
Post-hoc Uncertainty Calibration for Domain Drift Scenarios

Christian Tomani1, Sebastian Gruber3,4,5,*, Muhammed Ebrar Erdem2,

Daniel Cremers1, Florian Buettner2,3,4,5,*

1Technical University of Munich
2Siemens AG 3 German Cancer Consortium

4 German Cancer Research Center Heidelberg 5 Frankfurt University

{christian.tomani, cremers}@tum.de,

{sebastian.gruber, muhammed.erdem, buettner.florian}@siemens.com

Abstract

We address the problem of uncertainty calibration.

While standard deep neural networks typically yield uncal-

ibrated predictions, calibrated confidence scores that are

representative of the true likelihood of a prediction can be

achieved using post-hoc calibration methods. However, to

date, the focus of these approaches has been on in-domain

calibration. Our contribution is two-fold. First, we show

that existing post-hoc calibration methods yield highly over-

confident predictions under domain shift. Second, we intro-

duce a simple strategy where perturbations are applied to

samples in the validation set before performing the post-hoc

calibration step. In extensive experiments, we demonstrate

that this perturbation step results in substantially better cal-

ibration under domain shift on a wide range of architectures

and modelling tasks.

1. Introduction

1.1. Towards calibrated classifiers

Due to their high predictive power, deep neural networks

are increasingly being used as part of decision making sys-

tems in real world applications. However, such systems

require not only high accuracy, but also reliable and cali-

brated uncertainty estimates. A classifier is calibrated, if

the confidence of predictions matches the probability of be-

ing correct for all confidence levels [4]. Especially in safety

critical applications in medicine where average case perfor-

mance is insufficient, but also in dynamically changing en-

vironments in industry, practitioners need to have access to

reliable predictive uncertainty during the entire life-cycle of

the model. This means confidence scores (or predictive un-

certainty) should be well calibrated not only for in-domain

* Work done for Siemens AG

predictions, but also under gradual domain drift where the

distribution of the input samples gradually changes from

in-domain to truly out-of-distribution (OOD). Such domain

drift scenarios commonly include changes in object back-

grounds, rotations, and imaging viewpoints [1]; Fig. 1.

Methods Confidence (correct pred.) Confidence (incorrect pred.)

Uncalibrated ResNet 0.99 (doormat) 0.91 (hanky)

Baseline calibration 0.99 (doormat) 0.85 (hanky)

Proposed calibration 0.99 (doormat) 0.45 (hanky)

ObjectNet ImageNet ObjectNet

Figure 1: Re-calibrated neural networks make over-

confident predictions under domain drift. Left: Only for our

approach confidence scores match model accuracy (dashed

red line) across all predictions; all other approaches are

over-confident under domain shift. Middle: For Imagenet,

all models make a correct prediction with high confidence

(left). Right: Under domain drift (different viewpoint; Ob-

jectnet) all models make wrong predictions, but only our

approach has a low confidence score reflecting model un-

certainty.

Since deep neural networks typically only yield uncali-

brated confidence scores, a variety of different post-hoc cal-

ibration approaches have been proposed [15, 4, 23, 22, 24].

These methods use the validation set to transform predic-

tions returned by a trained neural network such that in-

domain predictions are well calibrated. Such post-hoc un-

certainty calibration approaches are particularly appealing

since costly training of intrinsically uncertainty-aware neu-
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ral networks can be avoided.

Current efforts to systematically quantify the quality of pre-

dictive uncertainties have focused on assessing model cali-

bration for in-domain predictions. Here, post-processing in

form of temperature scaling has shown great promise and

Guo et al. [4] illustrated that this approach yields well cal-

ibrated predictions for a wide range of model architectures.

More recently, more complex combinations of paramet-

ric and non-parametric methods have been proposed [24].

However, little attention has been paid to uncertainty cal-

ibration under domain drift and no comprehensive analy-

sis of the performance of post-hoc uncertainty calibration

methods under domain drift exists.

