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Figure 1: For a collection of satellite and street images, our method synthesizes the street view for each satellite input (right).

It also simultaneously determines the geographic location of a query street image by matching it with the closest satellite

image in the database (left→right). This is done in one single architecture which allows for end-to-end training.

Abstract

The goal of cross-view image based geo-localization is

to determine the location of a given street view image by

matching it against a collection of geo-tagged satellite im-

ages. This task is notoriously challenging due to the drastic

viewpoint and appearance differences between the two do-

mains. We show that we can address this discrepancy ex-

plicitly by learning to synthesize realistic street views from

satellite inputs. Following this observation, we propose a

novel multi-task architecture in which image synthesis and

retrieval are considered jointly. The rationale behind this

is that we can bias our network to learn latent feature rep-

resentations that are useful for retrieval if we utilize them

to generate images across the two input domains. To the

best of our knowledge, ours is the first approach that cre-

ates realistic street views from satellite images and local-

izes the corresponding query street-view simultaneously in

an end-to-end manner. In our experiments, we obtain state-

of-the-art performance on the CVUSA and CVACT bench-

marks. Finally, we show compelling qualitative results for

satellite-to-street view synthesis.

1. Introduction

Estimating the geographic location of an image is a

fundamental problem in computer vision with applications

in autonomous driving, robotics, and augmented reality.

Originally, the problem was cast as an image retrieval

task [27, 9, 37, 6, 2, 31, 38, 26], where the goal is to de-

termine the geographic location of a query street view im-

age by comparing it against a database of GPS-tagged street

images. The main limitation of this approach is that, even

though there are large databases available for this type of

imagery, the coverage varies a lot between different regions

of the world, and it is generally sparse in rural areas.

Satellite imagery, on the other hand, is broadly available

for most parts of the world with services like Google maps.

This encouraged researchers to focus on cross-view image-

based geo-localization [36, 16, 33, 17, 28, 4, 30, 29] as a

more general and inclusive alternative. The overall idea is to

predict the latitude and longitude of a street-level image by

matching it against a GPS-tagged satellite database. Even

though this approach helps to cover vast parts of the world,

the significant domain gap between a pair of street view and

top-view satellite images, shown in Figure 1, makes cross-

view image based geo-localization extremely challenging.

For instance, the appearance of the two images can vary

significantly as they are typically taken at different times

and with different cameras, leading to illumination changes.

The biggest challenge, however, comes from the dramat-

ically different viewpoints of street and satellite images –

even for human eyes, it is far from obvious that two images

show the same location. Satellite images cover a broader

area in comparison to the ego-centric viewpoint of the street

images. On the other hand, there are a lot of additional fea-
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tures in street view images, like facades, that are not visible

in the top-view satellite images which would otherwise be

extremely useful for precise location retrieval.

In order to alleviate the difficulty of learning cross-view

features, [28, 29] use a simple polar coordinate transfor-

mation as a preprocessing step for image retrieval. In-

tuitively, this mimics the real viewpoint transformation

from the overhead view to the ground-view. Nevertheless,

there is still a significant appearance gap between polar-

transformed and real street images. The two views do not

overlap perfectly, which limits the retrieval performance.

In the last few years, Generative Adversarial Networks

(GANs) [8] have proven to be a powerful tool for gener-

ating realistic looking images. Recent works [22, 23, 43]

applied them for cross-view image synthesis between aerial

and ground-level images but they do not evaluate their ef-

fectiveness for the geo-localization task. [24] is the first to

use pre-trained synthesized images [22] to train a retrieval

network for geo-localization. However, this is done in two

stages and therefore does not allow for end-to-end training.

They obtained less accurate retrieval results than methods

based on polar transformations [28, 29]. This suggests that,

while GANs create images that look more realistic, polar-

transformation is more suitable to map the content of the

images across the two domains.

In this work, our goal is to address the drastic viewpoint

difference of the two domains by synthesizing realistic-

looking and content-preserving street images from their

satellite counterparts for geo-localization. To that end,

we integrate a cross-view synthesis module and a geo-

localization branch in a single architecture. The main in-

sight here is that these two network components mutu-

ally reinforce each other: Learning to generate street im-

ages from satellite inputs naturally helps the image retrieval

branch, since our network learns to extract local features

that are useful across the two input domains. Vice versa, the

retrieval branch incentivizes our network to create realistic

street views that replicate the content of a given satellite

image. Additionally, our network uses polar transformed

satellite images as a starting point (i.e. as an input to the

GAN). This makes the image generation easier, since the

spatial layout of the polar transformed image and the street

view is approximately the same.

