - 54.85 53.97 42.04 44.30

7 † √
-

√
-

√
- - 8.55 11.01 24.34 28.01

8 † -
√

-
√ √

- - 7.76 9.77 28.69 32.42

9 † √ √ √ √ √
- - 8.79 11.23 30.43 33.67

10
√

-
√

- -
√

49.22 48.74 41.48 43.02

11 -
√

-
√

-
√

- 59.62 57.99 50.11 51.24

12
√ √ √ √

-
√ √

60.02 58.80 50.62 51.55

† Some results are compared for completeness, as conventional IB does not explicitly enforce any constraints to the

observation.
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Figure 4: Evaluation of different dimension of the infor-

mation bottleneck. The evaluation is conducted on SYSU-

MM01 under all-search and single-shot mode.

a simple modification, we arrive at 54.85@Rank-1 and

53.97@mAP, which beats all state-of-the-art methods.

3) It seems that conventional IB has no advantage in pro-

moting the learning of label information (see the 7th-9th row

in Tab. 3). We conjecture it is because that by explicitly re-

ducing I(v; z), conventional IB may not distinguish predic-

tive and superfluous information and probably discard all of

them. On the other hand, estimation of mutual information

in high dimension appears to be difficult, leading to inac-

curate results, especially when involving multi-modal data

and latent variables in our setting.

4) Our approach provides remarkable improvement com-

pared with baseline method (see the 10th-12th row in Tab.

3). By learning predictive cues via the encoding process, it

allows both observation and representation to enhance their

discriminative ability. However, it is practically impossi-

ble to discard all task-irrelevant information without losing

any predictive cues, which leads to the performance gap be-

tween v and z. In practice, the proposed variational distil-

lation methods could bring about 8.58% and 5.17% incre-

ments of Rank-1 accuracy for representation z and obser-

vation v, respectively (compare the 12th with the 6th row).

Furthermore, comparing with the conventional IB (see the

7th-12th row), a dramatic accuracy boost of 20.19%@Rank-

1 and 17.88%@mAP could be observed.

Sufficiency. We also find that the performance gap be-

(a) z
V
sp (VSD) (b) z

I
sp (VSD) (c) z

V
sh

(VCD) (d) z
I
sh

(VCD)

(e) z
V
sp (CIB) (f) z

I
sp (CIB) (g) z

V
sh

(CIB) (h) z
I
sh

(CIB)

Figure 5: 2D Projection of the embedding space by using

t-SNE. The results are obtained from our method and con-

ventional IB on SYSU-MM01 test set. Different colors are

used to represent different person IDs.

tween zsp and vsp (refer to Fig. 3) is evidently reduced

when using our approach (compare 5th with 11th row in

Tab. 3). This phenomenon shows that sufficiency of the

representation could be better preserved by VSD. To ap-

proximate the minimal sufficient representation, we evalu-

ate VSD by using different dimensions of IB. As is shown

in Fig. 4, we have:

1) When the dimension increases, the accuracy of rep-

resentation first climbs to a peak, and then degrades. Ap-

parently, if the channel number is extremely reduced, z can

not preserve necessary information, while redundant chan-

nels are also prone to introduce distractors. Both of them

are easy to compromise the accuracy of z.

2) Different dimensions of z affect the accuracy of the

observation. We deduce that the encoder may be implicitly

forced to concentrate on the information contained in the

representation, and other useful cues are somewhat ignored.

3) The performance gap between Z and V decreases along

with the increase of the dimension of z. Clearly, the repre-

sentation is able to hold more useful information with more
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(a) zsh (VCD) (b) zsh (CIB)

Figure 6: 2D projection of the joint embedding spaces of

zIsh and zVsh obtained by using t-SNE on SYSU-MM01.

channels, thus the discrepancy between them is reduced.

We plot the 2D projection of zsp by using t-SNE on Fig.

5, where we compare the representations obtained from our

approach and conventional IB. As is illustrated in Fig. 5(e)

and Fig. 5(f), the embedding space is mixed in conventional

IB, such that the discriminative ability of learned model

is naturally limited. On the contrary, our model, which is

shown in Fig. 5(a) and Fig. 5(b), is able to distinguish dif-

ferent pedestrians with the proposed VSD loss, hence we

get a substantial improvement whether we use z or v.

Consistency: As illustrated in Fig. 5, we project the rep-

resentations obtained from the modal-shared branch onto

two principal components using t-SNE. Compared with

conventional IB, we make the following observations:

1) From Fig. 5(c) and Fig. 5(d), we observe that the

embedding space corresponding to zIsh and zVsh appears to

coincide with each other, indicating that most of the view-

specific information is eliminated by the proposed method.