1.2. Contribution

In this work we focus on the task of post-hoc uncertainty

calibration under domain drift scenarios and make the fol-

lowing contributions:

• We first show that neural networks yield overconfident

predictions under domain shift even after re-calibration

using existing post-hoc calibrators.

• We generalise existing post-hoc calibration methods

by transforming the validation set before performing

the post-hoc calibration step.

• We demonstrate that our approach results in substan-

tially better calibration under domain shift on a wide

range of architectures and image data sets.

In addition to the contributions above, our code is

made available at https://github.com/tochris/

calibration-domain-drift.

2. Related work

In this section, we review existing approaches towards

neural networks with calibrated predictive uncertainty. The

focus of this work is on post-hoc calibration methods, which

we review in detail. These approaches can broadly be

divided into 2 categories: accuracy-preserving methods,

where the ranking of confidence scores across classes re-

main unchanged and those where the ranking, and thus

accuracy, can change. Other related work includes in-

trinsically uncertainty-aware neural networks and out-of-

distribution detection methods.

2.1. Postprocessing methods

A popular approach towards well-calibrated predictions

are post-hoc calibration methods where a validation set,

drawn from the generative distribution of the training data

π(X,Y ), is used to rescale the outputs returned by a trained

neural network such that in-domain predictions are well cal-

ibrated. A variety of parametric, as well as non-parametric

methods exist. We first review non-parametric methods

that do not preserve accuracy. A simple but popular non-

parametric post-processing approach is histogram binning

[22]. In brief, all uncalibrated confidence scores P̂l are par-

titioned into M bins (with borders typically chosen such

that either all bins are of equal size or contain the same

number of samples). Next, a calibrated score Qm that is

determined by optimizing a bin-wise squared loss on the

validation set, is assigned to each bin. For each new predic-

tion, the uncalibrated confidence score P̂pr is then replaced

by the calibrated score associated with the bin P̂pr falls into.

Popular extensions to histogram binning are isotonic regres-

sion [23] and Bayesian Binning into Quantiles (BBQ) [12].

For isotonic regression (IR), uncalibrated confidence scores

are divided into M intervals and a piecewise constant func-

tion f is fitted on the validation set to transform uncalibrated

outputs to calibrated scores. BBQ is a Bayesian generalisa-

tion of histogram binning based on the concept of Bayesian

model averaging.

In addition to these non-parametric approaches, also para-

metric alternatives for post-processing confidence scores

exist. Platt scaling [15] is an approach for transforming the

non-probabilistic outputs (logits) zi ∈ R of a binary classi-

fier to calibrated confidence scores. More specifically, the

logits are transformed to calibrated confidence scores Q̂i

using logistic regression Q̂i = σ(azi + b), where σ is the

sigmoid function and the two parameters a and b are fitted

by optimising the negative log-likelihood of the validation

set.

Guo et al. [4] have proposed Temperature Scaling (TS), a

simple generalisation of Platt scaling to the multi-class case,

where a single scalar parameter T is used to re-scale the log-

its of a trained neural network. In the case of C-class clas-

sification, the logits are a C-dimensional vector zi ∈ R
C ,

which are typically transformed into confidence scores P̂i

using the softmax function σSM . For temperature scaling,

logits are rescaled with temperature T and transformed into

calibrated confidence scores Q̂i using the softmax function

as

Q̂i = max
c

σSM (zi/T )
(c) (1)

T is learned by minimizing the negative log likelihood of

the validation set. In contrast to the non-parametric meth-

ods introduced above or other multi-class generalisations

of Platt scaling such as vector scaling or matrix scaling,

Temperature Scaling has the advantage that it does not

change the accuracy of the trained neural network. Since

re-scaling does not affect the ranking of the logits, also the

maximum of the softmax function remains unchanged.

More recently, Zhang et al. [24] have proposed to combine

to combine parametric methods with non-parametric

methods, in particular they suggest it can be beneficial

to perform IR after a TS step (TS-IR). In addition, they

introduced an accuracy-preserving version of IR, termed
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IRM and an ensemble version of temperature scaling,

called ETS.