Contribution We propose a novel geo-localization

method that is trained jointly for the multi-task setup of

both synthesizing ground images from satellite images and

retrieving cross-view image matches. We devise a single

network for both of these tasks which can be trained in

an end-to-end manner. Our method shows strong empiri-

cal results, both in terms of the retrieval accuracy and syn-

thesis quality. For geo-localization, we obtain state-of-the-

art performance on standard large-scale cross-view retrieval

benchmarks. Moreover, our pipeline generates highly re-

alistic street views that strongly resemble real, panoramic

street images. Remarkably, our method outperforms exist-

ing cross-view synthesis approaches that use semantic la-

bels as supervision during training.

2. Related work

The main challenge of cross-view image based geo-

localization is the drastic appearance and viewpoint differ-

ences between satellite and street view image pairs. For our

discussion of existing work, we distinguish between meth-

ods that directly extract viewpoint invariant features on the

input images and methods that apply an explicit viewpoint

transformation to the inputs.

Domain-invariant features A central question in cross-

view image based geo-localization is how to extract features

that are invariant to the appearance gap between satellite

and street view images. Early works [15, 21, 5, 3] built

hand-crafted pipelines where extracted features have an ex-

plicit semantic interpretation, like detecting buildings.

Following the success of deep learning for several

computer vision tasks, new approaches successfully ap-

plied deep convolutional neural networks (CNN) to learn

feature representations for cross-view image based geo-

localization. The first approaches in this line of work

were based on the AlexNet [13] model pretrained on Im-

ageNet [7] and the Places [42] dataset. Originally, the pre-

trained weights were used directly to match image pairs

without any additional training [35]. Further improvements

were proposed in [36], which refined the features of the

satellite images to make them more coherent with the pre-

trained descriptors on the street level. [16] utilized a

siamese network to learn features for both street view and

45° aerial images with a contrastive loss. In subsequent

work, [33] explored several CNN architectures and con-

cluded that a triplet CNN trained with a soft-margin triplet

loss is most suitable to extract deep features from cross-

view image pairs.

Most of these approaches used a standard fully con-

nected layer to combine local features into a global fea-

ture representation. In contrast to that, [11] embedded a

learnable NETVLAD [1] layer to aggregate local CNN fea-

tures. [17] showed that orientation information, in the form

of hand-crafted UV maps, helps to convey the approximate

viewpoint difference to the network during training. Re-

cently, [4] applied both spatial and channel-wise attention

to the feature maps and trained them with a hard exemplar

reweighting triplet loss.

Despite the abundant progress in improving the architec-

ture and losses for learning cross-view feature representa-

tions, trying to overcome the domain gap purely via feature

learning remains a challenging open problem.
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Viewpoint transformation Instead of focusing merely

on the feature representation, recent approaches trans-

formed the input images to explicitly address the viewpoint

discrepancy between satellite and street view images.

The first among these approaches [39] synthesized

street-level information from top-view satellite inputs. In

particular, they learned to map semantic labels from the

satellite view to the ground view and use them to create

street view information. Similarly, [22] applied a condi-

tional GAN that creates ground images from the satellite

view and vice versa. [18] proposed to generate street views

from satellite images by utilizing depth maps and semantic

labels. Even though all of these approaches generate novel

viewpoints between satellite and street observations, they

do not explicitly apply it to the geo-localization problem.

A key formalism towards closing the domain gap be-

tween top-view and ground-level images was proposed by

[28]. The main insight here is that the viewpoint transfor-

mation can be approximated with a simple change of co-

ordinates – in particular, a polar coordinate transformation.

This approximately preserves the content of the satellite im-

ages, but the resulting images are far from realistic street

views. Using the transformed images for retrieval, [28] fur-

ther proposed to learn spatial attention maps to aggregate

the local CNN features into global image descriptors. On

top of the polar transformation, [29] trained a siamese net-

work with a dynamic matching module to learn discrimina-

tive feature representations along the horizontal direction.

To that end, features from the ground view are shifted such

that they correlate with the polar transformed images.

