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Abstract

Real-world videos contain many complex actions with

inherent relationships between action classes. In this work,

we propose an attention-based architecture that models

these action relationships for the task of temporal action

localization in untrimmed videos. As opposed to previous

works that leverage video-level co-occurrence of actions,

we distinguish the relationships between actions that oc-

cur at the same time-step and actions that occur at dif-

ferent time-steps (i.e. those which precede or follow each

other). We define these distinct relationships as action de-

pendencies. We propose to improve action localization per-

formance by modeling these action dependencies in a novel

attention-based Multi-Label Action Dependency (MLAD)

layer. The MLAD layer consists of two branches: a Co-

occurrence Dependency Branch and a Temporal Depen-

dency Branch to model co-occurrence action dependencies

and temporal action dependencies, respectively. We ob-

serve that existing metrics used for multi-label classifica-

tion do not explicitly measure how well action dependencies

are modeled, therefore, we propose novel metrics that con-

sider both co-occurrence and temporal dependencies be-

tween action classes. Through empirical evaluation and

extensive analysis, we show improved performance over

state-of-the-art methods on multi-label action localization

benchmarks (MultiTHUMOS and Charades) in terms of f-

mAP and our proposed metric. Code is publicly available

at https://github.com/ptirupat/MLAD.

1. Introduction

Understanding and localizing actions in complex video

sequences is a heavily researched problem in computer vi-

sion. The task of action localization in the untrimmed video

involves predicting the action, or actions, present at each

time-step of the video sequence. Several works present top-

down methods, that propose temporal regions of a video

which are then classified and refined [5, 12, 38, 4, 14, 54].

Figure 1. Two action sequences from the MultiTHUMOS dataset.

The first sequence (top) shows action dependencies within a given

time-step: “Basketball Dribble” and “Run” co-occur. The bottom

sequence shows action dependencies across time-steps: “Fall” fol-

lows “Jump”. The table above each frame shows the comparison

of probability scores predicted by our model with the I3D base-

line for each action class present at that time-step. Modeling both

types of dependencies is beneficial for correctly detecting actions.

Other approaches produce bottom-up predictions for each

time-step directly from the frame-level or clip-level features

[24, 22, 26, 37, 27]. Recent bottom-up methods tend to per-

form best on the multi-label case, where multiple actions

can be present within the same time-step.

Although these works achieve strong multi-label action

localization performance, they do not explicitly model the

relationships between the different action labels, which can

be extremely useful for determining the presence or absence

of classes within a video. Previous works have used label

co-occurrence to improve performance on image classifica-

tion [44, 49, 9], and video action recognition [2, 30]. How-

ever, the later works measure the video-level co-occurrence

of actions, which does not differentiate between actions that

occur within the same time-step and across different time-

steps. This may be acceptable when the problem is video-

level single-label action recognition, but when the task is
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to temporally localize multiple actions (as is the case with

multi-label temporal action localization) the distinction be-

tween these co-occurrences allows for more fine-grained

modeling of action relationships. We define these distinct

action class relationships as action dependencies.

Videos contain two types of action dependencies: i) co-

occurrence dependencies, involving actions that occur at

the same time (this is most analogous to object class co-

occurrence within images), and ii) temporal dependencies,

involving actions that precede or follow each other. To illus-

trate, consider Figure 1 showing sample frames from pole

vault and basketball videos. An example of a co-occurrence

dependency is present in the first video snippet: the action

“run” often occurs with the action “basketball dribble” in a

basketball game, so the presence of one action gives addi-

tional prior information about the other. The second video

snippet is an example of a temporal dependency. Using

the available label information from the previous clips, one

could infer the label following “jump” to be “fall” in the fi-

nal clip even without visual or motion features correspond-

ing to the person performing the action.

In this work, we present a method that leverages both

action dependency types to improve learned feature repre-

sentations for the task of multi-label temporal action detec-

tion. We propose an attention-based layer to refine class-

level features based on these dependencies. Co-occurrence

dependencies are modeled by refining action features based

on the presence, or absence, of other actions within a time-

step; temporal dependencies are modeled by refining fea-

tures based on all the time-steps of an input video sequence.