2.2. Intrinsically uncertaintyaware neural net
works

A variety of approaches towards intrinsically

uncertainty-aware neural networks exist, including

probabilistic and non-probabilistic approaches. In recent

years, a lot of research effort has been put into training

Bayesian neural networks. Since exact inference is un-

tractable, a range of approaches for approximate inference

has been proposed, [3, 21]. A popular non-probabilistic

alternative is Deep Ensembles [10], where an ensemble of

networks is trained using adversarial examples, yielding

smooth predictions with meaningful predictive uncertainty.

Other non-probabilistic alternatives include, e.g., [17, 20].

While a comprehensive analysis of the performance of

post-hoc calibration methods is missing for domain-drift

scenarios, recently Ovadia et al. [13] have presented a first

comprehensive evaluation of calibration under domain drift

for intrinsically uncertainty-aware neural networks and

have shown that the quality of predictive uncertainties, i.e.

model calibration, decreases with increasing dataset shift,

regardless of method.

2.3. Other related work

Orthogonal approaches have been proposed where trust

scores and other measures for out-of-distribution detection

are derived to detect truly OOD samples, often also based

on trained networks and with access to a known OOD

set [11, 8, 14]. However, rather than only detecting truly

OOD samples, in this work, we are interested in calibrated

confidence scores matching model accuracy at all stages

of domain drift, from in-domain samples to truly OOD

samples.

3. Problem setup and definitions

Let X ∈ R
D and Y ∈ {1, . . . , C} be random variables

that denote the D-dimensional input and labels in a classifi-

cation task with C classes with a ground truth joint distribu-

tion π(X,Y ) = π(Y |X)π(X). The dataset D consists of

N i.i.d.samples D = {(Xn, Yn)}
N
n=1 drawn from π(X,Y ).

Let h(X) = (Ŷ , P̂ ) be the output of a neural network clas-

sifier h predicting a class Ŷ and associated confidence P̂
based on X . Here, we are interested in the quality of predic-

tive uncertainty (i.e. confidence scores P̂ ) not only on test

data from the generative distribution of the training data D,

π(X,Y ), but also under dataset shift, that is test data from

a distribution ρ(X,Y ) 6= π(X,Y ). More specifically, we

investigate domain drift scenarios where the distribution of

samples seen by a model gradually moves away from the

training distribution π(X,Y ) (in an unknown fashion) until

it reaches truly OOD levels.

We assess the quality of the confidence scores using the no-

tion of calibration. We define perfect calibration such that

accuracy and confidence match for all confidence levels:

P(Ŷ = Y |P̂ = p) = p, ∀p ∈ [0, 1] (2)

This directly leads to a definition of miss-calibration as the

difference in expectation between confidence and accuracy:

Based on equation 3 it is straight-forward to define miss-

calibration as the difference in expectation between confi-

dence and accuracy:

E
P̂

[

∣

∣

P(Ŷ = Y |P̂ = p)− p
∣

∣

]

(3)

The expected calibration error (ECE) [12] is a scalar

summary measure estimating miss-calibration by approxi-

mating equation 3 based on predictions, confidence scores

and ground truth labels {(Yl, Ŷl, P̂l)}
L
l=1 of a finite num-

ber of L samples. ECE is computed by first partition-

ing all L confidence scores P̂l into M equally sized bins

of size 1/M and computing accuracy and average con-

fidence of each bin. Let Bm be the set of indices of

samples whose confidence falls into its associated interval

Im =
(

m−1
M

, m
M

]

. conf(Bm) = 1/|Bm|
∑

i∈Bm

P̂i and

acc(Bm) = 1/|Bm|
∑

i∈Bm

1(Ŷi = Yi) are the average

confidence and accuracy associated with Bm, respectively.

The ECE is then computed as

ECE =

M
∑

m=1

|Bm|

n

∣

∣acc(Bm)− conf(Bm)
∣

∣ (4)

It can be shown that ECE is directly connected to miss-

calibration, as ECE using M bins converges to the M -term

Riemann-Stieltjes sum of eq. 3 [4].