More realistic street-view images can be generated with

GANs [22] which was later used as an additional input

to train a retrieval network [24]. While the obtained im-

ages look realistic, this approach lacks a strong incentive

for the image generation to preserve the content of the in-

put images, which negatively impacts the retrieval perfor-

mance. Consequently, most existing cross-view synthesis

approaches require semantic maps for a sufficient preserva-

tion of content [22, 39, 18].

In this paper, we take a different approach. We show that

we do not need semantic maps to obtain realistic-looking

and content-preserving street-from-satellite images. We ob-

serve that existing works treat the tasks of image synthe-

sis and retrieval separately, even though the synergies are

clear. We show that our proposed multi-task training of im-

age synthesis and retrieval in an end-to-end manner leads

to state-of-the-art results, both in terms of geo-localization

and cross-view image generation.

3. Method

In this section, we describe our proposed multi-task ap-

proach to geo-localization, see Figure 2 for an overview.

The main idea is to jointly address the cross-view image

retrieval and satellite-to-street view synthesis in a single

framework. Specifically, we project a given pair of satel-

lite and street images into their latent feature space and use

those features simultaneously for both tasks. On one hand,

the retrieval branch makes sure that the content of the gen-

erated images is true to the real scene depicted. At the same

time, the image synthesis biases our model to learn features

that are consistent across the two input domains which, in

turn, benefits the localization.

Initially, we apply a polar transformation to the satel-

lite inputs [29, 28], which maps their content to an ap-

proximate street view, see Section 3.1. We then synthesize

a realistic street view from the polar-transformed images,

see Section 3.2. At the same time, the network learns to set

satellite-street pairs in correspondence in the image retrieval

branch, which we outline in Section 3.3. Finally, we provide

details on the learning procedure in Section 3.4. Also, see

our supplementary material for more technical implementa-

tion details.

3.1. Polar transformation

As shown in earlier work [28, 29], we can partially

bridge the domain gap of our input pairs with a simple polar

coordinate transformation of the top-view satellite inputs:
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Here, (xs
i , y

s
i ) and (xps

i , y
ps
i ) are pixel coordinates of the

satellite and polar transformed images, respectively. The di-

mensions are specified by Ws ×Hs and Wps ×Hps. In this

formulation, circular lines in the top-view satellite images

become horizontal lines in the ground view. Vice-versa,

radial lines correspond to vertical lines in the new set of

coordinates. In particular, the north-line, which is a verti-

cal line originating from the center of the satellite image,

corresponds to the vertical line at
Wps

2 in the transformed

image.

Overall, this transformation produces image pairs that

respect the content of the scene, i.e., they have roughly the

same arrangement of objects in the scene. However, that

alone is not sufficient to completely close the domain gap

between the two views: The overlap is typically not per-

fect and a lot of features, like, e.g., the sky as seen from the

ground-view, can simply not be recovered in that manner.

Consequently, in the next step, we convert the polar trans-

formed images to street images using a generative model.

3.2. Generator and discriminator networks

Generative Adversarial Networks (GANs) [8] are nowa-

days broadly used for image synthesis tasks in computer
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Figure 2: An overview of our network. We convert the pixel coordinates of the top-view satellite image Is to Ips. Then our

generative network G synthesizes the street image G(Ips). In the same forward pass, the network feeds the projected satellite

features GE(Ips) and the corresponding ground image Ig to the retrieval branch. Network RE extracts the local features

from the real street view analogous to GE . SA is a spatial-aware attention module that aggregates the extracted local features

into global image descriptors. LcGAN , LL1
, Lret are the loss functions that we used for learning, see Section 3.4.

vision. The main appeal of this class of architectures is that

they are able to generate highly realistic images. This is

typically done via adversarial training of two opposing net-

works, the generator G and the discriminator D. We follow

the lines of recent conditional GAN method [12] since our

goal is to synthesize realistic street views that, at the same

time, replicate the content from a reference satellite image.

The first component of our model is the generator G

which takes a polar-transformed satellite image Ips as an

input and translates it into a photo-realistic street panorama

G(Ips). The polar-coordinate representation, in this con-

text, is a highly useful preprocessing step since the general

outline of the transformed image already resembles the ac-

tual street view. This takes some of the burden of bridg-

ing the satellite-street domain gap from the generator. The

generated images G(Ips), as well as the ground-truth street

views Ig, are then fed to the discriminator D which tries

to determine whether the respective images are real or fake.

The feedback from this discriminator in turn incentivizes

the generator to create images that are indistinguishable

from real street views.