In both cases, attention maps are generated which allows for

improved interpretability of our model. Differing from ac-

tion recognition methods that employ class co-occurrence

[30], our approach does not require a ground-truth action

co-occurrence matrix, but rather learns action dependencies

from the training data.

To better understand how our approach models ac-

tion dependencies, we present novel metrics for evaluat-

ing temporal action localization methods. Whereas pre-

vious multi-label evaluation methods, like mean average

precision (mAP) and F1-score, tend to evaluate per-frame

class performance independently, our proposed action-

conditional precision and recall metrics explicitly measure

how well pair-wise class/action dependencies are modeled

both within a time-step and through different time-steps.

Our proposed metrics are general - they can be applied to

both images and videos by measuring performance on both

co-occurrence and temporal action dependencies.

Our main contributions include the following:

• We present a novel network architecture that models

both co-occurrence action dependencies and temporal

action dependencies.

• We propose multi-label performance metrics to mea-

sure a method’s ability to model class co-occurrence

across time-steps as well as within a time-step.

• We evaluate the proposed approach on two large scale

publicly available multi-label action datasets, outper-

forming existing state-of-the-art methods.

2. Related Work

In recent years, temporal action localization research

has received a lot of interest. In general, approaches for

temporal action localization are broadly classified into top-

down, bottom-up, and end-to-end. Top-down approaches

[5, 12, 54, 4], start with candidate proposals and refine

them to achieve the final temporal boundaries. These ap-

proaches perform well, but are often slow and suffer from

over-generated proposals and rigid boundaries. Bottom-up

approaches [24, 22, 26] start with frame-level or clip-level

predictions for each action class and combine the individ-

ual scores to generate the final temporal boundaries. End-

to-end approaches [52, 23, 3] integrate proposal generation

and classification steps. These approaches are proposed to

solve temporal action localization with non-overlapping in-

stances and do not consider the relationships between action

classes.

Multi-label classification has been studied in both im-

ages [42, 15, 10, 11] and videos [46, 18, 31] In the im-

age domain, it has been shown that leveraging relation-

ships between classes help improve classifier performance.

Some works [10, 21, 20, 9, 53] use probabilistic graph-

ical models to incorporate label relationships by formu-

lating this task as a structural inference problem. Others

[42, 25, 17, 43, 49] use spatial attention with recurrent neu-

ral networks to model the label co-occurrence. In [50, 44, 1]

image features and label domain data are projected to a

common latent space to learn the label correlations.

Videos introduce additional temporal relationships be-

tween labels which are crucial for multi-label temporal ac-

tion localization. Most previous approaches [13, 7, 28, 29,

33] for multi-label temporal action localization neither con-

sider the label co-occurrence nor the temporal relationships

between the labels. Recently, some works have explic-

itly modeled temporal relationships between action labels

[35, 32]. The idea of learning a differentiable grammar to

model high-level temporal structure and relationships be-

tween multiple action classes was introduced in [32] for the

first time. In [35], a framework is presented to learn tem-

poral ordering between atomic actions by using regular ex-

pressions to express the temporal composition of atomic ac-

tions. Xu et al. [47] use graph convolutions to incorporate

semantic context into features by considering each time-

step (video snippet) as a node in a graph and learning rela-

tionships between different nodes. In contrast, our method
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learns relationships between action classes both with-in and

across time-steps using an attention mechanism. To the best

of our knowledge, no existing works explicitly model both

the co-occurrence and temporal action dependencies.

3. Approach

In this section, we first present the formulation of the

multi-label temporal action localization problem. Then, we

describe our proposed network. It consists of three main

parts: (i) class-level feature extraction, (ii) feature refine-

ment by using our MLAD layer which models both types of

action dependencies, and (iii) a classification step to trans-

form the refined features into class probabilities. The net-

work architecture is depicted in Figure 2.

Problem Formulation The problem of multi-label tem-

poral action localization involves classifying all activities

occurring throughout a video at each time-step. Formally, in

a feature sequence of length T , each time-step t = 1, ..., T
contains a ground-truth action label yt,c ∈ {0, 1}, where

c = 1, ..., C is the action class. Given a feature vector of

length F , xt ∈ R
F , for each time-step, an activity detection

network predicts class probabilities ỹt,c ∈ [0, 1].