4. Uncertainty calibration under domain drift

4.1. Baseline methods and experimental setup

We assess the performance of the following post-hoc un-

certainty calibration methods in domain drift scenarios:

• Base: Uncalibrated baseline model

• Temperature scaling (TS): Post-hoc calibration by

temperature scaling [4]

• Isotonic regression (IR) [23]

• Accuracy preserving version of Isotonic regression

(IRM) [24]

• Composite model combining Temperature Scaling and

Isotonic Regression (TS-IR) [24]
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We quantify calibration under domain shift for 28 distinct

perturbation types not seen during training, including 9

affine transformations, 19 image perturbations introduced

by [6] and a dedicated bias-controlled dataset [1]. Each

perturbation strategy mimics a scenario where the data of

a deployed model encounters stems from a distribution that

gradually shifts away from the training distribution in a dif-

ferent manner. For each model and each perturbation, we

compute the micro-averaged ECE by first perturbing each

sample in the test set at 10 different levels and then calcu-

lating the overall ECE across all samples; we denote rela-

tive perturbation strength as epsilon. A common manifesta-

tion of dataset shift in real-world applications is a change in

object backgrounds, rotations, and imaging viewpoints. In

order to quantify the expected calibration error under those

scenarios, we use Objectnet, a recently proposed large-scale

bias-controlled dataset [1]. The Objectnet dataset contains

50,000 test images with a total of 313 classes, of which

113 overlap with Imagenet. Uncertainty calibration under

domain drift was evaluated for CIFAR-10 based on affine

transformations, and for Imagenet based on the perturba-

tions introduced by [6] as well as the overlapping classes in

Objectnet.

In addition, we quantify the quality of predictive uncertainty

for truly OOD scenarios by computing the predictive en-

tropy and distribution of confidence scores. We use com-

plete OOD datasets as well as data perturbed at the highest

level. In these scenarios we expect entropy to reach maxi-

mum levels, since the model should transparently commu-

nicate it ”does not know” via low and unbiased confidence

scores.

4.2. Improving calibration under domain drift

Existing methods for post-hoc uncertainty calibration are

based on a validation set, which is drawn from the same

generative distribution π(X,Y ) as the training set and the

test set. Using these data to optimize a post-hoc calibra-

tion method results in low calibration errors for data drawn

from π(X,Y ). If we would like to generalise this ap-

proach to calibration under domain drift, we need access

to samples from the generative distribution along the axis

of domain drift. However, such robustness under domain

drift is a challenging requirement since in practice for a D-

dimensional input domain drift can occur in any of the 2D

directions in {−1, 1}D, and to any degree. Manifestations

of such domain shifts include for example changes in view-

point (Fig. 1), lighting condition, object rotation or back-

ground.

To obtain a transformed validation set representing a

generic domain shift, we therefore sample domain drift sce-

narios by randomly choosing direction and magnitude of

the domain drift. We use these scenarios to perturb the val-

idation set and, taken together, simulate a generic domain
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Figure 2: Model performance in terms of accuracy, entropy

and expected calibration error for CIFAR-10 data for per-

turbation shear. (a) As expected accuracy degrades with in-

creasing perturbation to almost random levels for all mod-

els. (b) While entropy increases with increasing perturba-

tion strength Epsilon for all models, ECE also increases for

all models, indicating a mis-match between confidence and

accuracy.

Base TS ETS TS-IR IR IRM
0.0
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(a) CIFAR-10
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(b) Imagenet

Figure 3: Mean expected calibration error, averaged over

all test scenarios and levels of domain drift. Using our pro-

posed calibration approach improves the overall calibration

error for all post-hoc calibrators.

drift. More specifically, we first choose a random direction

dt ∈ {−1, 1}D. Next, we sample from a set of 10 noise lev-

els ǫ covering the entire spectrum from in-domain to truly

out-of domain. Each noise level corresponds to the variance

of a Gaussian which in turn is used to sample the magnitude

of domain drift. Since level and direction of domain shift

are not known a priori, we argue that an image transforma-

tion using such Gaussian noise results in a generic valida-

tion set in the spirit of the central limit theorem: we emulate

complex domain shifts in the real world by performing ad-

ditive random image transformations, which in turn can be

approximated by a Gaussian distribution.