In the remainder of this section, we briefly outline the

architecture of the two network components G and D. For

further details, we refer the interested reader to our supple-

mentary material.

Generator Our generator network G is designed as

a U-Net [25] architecture, which consists of residual

blocks [10]. The first few downsampling layers, together

with the network bottleneck, are called the image encoder

GE . Specifically, GE consists of 3 residual downsampling

blocks that reduce the spatial size by a factor of 4 each. On

this reduced resolution, the bottleneck layers further refine

the latent features with 6 residual blocks. In the remain-

der of the generator G \ GE we use 3 residual upsampling

blocks to obtain a synthesized street-level image G(Ips)
with the same resolution as the polar-transformed input im-

age Ips. Between all downsampling and upsampling blocks

we use skip connections as a standard trick to improve the

network’s convergence. Furthermore, we use instance nor-

malization [32] after each residual block and spectral nor-

malization [20] after each convolution layer.

Discriminator We construct the discriminator D as a

PatchGAN [12, 14] classifier. For a given Hps×Wps street-

view image, the discriminator D downscales the spatial size

to smaller patches and classifies each patch as either real or

fake. The patch-wise strategy is particularly beneficial for

synthesizing street view images, which typically consist of

recurring patterns of streets, trees, and buildings. Since the

global coherency is secondary in this context, the classifier

can place a higher emphasis on fine-scale details.

3.3. Retrieval network

Having defined our image synthesis module, we now de-

scribe our retrieval branch R. The goal is to localize a given

query street image Ig by matching it against a database

of satellite images. R consists of two parts: An encoder

block RE for Ig and a spatial attention module SA that

converts obtained local features of street and satellite im-
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ages into global descriptors. For RE , we use a modified

ResNet34 [10] backbone which extracts local features for

the street-view input. We do not, however, compute an

analogous latent encoding of the satellite inputs Ips here.

Instead, we reuse the features from the generator encoder

GE(Ips).
This is the core idea of our multi-task setup: By using the

learned features GE(Ips) for both the synthesis and retrieval

tasks, we allow these two aspects of the learning procedure

to interact and reinforce each other. The retrieval part by

itself is limited to detect and identify similar objects. The

learned features from the image synthesis task, on the other

hand, provide an explicit notion of domain transfer, since

we learn to translate images across the two domains. In

turn, the retrieval network compels the generator branch to

learn features that are eventually useful for image matching

– this yields realistic generated images that also faithfully

depict the content of the scene.

Spatial-aware feature aggregation The generator and

retrieval feature encoders GE and RE learn local feature

representations on both the polar-transformed satellite and

the street images. In order to convert these local features

Fps := GE(Ips) into a global descriptor F̃ps, we use a

spatial-aware feature aggregation [28] layer. For a given

set of input features, this module predicts k spatial attention

masks A1, . . . , Ak ∈ R
H×W . These masks Ai are obtained

by max-pooling Fps ∈ R
H×W×C along the channel dimen-

sion C and refining the obtained features with two consec-

utive full-connected layers. The global feature components

F̃ps,i ∈ R
C are then defined as a weighted combination of

the input features and the attention masks Ai:

F̃ps,i :=
〈

Fps, Ai

〉

F
. (2)

Here, 〈·, ·〉F denotes the Frobenius inner product. Fi-

nally, we obtain a global descriptor F̃ps by stacking

F̃ps,1, . . . , F̃ps,k into one kC-dimensional feature vector.

3.4. Learning

The goal of our method is to jointly retrieve the correct

satellite match for a given query street view, as well as syn-

thesizing the corresponding street view from the satellite

image. To that end, we devise the following loss function:

L = λcGANLcGAN + λL1
LL1

+ λretLret. (3)

During training, we then update the weights of the three

components of our model G, D and R in an adversarial

manner:

min
G,R

max
D

L(G,R,D). (4)

In the remainder of this section, we describe in detail how

the three components of our composite loss in Equation (3)

are defined.

Conditional GAN loss For the image generation task, we

define a conditional GAN loss [12]:

LcGAN (G,D) = EIps,Ig

[

logD(Ips, Ig)
]

+

EIps

[

log(1−D(Ips, G(Ips)))
]

.
(5)

While the discriminator D tries to classify images into real

(for Ig) and fake (for G(Ips)), the generator G tries to min-

imize the loss by creating realistic images. The correspond-

ing satellite image Ips is applied as a condition to both the

discriminator and the generator.

