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Abstract

Despite stereo matching accuracy has greatly improved

by deep learning in the last few years, recovering sharp

boundaries and high-resolution outputs efficiently remains

challenging. In this paper, we propose Stereo Mixture Den-

sity Networks (SMD-Nets), a simple yet effective learning

framework compatible with a wide class of 2D and 3D

architectures which ameliorates both issues. Specifically,

we exploit bimodal mixture densities as output representa-

tion and show that this allows for sharp and precise dis-

parity estimates near discontinuities while explicitly mod-

eling the aleatoric uncertainty inherent in the observations.

Moreover, we formulate disparity estimation as a continu-

ous problem in the image domain, allowing our model to

query disparities at arbitrary spatial precision. We carry

out comprehensive experiments on a new high-resolution

and highly realistic synthetic stereo dataset, consisting of

stereo pairs at 8Mpx resolution, as well as on real-world

stereo datasets. Our experiments demonstrate increased

depth accuracy near object boundaries and prediction of ul-

tra high-resolution disparity maps on standard GPUs. We

demonstrate the flexibility of our technique by improving the

performance of a variety of stereo backbones.

1. Introduction

Stereo matching is a long standing and active research

topic in computer vision. It aims at recovering dense corre-

spondences between image pairs by estimating the dispar-

ity between matching pixels, required to infer depth through

triangulation. It also plays a crucial role in many areas like

3D mapping, scene understanding and robotics.

Traditional stereo matching algorithms apply hand-

crafted matching costs and engineered regularization strate-

gies. More recently, learning methods based on Convolu-

tional Neural Networks (CNNs) have proven to be supe-

rior, given the increasing availability of large stereo datasets
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(a) PSM [4]

(b) PSM [4] + Ours

Figure 1: Point Cloud Comparison between the stereo net-

work PSM [4] and our Stereo Mixture Density Network

(SMD-Net) on the UnrealStereo4K dataset. Notice how

SMD-Net notably alleviates bleeding artifacts near object

boundaries, resulting in more accurate 3D reconstructions.

[11, 10, 52]. Although such methods produce compelling

results, two major issues remain unsolved: predicting accu-

rate depth boundaries and generating high-resolution out-

puts with limited memory and computation.

The first issue is shown in Fig. 1a: As neural networks

are smooth function approximators, they often poorly re-

construct object boundaries, causing “bleeding” artifacts

(i.e., flying pixels) when converted to point clouds. These

artifacts can be detrimental to subsequent applications such

as 3D reconstruction or 3D object detection. Thus, while

being ignored by most commonly employed disparity met-

rics, accurate 3D reconstruction of contours is a desirable

property for any stereo matching algorithm.
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Furthermore, existing methods are limited to discrete

predictions at pixel locations of a fixed resolution image

grid, while geometry is a piecewise continuous quantity

where object boundaries may not align with pixel centers.

Increasing the output resolution by adding extra upsampling

layers partially addresses this problem as this leads to a sig-

nificant increase in memory and computation.

In this work, we address both issues. Our key contri-

bution is to learn a representation that is precise at object

boundaries and scales to high output resolutions. In partic-

ular, we formulate the task as a continuous estimation prob-

lem and exploit bimodal mixture densities [2] as output rep-

resentation. Our simple formulation lets us (1) avoid bleed-

ing artifacts at depth discontinuities, (2) regress disparity

values at arbitrary spatial resolution with constant memory

and (3) provides a measure for aleatoric uncertainty.

We illustrate the boundary bleeding problem and our so-

lution to it in Fig. 2. While classical deep networks for

stereo regression suffer from smoothness bias and are in-

capable of representing sharp disparity discontinuities, the

proposed Stereo Mixture Density Networks (SMD-Nets) ef-

fectively address this issue. The key idea is to alter the

output representation adopting a mixture distribution such

that sharp discontinuities can be regressed despite the fact

that the underlying neural networks are only able to make

smooth predictions (note that all curves in Fig. 2b are indeed

smooth while the predicted disparity is discontinuous).

Furthermore, the proposed model is capable of regress-

ing disparity values at arbitrary continuous locations in the

image, effectively solving a stereo super-resolution task. In

combination with the proposed representation, this allows

for regressing sharp discontinuities at sub-pixel resolution

while keeping memory requirements constant.

In summary, we present: (i) A novel learning framework

for stereo matching that exploits compactly parameterized

bimodal mixture densities as output representation and can

be trained using a simple likelihood-based loss function. (ii)

A continuous function formulation aimed at estimating dis-

parities at arbitrary spatial resolution with constant mem-

ory footprint. (iii) A new large-scale synthetic binocular

stereo dataset with ground truth disparities at 3840 × 2160
resolution, comprising photo-realistic renderings of indoor

and outdoor environments. (iv) Extensive experiments on

several datasets demonstrating improved accuracy at depth

discontinuities for various backbones on binocular stereo,

monocular and active depth estimation tasks.