We optimise ǫ in a dataset-specific manner such that the

accuracy of the pre-trained model decreases linearly in 10

steps to random levels (See Appendix for detailed algo-

rithm).

In summary, we sample a domain shift scenario using

Gaussian noise for each sample in the validation set, thereby

generating a perturbed validation set. We then tune a given
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Base TS ETS TS-IR IR IRM TS-P ETS-P TS-IR-P IR-P IRM-P

CIFAR VGG19 0.323 0.158 0.152 0.173 0.176 0.167 0.053 0.057 0.051 0.049 0.044

CIFAR ResNet50 0.202 0.176 0.171 0.191 0.190 0.179 0.083 0.090 0.092 0.093 0.076

CIFAR DenseNet121 0.206 0.151 0.145 0.166 0.168 0.152 0.135 0.122 0.103 0.088 0.120

CIFAR MobileNetv2 0.159 0.150 0.141 0.165 0.165 0.147 0.107 0.125 0.094 0.079 0.108

ImgNet ResNet50 0.130 0.049 0.064 0.134 0.142 0.072 0.050 0.041 0.033 0.037 0.041

ImgNet ResNet152 0.129 0.043 0.049 0.127 0.135 0.062 0.037 0.034 0.028 0.039 0.045

ImgNet VGG19 0.057 0.045 0.047 0.120 0.122 0.051 0.093 0.075 0.064 0.029 0.047

ImgNet Den.Net169 0.117 0.044 0.040 0.127 0.133 0.057 0.024 0.023 0.026 0.045 0.050

ImgNet Eff.NetB7 0.092 0.135 0.085 0.131 0.132 0.074 0.074 0.047 0.038 0.049 0.058

ImgNet Xception 0.205 0.068 0.042 0.109 0.130 0.076 0.060 0.031 0.031 0.101 0.101

ImgNet Mob.Netv2 0.063 0.143 0.114 0.186 0.181 0.107 0.099 0.074 0.066 0.046 0.069

Table 1: Mean expected calibration error across all test domain drift scenarios (affine transformations for CIFAR-10 and per-

turbations proposed in [6] for Imagenet). For all architectures our approach of using a perturbed validation set outperformed

baseline post-hoc calibrators

post-hoc uncertainty calibration method based on this per-

turbed validation set and obtain confidence scores that are

calibrated under domain drift. All in all, we simulate do-

main drift scenarios and use the resulting perturbed vali-

dation set to tune existing post-hoc uncertainty calibration

methods. We hypothesize that this facilitates calibrated pre-

dictions of neural networks under domain drift.

We refer to tuning a post-hoc calibrator using the perturbed

validation set by a suffix ”-P”, e.g. IR-P stands for Isotonic

Regression tuned on the perturbed validation set.

5. Experiments and results

We first illustrate limitations of post-hoc uncertainty cal-

ibration methods in domain drift scenarios using CIFAR-10.

We show that while excellent in-domain calibration can be

achieved using standard baselines, the quality of uncertainty

decreases with increasing domain shift for all methods, re-

sulting in highly overconfident predictions for images far

away from the training domain.

Next, we show on a variety of architectures and datasets that

replacing the validation set by a transformed validation set

as outlined in section 4.2, substantially improves calibration

under domain shift. We further assess the effect of our new

approach on in-domain calibration and demonstrate that for

selected post-hoc calibration methods, in-domain calibra-

tion can be maintained at competitive levels. Finally, we

show that our tuning approach results in better uncertainty

awareness in truly OOD settings.