Reconstruction loss The second component in Equa-

tion (3) is a L1 reconstruction loss which minimizes the

distance between the predicted G(Ips) and the ground-truth

street-level images Ig:

LL1
(G) = EIg,Ips

[

‖Ig −G(Ips)‖1
]

. (6)

While, in principle, LcGAN suffices to obtain meaningful

translations, LL1
still helps the network to capture low-level

image features and thereby steers the image synthesis to

convergence.

Retrieval loss Finally, we use a supervised retrieval

loss for the geo-localization task, which is specified as a

weighted soft-margin ranking loss [11]:

Lret(GE , RE , SA) = (7)

EIps,Ig EĨg 6=Ig

[

log(1 + eαd(Ig,Ips)−αd(Ĩg,Ips))
]

.

Here, the distance metric between a pair of ground and

satellite images Ig and Ips is defined as the squared L2 dis-

tance between the learned features of both images:

d(Ig, Ips) := ‖SA(RE(Ig))− SA(GE(Ips))‖
2
2. (8)

Intuitively, Lret aims at decreasing the distance of positive

matches in the latent space and pushes negative pairs apart.

4. Experiments

In our experiments, we evaluate the performance of our

method both in terms of geo-localization and cross-view

image synthesis. Overall, our results indicate that these two

tasks reinforce each other and the joint training improves

performance significantly. We present our quantitative re-

sults on cross-view geo-localization in Section 4.2 and on

street view synthesis in Section 4.3, with comparisons to

state-of-the-art baselines. Furthermore, in Section 4.3, we

present qualitative results and comparisons. Finally, we

provide an ablation study for further insights into how the

different components of our method contribute to our re-

sults, see Section 4.4.
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Figure 3: Qualitative comparisons for cross-view image synthesis on the CVUSA benchmark. We compare the images

generated by our method with the best baselines X-Fork and X-Seq [22]. Note, that they focus on synthesizing the first

quarter of the street view (which is equivalent to the red, dashed boxes on the target street-view), our method is able to create

coherent full street view panoramas.

Method
CVUSA val CVACT val CVACT test

R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1%

CVM-Net [11] 22.47 49.98 63.18 93.62 20.15 45 56.87 87.57 4.06 16.89 24.66 56.38

Liu, et al. [17] 40.79 66.82 76.36 96.12 46.96 68.28 75.48 92.01 19.9 34.82 41.23 63.79

Regmi, et al. [24] 48.75 - 81.27 95.98 - - - - - - - -

CVFT [30] 61.43 84.69 90.49 99.02 61.05 81.33 86.52 95.93 34.39 58.83 66.78 95.99

SAFA [28] 89.84 96.93 98.14 99.64 81.03 92.8 94.84 98.17 55.5 79.94 85.08 94.49

DSM [29] 91.96 97.50 98.54 99.67 82.49 92.44 93.99 97.32 35.55 60.17 67.95 86.71

Ours 92.56 97.55 98.33 99.57 83.28 93.57 95.42 98.22 61.29 85.13 89.14 98.32

Table 1: A summary of our quantitative geo-localization experiments. We compare the recall-k (R@k) retrieval accuracy of

our method with the current state-of-the-art on the CVUSA [39] and CVACT [17] benchmarks.

4.1. Datasets

We consider the standard large scale cross-view bench-

marks CVUSA [39] and CVACT [17], which consist

of 44,416 and 137,218 pairs of top view satellite and

panoramic street view images, respectively. Images depict

streets of both rural and urban scenes. The orientation of

the images is normalized, such that the north direction cor-

responds to the top part of satellite images and the center of

the street-level images.

For CVUSA, the first 35,532 ground-to-aerial image

pairs are used for training and the remaining 8,884 pairs

for validation. Additionally, the images in CVUSA are

endowed with street view semantic segmentation labels,

which we do not use since our method does not depend on

any additional information.

For the sake of consistency, the authors of CVACT [17]

chose the same training and validation set sizes as in

CVUSA. The remaining 92,802 pairs comprise the test set.

Additionally, the CVACT dataset provides UTM coordi-

nates for each satellite-street pair. This large test set allows

for a thorough investigation of the generalization ability of

our proposed algorithm.

Moreover, since a lot of image pairs in CVACT were

taken in close proximity to each other, for the test set of

this benchmark, a retrieved satellite image is considered

correct, as long as the distance to the actual ground truth

match is less than 5 meters – i.e. there might be multiple

correct satellite matches for a given street level image.