Class-level Feature Extraction The input to our network

is a series of feature vectors xt. Since these features con-

tain global representations (either frame-level or video-clip

level, when obtained from 2D-CNN encoders and 3D-CNN

encoders, respectively), we convert them to class-level rep-

resentations. This nonlinear transformation is as follows:

ft,c = ReLU
(

WT
c xt + bc

)

, (1)

where Wc and bc are learned weights for each class c. These

H-dimensional vectors contain information pertinent to a

given action at each time-step.

3.1. MLAD Layer

We propose a layer that can use these class-level fea-

tures and model the relationships between the various action

classes across time. One approach would be to use a fully-

connected graph-based [10] or attention-based [48] network

to learn the relationships between the feature vectors. This,

however, would lead to CT×CT connections, which would

be extremely inefficient when either the number of classes,

C, or the number of time-steps, T , becomes large. Instead,

we propose an efficient attention-based Multi-label Action

Dependency (MLAD) layer which decomposes this opera-

tion into C×C and T ×T sets of connections. The MLAD

layer contains two branches - the Co-occurrence Depen-

dency Branch (CB) and Temporal Dependency Branch (TB)

- which model their corresponding action dependencies and

refine the input class-level features. Refer to Figure 3 for

the architecture of the MLAD layer.

Co-occurrence Dependency Branch (CB) The CB mod-

els the relationships between actions within a given time-

step. For each time-step, a self-attention operation [41]

is performed across all classes. At each time step, t, in-

put features generate a set of query, key, and value tensors

(Qt,Kt, Vt), each with dimension R
C×H . Then, a C × C

attention matrix, A(t), is obtained as follows:

A(t) = softmax

(

QtK
T
t√

H

)

. (2)

This attention matrix contains the relevance of each class

for the classification of another class. For example, A
(t)
ij

denotes the relevance of class j in the classification of class

i at time-step t; if these two classes co-occur within the

same time-step often, then A
(t)
ij should be large, otherwise,

it will have a value close to 0. With this attention matrix,

we obtain a refined set of class-level features that take into

account the presence (or absence) of other classes within

the time-step as follows:

f ′

t,c = FF (A(t)Vt). (3)

where, FF is the Feed-Forward block containing two

fully-connected layers along with dropout and normaliza-

tion layers.

Temporal Dependency Branch (TB) The TB models ac-

tions’ temporal dependencies. For each class, c, a new set

of query, key, and value tensors (Qc,Kc, Vc) are created

with dimension R
T×H . The self-attention operation is per-

formed across time:

A(c) = softmax

(

QcK
T
c√

H

)

. (4)

Here, A(c) is a T × T attention matrix, where A
(c)
kn denotes

the importance of time-step n in the classification of the

given class, c, at time-step k. The refined features are ob-

tained as follows:

f ′′

t,c = FF (A(c)Vc). (5)

This branch incorporates information from all time-steps,

producing more temporally coherent features and predic-

tions. When the TB is used in conjunction with the CB, the

MLAD layer can model both types of action dependencies.

Merging Branches and Classification We merge the dif-

ferent sets of refined features (f ′

t,c and f ′′

t,c) to obtain a

combined output representation. The trivial approaches for

merging would be element-wise summation or concatena-

tion followed by an MLP to reduce dimensionality. We pro-

pose to learn the amount of information which is used from
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Figure 2. Architecture of our proposed approach. Input to our model is a sequence of features (T × F ), extracted using a pre-trained

backbone. Our proposed architecture process these features in three steps. First, it learns class-specific features (T × H) for each class

C (shown in block (i)). Second, it refines these class-specific features using one or more of the attention-based Multi-Label Action

Dependency (MLAD) layers (shown in block (ii)). Third, it classifies the features using individual classification layers for each class, and

output class probabilities for each time step (T × C) (shown in block (iii)).