Our source code and dataset are available at https:

//github.com/fabiotosi92/SMD-Nets.

2. Related Work

Deep Stereo Matching: Stereo has a long history in com-

puter vision [41]. With the rise of deep learning, CNN based

methods for stereo were pioneered in [56] with the aim of

replacing the traditional matching cost computation.

More recent works attempt to solve the stereo match-

ing task without hand-crafted post processing steps. They

can be categorized into 2D architectures and 3D architec-

tures. In the first category, [22, 32, 15, 53, 54, 46, 1]

extend the seminal DispNet [24], an end-to-end network

for disparity regression. The second class, instead, con-

sists of architectures that explicitly construct 3D feature

cost volumes by means of concatenation/feature difference

[4, 18, 47, 48, 8, 57, 49, 55, 29, 3, 7, 45, 50, 21] and group-

wise correlation [14]. A thorough review of these works can

be found in [36]. We stress once again how such networks,

although achieving state-of-the-art results on most stereo

benchmarks, suffer from severe over-smoothing at object

discontinuities which are not captured by commonly em-

ployed disparity metrics, but which matter for many down-

stream applications. Therefore, the ideas proposed in this

work to address this issue are orthogonal to the aforemen-

tioned networks and can be advantageously combined with

nearly any stereo backbone.

Disparity Output Representation: Standard stereo net-

works directly regress a scalar disparity at every pixel. This

output representation suffers from over-smoothing and does

not expose the underlying aleatoric uncertainty. The latter

problem can be addressed by modeling the disparity using

a parametric distribution, e.g., a Gaussian or Laplacian dis-

tribution [16, 25] while the over-smoothing issue remains

unsolved. A key result of our work is to demonstrate that re-

placing the unimodal output representation with a bimodal

one is sufficient to significantly alleviate this problem.

Another line of methods estimate a non-parametric dis-

tribution over a set of discrete disparity values. However,

this approach leads to inaccurate results when the estimated

distribution is multi-modal [17]. Some works tackle the

problem by enforcing a unimodal constraint during train-

ing [5, 58]. In contrast, we explicitly model the bimodal

nature of the distribution at object boundaries by adopting a

simple and effective bimodal representation. In concurrent

work, [9] also predicts multi-modal distributions supervised

by a heuristically designed multi-modal ground truth over

a set of depth values. In contrast to them, our bimodal ap-

proach can be learned by maximizing the likelihood without

requiring direct supervision on the distribution itself.

Continuous Function Representation: Existing deep

stereo networks use fully convolutional neural networks and

make predictions at discrete pixel locations. Recently, con-

tinuous function representations have gained attention in

many areas, including 3D reconstruction [27, 33, 6, 39, 44,

30, 35], texture estimation [31], image synthesis [28, 42]

and semantic segmentation [20]. To the best of our knowl-

edge, we are the first to adopt a continuous function repre-

sentation for disparity estimation, allowing us to predict a
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Figure 2: Overcoming the Smoothness Bias with Mixture Density Networks. For clarity, we visualize the disparity d only

for a single image row. (a) Classical deep networks for stereo regression suffer from smoothness bias and hence continuously

interpolate object boundaries. In addition, disparity values are typically predicted at discrete spatial locations. (b) In this

work, we propose to use a bimodal Laplacian mixture distribution (illustrated in gray) with weight π as output representation

which can be queried at any continuous spatial location x. This allows our model to accurately capture uncertainty close

to depth discontinuities while at inference time recovering sharp edges by selecting the mode with the highest probability

density. In this example, the first mode (µ1, b1) models the background and the second mode (µ2, b2) models the foreground

disparity close to the discontinuity. When the probability density of the foreground mode becomes larger than the probability

density of the background mode, the most likely disparity sharply transitions from the background to the foreground value.

disparity value at any continuous pixel location. In contrast

to works that allow for high-resolution stereo matching by

designing memory efficient architectures [51, 13], our sim-

ple output representation is able to exploit ground truth dis-

parity maps at a higher resolution than the input stereo pair,

thus effectively learning stereo super-resolution.

3. Method

Fig. 3 illustrates our model. We first encode a stereo pair

into a feature map using a convolutional backbone (left).

Next, we estimate parameters of a mixture density distribu-

tion at any continuous 2D location via a multi-layer percep-

tron head, taking the bilinearly interpolated feature vector

as input (middle). From this, we obtain a disparity as well

as uncertainty map (right). We now explain our model, loss

function and training protocol in detail.

3.1. Problem Statement

Let I ∈ R
W×H×6 denote an RGB stereo pair for which

we aim to predict a disparity map D at arbitrary resolution.

As shown in Fig. 2, classical stereo regression networks suf-

fer from over-smoothing due to the smoothness bias of neu-

ral networks. In this work, we exploit a mixture distribution

as output representation [2] to overcome this limitation.