More importantly, almost all the clusters are distinct and

concentrate around a respective centroid, which contrasts

with Fig. 5(g) and Fig. 5(h). This demonstrates the supe-

riority of our approach to the conventional IB. 2) With the

comparison between Fig. 5(g) and Fig. 5(h), we observe

that in the embedding space, images of different modals are

dramatically discrepant with each other. Such phenomenon

is not surprising since conventional IB does not explicitly

distinguish view-consistent/specific information.

To better reveal the elimination of view-specific informa-

tion, we plot the 2D projection of the joint embedding space

of zIsh and zVsh in Fig. 6, where the orange and blue cir-

cles are used to denote the representation of images of two

modals, i.e., xI and xV , respectively. As illustrated in Fig.

6(a), clusters of the same identity from different modals are

distinct and concentrate around a respective centroid, which

contrasts to Fig. 6(b). This demonstrates the effectiveness

of our approach to improve the robustness to view/modal-

changes and reduce the discrepancy across modals.

Complexity: We also compare the extra computational

and memory cost brought by our method and conventional

IB. As shown in Table 4, “Enc” denotes the encoder, i.e.,

ResNet-50. “IB” denotes the information bottleneck archi-

tecture. “MIE” denotes the mutual information estimator.

Note that the IB is essentially a MLP network with three

Method Enc IB MIE Time Params

Re-ID Baseline
√

1.0x 26.37M

Ours
√ √

1.09x 29.41M

Conventional IB
√ √ √

1.26x 35.71M

Table 4: Computational cost of different methods.

(a) LV SD (b) LV CD

Figure 7: Evaluation of the discrepancy between I(v; y) and

I(z; y), when the dimension of the representation varies.

Note the experiments are conduct on SYSU-MM01 dataset

under all-search single-shot mode.

fully-connected layers. Hence it inevitably introduces extra

parameters and computational cost. However, since we use

the variation inference to avoid the mutual information es-

timation, this cost is almost negligible (1.09x training time

and 3.04M additional parameters), compared with the heavy

mutual information estimator.

Mutual Information Fitting: Fig. 7 reveals the pro-

cess of the mutual information fitting between I(z; y) and

I(v; y). The amount of predictive information contained

in the representation gradually approximates the informa-

tion contained in observation along the training procedure.

Meanwhile, the discrepancy between I(z; y) and I(v; y)
varies with the dimension of z. Both phenomenons are con-

sistent with our previous observations.

5. Conclusion

In this work, we provide theoretical analysis and obtain

an analytical solution to fitting the mutual information

by using variational inference, which fundamentally

tackle the historical problem. On this basis, we propose

Variational Self-Distillation (VSD) and reformulate the

objective of IB, which enables us to jointly preserve

sufficiency of the representation and get rid of those

task-irrelevant distractors. Furthermore, we extend VSD to

multi-view representation learning and propose Variational

Cross-Distillation (VCD) and Variational Mutual-Learning

(VML) to produce view-consistent representations, which

are robust to view-changes and result in superior accuracy.

ACKNOWLEDGMENT. This work is supported by the

National Natural Science Foundation of China 61772524,

61876161, 61972157; National Key Research and Develop-

ment Program of China (No. 2019YFB2103103); Natural

Science Foundation of Shanghai (20ZR1417700); CAAI-

Huawei Mind-Spore Open Fund; the Research Program of

Zhejiang Lab (No.2019KD0AC02).

1529



References

[1] Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and

Kevin Murphy. Deep variational information bottleneck. In

ICLR, 2017. 1, 2

[2] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar,

Sherjil Ozair, Yoshua Bengio, R. Devon Hjelm, and Aaron C.

Courville. Mutual information neural estimation. In ICML,

2018. 1, 2, 6

[3] Seokeon Choi, Sumin Lee, Youngeun Kim, Taekyung Kim,

and Changick Kim. Hi-cmd: Hierarchical cross-modality

disentanglement for visible-infrared person re-identification.

In CVPR, 2020. 5, 6

[4] Pingyang Dai, Rongrong Ji, Haibin Wang, Qiong Wu, and

Yuyu Huang. Cross-modality person re-identification with

generative adversarial training. In IJCAI, 2018. 6

[5] Georges A. Darbellay and Igor Vajda. Estimation of the

information by an adaptive partitioning of the observation

space. In IEEE Trans. Inf. Theory, 1999. 1

[6] Marco Federici, Anjan Dutta, Patrick Forré, Nate Kush-
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