Figure 3. MLAD Layer. Given class-specific features (C × H)

for each time-step T , this layer refines the features by modeling

action dependencies with attention. The upper Temporal Depen-

dency Branch (TB) models dependencies across time-steps (tem-

poral dependencies) for each class and the lower Co-occurrence

Dependency Branch (CB) models dependencies between classes

within each time-step (co-occurrence dependencies).

each module; the module learns a value, α ∈ [0, 1], that is

used to merge the outputs to compute combined features,

gt,c, as follows:

gt,c = αf ′

t,c + (1− α) f ′′

t,c. (6)

We find that the use of the learned α term leads to improve-

ment in performance when compared to element-wise av-

eraging. The improved class-level feature representation,

gt,c, is either passed as an input to additional MLAD lay-

ers or used to produce a final classification output. This is

performed by the transformation

ŷt,c = σ
(

WT
c gt,c + bc

)

, (7)

where Wc ∈ R
dk×1 and bc ∈ R are learned weights and σ

is the logistic sigmoid function.

4. Action Dependency Metrics

The problem of multi-label temporal action localization

consists of predicting the action, or actions, occurring at

each time-step of a video. The standard metric for evalu-

ating temporal action localization, f-mAP, treats each time-

step as an individual sample, measures the performance of

each class independently, and averages their scores; it does

not explicitly measure if models learn the relationships be-

tween these classes. This issue is not unique to f-mAP.

Other multi-label classification metrics [19, 40, 36, 45]

do not consider the relationships between different classes

or time-steps, which makes them unsuitable to evaluate

how well action dependencies are modeled. To this end,

we propose new action localization metrics that measure a

method’s ability to model both co-occurrence dependencies

and temporal dependencies.

For a given video, k, there exist binary ground-truth la-

bels y
(k)
t,c ∈ {0, 1}, where t is the time-step and c is the

class. The network predicts class probabilities at each time-

step, on which a threshold is applied to obtain binary pre-

dicted labels, ỹ
(k)
t,c ∈ [0, 1]. Two standard metrics for multi-

label classification are per-class precision and per-class re-

call, which are defined as:

Precision(c) =
Ncorrect(c)

Npredict(c)
, Recall(c) =

Ncorrect(c)

Ngt(c)
. (8)

Here, Ncorrect(c) =
∑

k,t ✶[y
(k)
t,c = ỹ

(k)
t,c = 1] are the num-

ber of correct predictions for class c, Npredict(c) =
∑

k,t ✶[ỹ
(k)
t,c = 1] are the total number of predictions for

class c, Ngt(c) =
∑

k,t ✶[y
(k)
t,c = 1] are the total number

of time-steps containing class c, and ✶ is the indicator func-

tion. These metrics measure a model’s performance on indi-
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vidual classes, but they do not take into account the relation-

ships and dependencies between these classes. We propose

action-conditional precision and recall to solve this issue.

We first deal with the co-occurrence relationship, where

two actions occur within the same time-step. For an action

class ci, we measure its precision and recall when another

action, cj , is present within the same time-step. The action-

conditional precision and recall of ci, given cj , are

Precision(ci|cj) =
Ncorrect(ci|cj)
Npredict(ci|cj)

, and

Recall(ci|cj) =
Ncorrect(ci|cj)
Ngt(ci|cj)

. (9)

Here, the components are defined as

Ncorrect(ci|cj) =
∑

k,t

✶[y
(k)
t,ci

= ỹ
(k)
t,ci

= 1]✶[y
(k)
t,cj

= 1],

Npredict(ci|cj) =
∑

k,t

✶[ỹ
(k)
t,ci

= 1]✶[y
(k)
t,cj

= 1], and

Ngt(ci|cj) =
∑

k,t

✶[y
(k)
t,ci

= 1]✶[y
(k)
t,cj

= 1]. (10)

These metrics, measure the precision and recall of an ac-

tion class ci when cj is present within the given time-step.

Note that these metrics are not symmetric, and it may be

the case that Precision(ci|cj) 6= Precision(cj |ci) and

Recall(ci|cj) 6= Recall(cj |ci).
These metrics measure co-occurrence within a time-step.