5.1. Posthoc calibration results in overconfident
predictions under domain drift

We tuned all post-hoc calibration baseline methods on

the CIFAR-10 validation set and first assessed in-domain

calibration on the test set. As expected, calibration im-

proves for all baselines over the uncalibrated network pre-

dictions in this in-domain setting. Next, we assessed cal-

ibration under domain drift by generating a perturbed test

where we apply different perturbations (e.g. rotation, shear,

zoom) to the images. We increased perturbation strength

(i.e. shear) in 9 steps until reaching random accuracy. Fig-

ure 2 illustrates, that while entropy increases with intensi-

fying shear for all models, ECE also increases for the entire

set of models. This reveals a mis-match between confidence

and accuracy that increases with increasing domain drift.

5.2. Perturbed validation sets improve calibration
under domain drift

Next, we systematically assessed whether calibration un-

der domain drift can be improved by tuning post-hoc cali-

bration methods on a transformed validation set. To this

end, we calibrate various neural network architectures on

CIFAR-10 and Imagenet. For CIFAR-10, we first train

VGG19 [18], ResNet50 [5], DenseNet121 [7] and Mo-

bileNetv2 [16] models. For Imagenet we used 7 pre-trained

models provided as part of tensorflow, namely ResNet50,

ResNet152, VGG19, DenseNet169, EfficientNetB7 [19],

Xception [2] and MobileNetv2.

For all neural networks we then tuned 2 sets of post-hoc

calibrators: one set was tuned in a standard manner based

on the validation set, the second set was tuned with the pro-

posed method based on the perturbed validation set. We

then evaluate both sets of calibrators under various domain

drift scenarios that were not seen during training, as well as

in terms of in-domain calibration.

We observed that for all post-hoc calibrators tuning on a

perturbed validation set resulted in an overall lower cali-

bration error when testing across all domain drift scenarios,

Table 1, Fig. 3). Figure 4 illustrates for VGG19 trained on
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Figure 4: Micro-averaged calibration error for individual test domain shift scenarios
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Figure 5: ECE for all overlapping classes contained in Ob-

jectnet dataset. Our tuning approach improves calibration

for all post-hoc calibrators (Resnet50 trained on Imagenet

dataset).

CIFAR-10 and Resnet50 trained on Imagenet that this im-

provement was consistent for individual domain drift sce-

narios not seen during training.

Real-world domain shift We next assessed the effect of

our proposed tuning strategy on a real-world domain-shift.

To this end, we computed ECE on the Objectnet test dataset.

This comprises a set of images showing objects also present

in Imagenet with different viewpoints, on new backgrounds

and different rotation angles. As for artificial image pertur-

bations, we found that our tuning strategy resulted in better

calibration under domain drift compared to standard tuning,

for all post-hoc calibration algorithms (Fig. 5).

Dependency on magnitude of domain drift We next fo-

cused on the Imagenet to assess how calibration depends on

the amount of domain shift. We observe that while stan-

dard post-hoc calibrators yield very low in-domain calibra-

tion errors ((Fig. 7, ECE at epsilon 0), predictions become
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Figure 6: Distribution of confidence scores for out-of-domain predictions. (a) Confidence scores for our tuning strategy (-P)

are substantially lower for the highest perturbation level compared to standard tuning, reflecting that our approach yields well

calibrated predictions also for truly OOD samples (b) Confidence scores for OOD dataset Objecnet (non-overlapping classes)

reveals that our approach results in substantially more uncertainty aware predictions.

increasingly overconfident with increasing domain shift. In

contrast, all methods tuned using our approach had a low

calibration error for large domain shifts. Notably, we ob-

served two types of behaviour for in-domain calibration and

small domain shift. One set of methods - TS-P, ETS-P and

TS-IR-P - had a substantially increased calibration error for

in-domain settings compared to standard calibration meth-

ods TS, ETS and TS-IR respectively. For these methods

ECE at low levels of domain shift was comparable to that

of uncalibrated models, and decreased substantially with

domain shift (in contrast to uncalibrated models or stan-

dard calibrators where ECE increases with domain shift).