4.2. Cross­view geo­localization

Recall metric For our geo-localization results on the

CVUSA and CVACT benchmarks, we followed the stan-

dard evaluation protocol from prior work [17, 28, 29, 30].
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The main performance indicator here is the recall-k (R@k)

retrieval accuracy. Since our algorithm produces L2 dis-

tances for each potential street view to satellite match, we

can output a set of plausible matches. The R@k value is

therefore defined as the ranking of the satellite ground-truth

images which are correctly classified in one of the top-k

matches for a given street view image. In particular, the

R@1 metric measures the fraction of correct one-to-one

matches.

Discussion Table 1 shows our recall-k retrieval accura-

cies R@1, R@5, R@10, and R@1%, in comparison to ex-

isting methods. There are two things we would like to point

out: First of all, our method outperforms prior works on

R@1 and R@5. The R@1 metric is a crucial criterion since

it quantifies the percentage of exact matches. More impor-

tantly, our network shows strong results on the CVACT test

set, which contains a large, city-scale collection of images.

Specifically, our approach outperforms the best baselines by

a significant margin for all considered metrics.

4.3. Ground view image synthesis

Metrics For street view synthesis, we use the PSNR,

SSIM, and Sharpness difference (SD) metrics. These quan-

tify the pixel level difference between synthesized and

ground-truth street views in terms of primitive geometric

properties, see [22, 19, 34] for definitions. Additionally,

we examine two task-specific metrics which were proposed

by [22]. The idea is to assess the similarity of our generated

images and the real street views by comparing the predic-

tions of a separate image classifier. Specifically, the class

predictions of the images are assigned to one of 365 differ-

ent categories from the Places dataset [41] with a standard

AlexNet [13] image classifier. We can then measure the

top-1 and top-5 classification scores (CS-1 and CS-5) of the

fake images. Additionally, we compute the KL-divergence

between the class label distributions of the real and syn-

thesized street images. Finally, we compare the perceptual

similarity score (LPIPS) by using the AlexNet [13] back-

bone, see [40] for a definition.

Discussion Table 2 contains a summary of our image

synthesis results in terms of the quality metrics mentioned

above. We compare our generated images to the current

state-of-the-art in cross-view image synthesis. The first

baseline method [39] predicts auxiliary semantic segmen-

tation labels on the satellite images, maps them to the

street view, and uses them to generate a corresponding

ground-level image. [22] introduced two different architec-

tures: X-Fork and X-Seq. Moreover, [22] shows compar-

isons to the generic image-to-image translation architecture

Pix2pix [12] on cross-view synthesis. Along the same lines,

Figure 4: Qualitative result on CVACT. We show the input

satellite-to-street pair, as well as the polar transformed satel-

lite image and our synthesized street view. Note, that the

considered baselines [22] cannot be applied here since there

are no ground-truth annotated semantic maps on CVACT.

we provide comparisons to [12] analogously to the setting

discussed in [22].

We want to point out that all the baselines we consider

here require semantic segmentation masks during training.

Remarkably, our method still outperforms these existing

methods, even though it does not rely on supervision in

terms of these semantic labels.

Qualitative Experiments Our quantitative results show

that our method indeed synthesizes more realistic and ac-

curate street views than prior approaches. First, we present

a qualitative comparison on the validation set of CVUSA

in Figure 3. Note, that here we consider the current state-

of-the-art baselines X-Seq and X-Fork which specialize on

generating the first quarter of the street view. Addition-

ally, we show qualitative results on the test set of CVACT

in Figure 4. On this benchmark, the other baselines un-

fortunately cannot be applied, since they require semantic

segmentation labels during training which are not available

for CVACT. Our method is able to generate highly plausi-

ble street-views, despite the fact that it uses less supervision

than prior approaches [39, 22].