We extend this to measure temporal dependencies between

different actions, which follow each other within some tem-

poral window τ . We present metrics, which measure the

precision and recall of action ci, given that action cj was

present within the last τ time-steps and cj is not present

within the current time-step (this ensures that it measures

only temporal dependencies and not co-occurrence depen-

dencies). At time-step t, this holds when the following con-

dition is true:

y
(k)
t,cj

= 0 ∧ ∃y(k)t∗,cj
= 1, t∗ ∈ [t− τ, t). (11)

Therefore, the action-conditional precision and recall, de-

noted Precision(ci|cj , τ) and Recall(ci|cj , τ), are com-

puted with the following components:

Ncorrect(ci|cj , τ) =
∑

k,t

✶[y
(k)
t,ci

= ỹ
(k)
t,ci

= 1]✶[χ],

Npredict(ci|cj , τ) =
∑

k,t

✶[ỹ
(k)
t,ci

= 1]✶[χ], and

Ngt(ci|cj , τ) =
∑

k,t

✶[y
(k)
t,ci

= 1]✶[χ]. (12)

Here, χ is the condition in equation 11. For ease

of notation, we use τ = 0 to denote the action-

conditional metrics within a time-step (equation 9), such

that Precision(ci|cj , τ = 0) = Precision(cj |ci) and

Recall(ci|cj , τ = 0) = Recall(cj |ci).
Our proposed action-conditional metrics can be used to

measure the co-occurrence dependencies and temporal de-

pendencies between any two actions. Since some actions

never co-occur or follow each other, the overall metric is

computed by averaging all action pairs (ci, cj), i 6= j, such

that Ngt(ci|cj , τ) > 0. In addition, more complex per-

formance metrics like F1-score (the harmonic mean be-

tween precision and recall) and mAP (the area under the

precision-recall curve) can also be computed using our

action-conditional precision and recall metrics.

5. Experimental Evaluations

5.1. Experimental Setup

Datasets We conduct experiments on two widely used

multi-label action localization datasets: MultiTHUMOS

[51] and Charades [39]. The MultiTHUMOS dataset is

an extended version of THUMOS’14 [16] dataset, contain-

ing dense, multi-label frame-level action annotations for 65

classes across the 413 sports videos from YouTube. We use

the standard train/test split with 200 videos for training and

213 for testing. MultiTHUMOS contains up to 25 action

labels for each video, with an average of 10.5 activity in-

stances per video and 1.5 labels per frame. This is in con-

trast to other activity detection datasets such as ActivityNet

[6] and HACS [55], which only have one activity per time-

step. Charades[39] is a large dataset with 9848 videos of

daily indoor activities, collected through Amazon Mechan-

ical Turk. The dataset consists of 66,500 temporal annota-

tions for 157 action classes. Contrary to MultiTHUMOS,

the activities tend to be performed in the home. Each video

in the dataset contains an average of 6.8 activity instances.

Implementation Details In our experiments we use RGB

and Optical Flow features extracted from two-stream I3D

backbone pre-trained on Kinetics-400 dataset unless other-

wise stated. A 1024 dimensional feature vector is extracted

per stream from the final convolutional layer of an I3D [8]

network at 3 feature vectors per second from 24fps videos.

Each feature vector corresponds to 8 frames or 0.33 sec-

onds. The input sequence length is set to T = 128 on Mul-

tiTHUMOS, and T = 64 on Charades. For both datasets,

our network uses L = 5 MLAD layers (See section 5.3 for

discussion on other values of T and L). The dimension of

the class-level feature vector, H , is set to 128 in all our ex-

periments. During training, we classify and compute loss

on both the initial class-level features and the features from

the final MLAD layer We train our models using Adam op-

timizer with an initial learning rate of 1e-4. All our models

are trained on a single 32GB NVIDIA Tesla V100 GPU and

implemented in PyTorch deep-learning framework.
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Method MultiTHUMOS Charades

I3D Baseline* [33] 29.7 17.2

CF Baseline 42.6 14.8

Super-events* [34] 36.4 19.4

TGMs* [33] 44.3 21.5

TGMs + SE* [33] 46.4 22.3

TGMs + DG* [32] 48.2 22.9

Our Approach 51.5 23.7

Table 1. Comparison of frame-level mAP score of our approach

with previous works on MultiTHUMOS and Charades datasets us-

ing features from a pre-trained two-stream I3D model. Results

indicated with * are from [32].

Baselines We compare our method with several baselines.