However, IR-P did not show a worse in-domain calibration

compared to standard post-hoc calibrators when tuned us-

ing our approach. Notably, it yielded a calibration error

comparable to state-of-the-art calibrators for in-domain set-

tings, while substantially improving calibration for increas-

ing levels of domain shift. We further observed that IRM-P,

an accuracy preserving version of IR-P, had a small but con-

sistently worse in-domain classification error than IR-P, but

performed substantially better than TS-based methods for

small domain shifts.

One key difference between IR and TS-based methods, is

that the latter methods are accuracy preserving, while IR-

P (and IR) can potentially change the ranking of predic-

tions and thus accuracy. However, for Imagenet we only

observed minor changes in accuracy for IR-based methods,

irrespective of tuning strategy (Fig. 4 (b), Fig. 7 (b)). We

hypothesize that the systematic difference in calibration be-

haviour is due to the limitations of expressive power of TS-

based accuracy-preserving methods: first, by definition the

ranking between classes in a multi-class prediction does not

change after applying this family of calibrators and second

only one parameter (for TS) or 4 parameters (ETS) have

to capture the potentially complex behaviour of the calibra-

tor. While this has important advantages for practitioners, it

can also result in a lack of expressive power which may be

needed to achieve calibration for all levels of domain drift,

ranging from in-domain to truly out-of-domain. Finally, we

observed that a variance reduction via temperature scaling

[9] before IR (TS-IR) was also not beneficial for calibration

under small levels of domain shift.

5.3. Outofdistribution scenarios

To further investigate the behaviour of post-hoc calibra-

tors for truly OOD scenarios, we analysed the distribution

of confidence scores for a completely OOD dataset for Im-

agenet, using the 200 non-overlapping classes in Objectnet.

This revealed that all post-hoc calibrators resulted in signif-

icantly less overconfident predictions when tuned using our

approach. We observed a similar behaviour for CIFAR-10

with VGG19, when assessing the distribution of confidence

scores at the highest perturbation level across all perturba-

tions (Fig. 6).

6. Discussion and conclusion

We present a simple and versatile approach for tuning

post-hoc uncertainty calibration methods. We demonstrate

that our new approach, when used in conjunction with

isotonic regression-based methods (IR or IRM), yields

well-calibrated predictions in the case of any level of

domain drift, from in-domain to truly out-of-domain

scenarios. Notably, IR-P and IRM-P maintain their cali-

bration performance for in-domain scenarios compared to

standard isotonic regression (IR and IRM). In other words,

our experiments suggest that when using our IR(M)-P

approach, there is only a minor trade-off between choos-
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Figure 7: Dependency of accuracy and and ECE on level of domain shift. Accuracy decreases for all methods with increasing

levels of domain shift. For standard post-hoc calibrators ECE also increases, but our approach of tuning on a perturbed

validation set results in good calibration throughout all levels, especially for IR-P.

ing a model that is either well calibrated in-domain vs.

out-of-domain. In contrast, methods based on temperature

scaling may not have enough expressive power to achieve

good calibration across this range: standard tuning results

in highly overconfident OOD predictions and perturbation-

based tuning results in calibration errors comparable to

uncalibrated models for in-domain predictions. However,

when averaging across all domain drift scenarios, overall

calibration for TS-P and ETS-P still improves substantially

over standard TS and ETS. Consequently, for use-cases

requiring an accuracy preserving method and reliable

uncertainty estimates especially for larger levels of domain

shift, TS-P and ETS-P are good options.

We further observe this trade-off between accuracy preserv-

ing properties and calibration error for IR-based methods.

While IRM-P has accuracy-preserving properties, overall

calibration errors are higher than for IR-P in particular for

small domain shifts.

Our perturbation-based tuning can be readily applied to

any post-hoc calibration method. When used in combina-

tion with an expressive non-parametric method such as IR,

this results in well calibrated predictions not only for in-

domain and small domain shifts, but also for truly OOD

samples. This is in stark contrast to existing methods with

standard tuning, where performance in terms of calibra-

tion and uncertainty-awareness degrades with increasing

domain drift.
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