4.4. Ablation Study

Geo-localization First of all, we investigate how the dif-

ferent components of our method affect the retrieval perfor-

mance on CVUSA [39]. To that end, we perform the follow-

ing ablations and report the results in Table 3: The central

question here is how much the image synthesis branch im-

pacts the geo-localization task. First, we train the retrieval

branch of our network without the generator decoder head

and the discriminator network (i.). This means that the local

features extracted by the generator encoder are only passed

on to the R branch and no street-view images are gener-

ated. This modified network leads to a lower recall accu-
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Method SSIM(↑) PSNR(↑) SD(↑) CS-1(↑) CS-5(↑) KL Scores(↓) LPIPS(↓)

Zhai, et al.et al. [39] 0.414 11.502 10.631 13.97 42.09 27.43 ± 1.63 -

Pix2pix [12] 0.392 11.671 12.537 7.33 25.81 59.81 ± 2.12 0.595

X-Seq [22] 0.423 12.820 12.451 15.98 42.91 15.52 ± 1.73 0.590

X-Fork [22] 0.435 13.064 12.684 20.58 50.51 11.71 ± 1.55 0.609

Ours 0.447 13.895 15.221 33.23 65.85 3.59 ± 0.92 0.474

Table 2: Quantitative experiments on image synthesis on CVUSA benchmark. ↑ indicates higher is better, vice versa ↓
indicates lower is better.

racy since it cannot use the reinforced features from the

image synthesis. The second experiment again omits the

discriminator network and the GAN loss LcGAN but still

predicts a street view, solely based on the L1 reconstruc-

tion loss (ii.). This modification leads to a less significant

drop in accuracy, since the reconstruction of the street view

supports the retrieval part at least to some extent. Another

aspect we want to examine (iii.) is how the retrieval perfor-

mance alters if we pass on the generated images G(Ips) to

the retrieval branch R instead of the latent bottleneck fea-

tures from GE . Here, we again observe a decrease in per-

formance. The generated images themselves are simply not

sufficient to convey the same information richness as the

bottleneck features – ultimately, the retrieval branch has less

latent information available. Overall, the results in Table 3

suggest that the image synthesis indeed benefits the retrieval

accuracy. This can by and large be attributed to the fact that

learning to generate cross-view images yields local features

that are more coherent across the different input domains.

CVUSA
Method

R@1 R@5 R@10 R@1%

i. w/o G&D 88.06 96.47 97.88 99.62

ii. w/o LcGAN 91.92 97.22 98.29 99.65

iii. w/ G(Ips) 89.98 96.78 98.04 99.66

Ours 92.56 97.55 98.33 99.57

Table 3: Ablation study on our geo-localization experi-

ments. We show the retrieval recall-k (R@k) accuracies for

different versions of our full pipeline, see Section 4.4 for

more details.

Street view synthesis For the image synthesis task, we

consider the following ablations of our full pipeline, see Ta-

ble 4 for a summary of the results: First of all, we mea-

sure the image quality of the pure, polar-transformed satel-

lite images in comparison to the input street images. These

results confirm that a simple geometric coordinate transfor-

mation is clearly inferior to a learned, generative model.

Furthermore, we train our image generation branch without

the retrieval head R. These results suggest that joint train-

ing indeed benefits the image synthesis task. The reason

for that is, again, that the multi-task learning incentivizes

our network to learn superior features which ultimately im-

proves the performance of both tasks at the same time.

CVUSA
Method

SSIM↑ PSNR↑ SD↑

Ips vs Ig 0.2892 10.7325 14.2291

w/o R 0.4392 13.6858 15.0843

Ours 0.4472 13.8952 15.2215

Table 4: Ablation study on our image synthesis experi-

ments. This shows, that our generator produces the most

accurate images, in combination with the retrieval branch.

5. Conclusion

We presented “Coming Down to Earth”, a new frame-

work for cross-view image-based geo-localization. Our

model integrates image synthesis and retrieval in one archi-

tecture which is end-to-end trainable. The key insight is that

satellite-to-street view synthesis promotes a latent feature

space that is coherent across the two input domains, which

benefits the localization. The image retrieval branch, on the

other hand, naturally incentivizes the generator to create im-

ages that faithfully depict the content of the scene. Remark-

ably, our method outperforms existing cross-view synthe-

sis approaches, even though it does not rely on any addi-

tional semantic information. Finally, we obtain state-of-the-

art performance in terms of cross-view geo-localization on

both considered benchmarks CVUSA and CVACT.

Acknowledgements We would like to thank Marvin
Eisenberger for valuable discussions. This research was
supported by the Humboldt Foundation through the Sofja
Kovalevskaja Award and the Helmholtz Association under
the joint research school “Munich School for Data Science
- MUDS”.

6495



References

[1] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pa-

jdla, and Josef Sivic. Netvlad: Cnn architecture for weakly

supervised place recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pages 5297–5307, 2016. 2
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