The first is a linear layer which classifies individual time-

steps based on the features extracted from a pre-trained I3D

network (denoted I3D Baseline). A second baseline which

extracts class-level features (as in equation 1) and classifies

these features (as in equation 7) is also used (denoted CF

Baseline). In addition, we compare with recent multi-label

action localization methods Super-events (SE) [34], Tempo-

ral Gaussian Mixture (TGM) Layers [33], TGMs + SE [33],

and TGMs + Differentiable Grammars (DG) [32].

Metrics To compare with previous temporal action lo-

calization works, we use the standard evaluation protocol

of computing per-frame mean average precision (f-mAP).

We also present results on other multi-label metrics - Ham-

ming Loss (HL), Zero One Loss (ZL), Ranking Loss (RL),

Coverage Loss (CL), Jaccard Score (JS), and Label Rank-

ing Average Precision (LRAP) - as well as our proposed

action-conditional metrics: precision (PAC), recall (RAC),

f1-score (F1AC), and mean average precision (mAPAC).

5.2. Results

Our results on the MultiTHUMOS and Charades datasets

are presented in Table 1. Our approach achieves 51.5% f-

mAP and 23.7% f-mAP on MultiTHUMOS and Charades

respectively. The effectiveness of our MLAD layer is best

illustrated by the comparison with CF Baseline: with only 5

MLAD layers, the class-based features are refined, leading

to a 9% improvement in f-mAP for both datasets.

Comparison with state-of-the-art On MultiTHUMOS,

our model outperforms the current state-of-the-art model,

TGM + Differentiable Grammars, by 3.3%; on Charades,

we achieve a 0.8% improvement in f-mAP. Although the

absolute improvement is not as large as MultiTHUMOS

(since it is a more difficult dataset with more action classes),

the improvement is comparable to previous performance

advancements on the dataset (e.g. 0.6% improvement for

TGM + DG over TGMs + SE).

Action-Conditional Metric Results We present results

using other existing multi-label metrics (HL, ZL, RL, CL,

JS, LRAP) alongside our proposed metrics (conditional pre-

cision, recall, f1-score, and mAP) on the MultiTHUMOS

dataset in Table 2. For the time-conditional metrics, we se-

lect τ = 20; results with other values of τ are presented in

the Supplementary Materials. Our method achieves higher

performance on all action-conditional metrics since it mod-

els different action dependencies within a video, both within

a time-step (τ = 0) and throughout time (τ > 0). Of the

1322 action pairs that co-occur within a time-step in the test

set, our method improves the average precision of 961 pairs

when compared to the I3D baseline.

By analyzing specific action pairs, one can better under-

stand how various approaches model the different action de-

pendencies. Here, we examine the dependencies described

in Figure 1. To evaluate how well the method models the co-

occurrence dependency between actions “Basketball Drib-

ble” and “Run”, one can compute the average precision over

that pair: AP (ci = BasketballDribble|cj = Run, τ = 0).
The TGM approach achieves a minor improvement over the

I3D baseline (47.26% vs 45.60%), while our approach bet-

ter models this relationship with an average precision of

58.85%. A similar improvement is seen for temporal depen-

dencies. To evaluate the relationship “Fall follows Jump”,

we compute AP (ci = Fall|cj = Jump, τ = 20), and find

that our method achieves a score of 78.12% compared to

the TGM’s 72.27%.

5.3. Ablations

We evaluate the various design decisions for our method

as well as its components.

Number of MLAD Layers Since our proposed MLAD

layer can be stacked to continually refine input features,

we test how performance changes as the number of MLAD

layers increases. We show in Table 3 that increasing the

number of layers tends to improve results on both Multi-

THUMOS and Charades. However, this improvement has

diminishing gains as the depth increases: the change from 3

to 5 layers leads to a smaller improvement (1.22% on Mul-

tiTHUMOS) than the change from 1 to 3 layers (1.85%).

An increase to L = 7 leads to no noticeable improvement,

therefore all reported results have a depth of L = 5.

Effect of Feature Sequence Length Since our approach

performs computations on a feature sequence of length T ,

we evaluate how the sequence length affects our perfor-

mance. We present two experimental setups: 1) both the

training and evaluation lengths are fixed, and 2) the training

length is varied, T ∈ {i× 16 | i ∈ {1, ..., 8}}, with a fixed

evaluation length. We present the results of both in 4. We

find that when the training length is fixed, the performance

peaks when T = 96 at 51.31% mAP. However, when the

training length is varied in experiment setup 2, we achieve

the best performance with T = 128. This varying of se-
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Existing Metrics Action-Conditional Metrics ↑
HL ↓ ZL ↓ RL ↓ CE ↓ JS ↑ LRAP ↑ τ = 0 τ = 20

PAC RAC F1AC mAPAC PAC RAC F1AC mAPAC

I3D 0.018 0.673 0.029 4.409 0.260 0.770 33.63 15.23 18.65 32.58 37.88 18.01 21.96 35.53

CF 0.017 0.646 0.027 4.242 0.315 0.787 36.73 21.39 23.71 35.00 41.95 23.91 27.22 38.42

TGM [33] 0.017 0.642 0.022 3.798 0.297 0.800 34.59 17.21 20.14 36.90 39.27 20.13 23.86 40.18

Our 0.017 0.635 0.017 3.276 0.373 0.816 39.22 28.33 29.37 40.15 42.89 30.27 32.18 43.76

Table 2. Evaluation of our approach using existing multi-label classification metrics and our proposed action dependency metrics on

MultiTHUMOS dataset. HL - Hamming Loss, ZL - Zero One Loss, RL - Ranking Loss, CL - Coverage Loss, JS - Jaccard Score, LRAP

- Label Ranking Average Precision, PAC - Action-Conditional Precision, RAC - Action-Conditional Recall, F1AC - Action-Conditional

F1-Score, mAPAC - Action-Conditional Mean Average Precision.

MultiTHUMOS Charades

L = 1 48.55 20.48

L = 3 50.30 23.15

L = 5 51.52 23.74

Table 3. Ablation on the number of MLAD layers, L. As the num-

ber of layers increases, we observe an increase in performance

with diminishing gain. f-mAP is the evaluation metric used.

Eval. Length Fixed Tr. Length Var. Tr. Length

T = 32 49.90 50.20

T = 64 51.14 51.01

T = 96 51.31 51.31

T = 128 50.59 51.52

Table 4. Ablation for fixed and variable length training sequences,

with fixed evaluation lengths. f-mAP is the evaluation metric used.

MultiTHUMOS Charades

No CB, No TB 42.60 14.80

Only CB 44.98 20.3

Only TB 48.03 21.1

TB + CB 51.52 23.5

Table 5. Ablation on the two branches (CB and TB) of the MLAD

layer. f-mAP is the metric reported here.

quence length during training can be seen as a form of data

augmentation, leading to improved generalization.

Effect of CB and TB Since both branches of the MLAD

layer are meant to model the different action dependencies

within a video, we run an ablation by removing each of

these branches and present the results in Table 5. We find

that each branch leads to improvement over classifying with

the original class-level features, but that best performance is

achieved when both are used.

6. Discussion and Analysis

In this section, we analyze our trained model’s predic-

tions and the learned attention maps from MLAD layers.

Localizaton Analysis In Figure 4, we visualize the pre-

dictions of our trained model on a sample video sequence

from the MultiTHUMOS test set. When compared with

the outputs from the TGM [33] network and the I3D base-

line, our proposed method generates localizations that bet-

ter overlap with the ground-truth annotations. This is most

notable for the “Fall” action; the MLAD layers allow our

Figure 4. Visualization of model predictions for different time

steps (x-axis) for various actions (y-axis) from a MultiTHUMOS

test video. We compare our model (red), with TGM [33] (blue),

I3D baseline (green), and the ground-truth (black). The perfor-

mance of our model in detecting temporally dependent actions

“Jump” and “Fall” is higher than the baselines; between time-steps

00:30 to 02:00 our method detects all instances of “Fall” while

TGM and the I3D baseline have no predictions for this class.

method to model the temporal dependencies between “Fall”

and “Jump”, leading to the improved localization predic-

tions. Also, our model detects every instance of “High-

Jump” which co-occurs with other actions “Run”, “Jump”,

and “Fall”. In general, we find that our approach leads

to a large increase in recall across most classes: of the

65 actions in the MultiTHUMOS dataset, our network im-

proves recall for 52 classes, with an average improvement

of 13.17%. Additional analysis of the results, including per-

class scores, can be found in the Supplementary Materials.

Failure Cases When compared to previous approaches,

our network tends to under-perform on the “Walk” and

“Sit” actions on the MultiTHUMOS dataset. We find that

these actions tend to occur in the background (e.g. by a

referee or audience members at a sporting event) and fre-

quently co-occur with many different foreground actions.

Since these background actions are not directly dependent

on those in the foreground, our method attempts to model

relationships that do not exist, leading to poor performance.

This suggests that the modeling of individual actors would

be greatly beneficial for learning the various action depen-

dencies within a video. We believe that this would be a

promising direction for future work.
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Figure 5. Visualization of 10×10 subsets of the CB attention maps

from MLAD layers 1, 3, and 5 obtained by averaging the maps

over time-steps where action “Throw Discus” (top) and “Clean

and Jerk” (bottom) are present. Columns corresponding to classes

that are related to the main action (those in green) tend to be active,

whereas unrelated classes (in red) tend to have low activation.

Figure 6. Visualization of the T × T (T = 128) TB attention maps

from MLAD layers 1, 3 and 5 on a sample sequence for the action

“Close Up Talk To Camera”. The checker-board pattern shows

that time-steps where the action is present (highlighted in green)

tend to focus on other time-steps where it is present; and time-steps

where the action is absent (in orange) tend to focus on other time-

steps where it is absent. We also find that various layers model

different temporal regions (e.g. layer 5 models the boundaries of

the action for class “Close Up Talk To Camera”).

Interpretability of MLAD Layers One advantage of our

approach over previous temporal action localization meth-

ods is that the network architecture (specifically the MLAD

layers) allows for more interpretable results. Since the

MLAD Layers consist of two attention-based branches -

the Co-occurrence Dependency Branch (CB) and the Tem-

poral Dependency Branch (TB) - we can analyze their at-

tention maps to better understand how the different action

dependencies are modeled. These analyses are done on the

MultiTHUMOS dataset where there are 65 action classes

(C = 65) and a sequence length of 128 (T = 128) is used.

We first analyze attention maps in the CB. Figure 5 con-

tains 10× 10 subsets of the C ×C attention maps from dif-

ferent MLAD layers, which are obtained by averaging over

all time-steps where a specific action is present (“Throw

Discus” on the top and “Clean and Jerk” on the bottom). We

find that this model successfully models the co-occurrence

dependencies since the actions which are related to the

present action (e.g. “Throw”, “Discus Wind-Up”, and “Dis-

cuss Release” often co-occur with “Throw Discus”) tend to

be active, whereas unrelated actions (e.g. basketball and

volleyball actions) tend to have low activation. We also

find that the CB focuses on actions, like “Run” and “Jump”,

which are most prevalent in the training set1 - this is likely

because these actions often co-occur with many different

actions, so their presence (or absence) is important in deter-

mining the existence of other less common actions.

Next, we present the attention maps from the TB in Fig-

ure 6. We visualize the T × T maps for the class “Close

Up Talk To Camera” from a sample sequence. A noticeable

checker-board pattern is present: Time-steps, where the ac-

tion is present, tend to focus on other time-steps where it is

present, while time-steps, where the action is absent, tend

to focus on other time-steps where it is absent. This behav-

ior is common across all actions. Furthermore, we find that

different MLAD layers attend to different parts of an action;

for example, in layer 5 the attention map is active at the ac-

tion boundaries for the “Close Up Talk To Camera” action.

We provide attention maps for all MLAD layers, as well as

more examples, in the supplement.

7. Conclusion

In this work, we propose an attention-based network ar-
chitecture to learn action dependencies in videos, for solv-
ing the multi-label temporal action localization task. Our
proposed MLAD layer consisting of two branches: The co-
occurrence Dependency Branch and the Temporal Depen-
dency Branch, which use attention to model dependencies
between actions that occur within the same time-step, and
those actions which precede/follow each other, respectively.
As the existing evaluation metrics for multi-label temporal
localization do not explicitly consider action dependencies,
we propose a novel evaluation metric. Our method out-
performs the current state-of-the-art on existing multi-label
classification metrics as well as our proposed metric.
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