More specifically, we propose to use a bimodal Lapla-

cian mixture distribution with weight π and two modes

(µ1, b1), (µ2, b2) to model the continuous probability dis-

tribution over disparities at a particular pixel. Using two

modes allows our model to capture both the foreground as

well as the background disparity at object boundaries. At

inference time, we recover sharp object boundaries by se-

lecting the mode with the highest density value. Thus, our

model is able to transition from one disparity to another in

a discontinuous fashion while at the same time relying only

on the regression of functions (π, µ1, b1, µ2, b2) which are

smooth with respect to the image domain and which there-

fore can easily be represented using neural networks.

3.2. Stereo Mixture Density Networks

We now formally describe our model. Let

Ψθ : RW×H×6 → R
W×H×D (1)

denote a stereo backbone network with parameters θ as

shown in Fig. 3 (left). Ψθ takes as input the stereo pair I and

outputs aD-dimensional feature map, represented in the do-

main of the reference image (e.g. the left image of a stereo

pair). Examples for such networks are standard 2D convo-

lutional networks, or networks which perform 3D convolu-

tions. For the 2D networks, the stereo pair can be concate-

nated as input or processed by means of siamese towers with

shared weights as typically done for 3D architectures. Sim-

ilarly, this generic formulation also applies to the structured

light setting (e.g., Kinect setting where I ∈ R
W×H ) and the

monocular depth estimation problem (I ∈ R
W×H×3).

As geometry is a piecewise continuous quantity, we ap-

ply a deterministic transformation to obtain feature points

for any continuous location in R
W×H . More specifically,

for every continuous 2D location x ∈ R
2, we bilinearly in-

terpolate the features from its four nearest pixel locations

in the feature map R
W×H×D. More formally, we describe

this transformation as:

ψ : R2 × R
W×H×D → R

D (2)
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Stereo Backbone SMD Head

Figure 3: Method Overview. We assume a 2D or 3D stereo backbone network Ψθ which takes as input a stereo pair I (either

concatenated or processed by siamese towers), and outputs a D-dimensional feature map in the domain of the reference

image. Given any continuous 2D location x, we query its feature from the feature map via bilinear interpolation as denoted

by ψ. The interpolated feature vector is then fed into a multi-layer perceptron fθ to estimate a five-dimensional vector

(π, µ1, b1, µ2, b2) which represents the parameters of a bimodal distribution. N denotes the number of points randomly

sampled at continuous 2D locations during training and the number of pixels during inference. On the right we show maps

of µ1, µ2, π, 1− π, uncertainty h and predicted disparity d̂.

Finally, we employ a multi-layer perceptron to map this

abstract feature representation to a five-dimensional vector

(π, µ1, b1, µ2, b2) which represents the parameters of a uni-

variate bimodal mixture distribution:

fθ : RD → R
5 (3)

Note that we have re-used the parameter symbol θ to sim-

plify notation. In the following, we use θ to denote all

parameters of our model. We refer to fθ(ψ(·, ·)) as SMD

Head, see Fig. 3 for an illustration.

To robustly model a distribution over disparities which

can express two modes close to disparity discontinuities, we

choose a bimodal Laplacian mixture as output representa-

tion:

p(d) =
π

2 b1
e−

|d−µ1|
b1 +

1− π

2 b2
e−

|d−µ2|
b2 (4)

In summary, our model can be compactly expressed as:

p(d|x, I, θ) = p(d|fθ (ψ(x,Ψθ(I)))) (5)

At inference time, we determine the final disparity d̂ by

choosing the mode with the highest density value:

d̂ = argmax
d∈{µ1,µ2}

p(d) (6)

Note that our formulation allows to query the disparity

d̂ ∈ R at any continuous 2D pixel location, enabling ultra

high-resolution predictions with sharply delineated object

boundaries. This is illustrated in Fig. 4.

Our model also allows for capturing the aleatoric uncer-

tainty of the predicted disparity by evaluating the differen-

tial entropy of the continuous mixture distribution as:

h = −

∫
p(d) log p(d) dd (7)

In practice, we use numerical quadrature to obtain an ap-

proximation of the integral.

3.3. Loss Function

We consider the supervised setting and train our model

by minimizing the negative log-likelihood loss:

LNLL(θ) = −Ed,x,I log p(d|x, I, θ) (8)

where the input I is randomly sampled from the dataset,

x is a random pixel location in the continuous image do-

main Ω = [0,W − 1]× [0, H − 1], sampled as described in

Sec. 3.4, and d is the ground truth disparity at location x.

3.4. Training Protocol

Sampling Strategy: While a naı̈ve strategy samples pixel

locations x randomly and uniformly from the image do-

main Ω, our framework also allows for exploiting custom

sampling strategies to focus on depth discontinuities dur-

ing training. We adopt a Depth Discontinuity Aware (DDA)

sampling approach during training that explicitly favors

points located near object boundaries while at the same time

maintaining a uniform coverage on the entire image space.

More specifically, given a ground truth disparity map at

training time, we first compute an object boundary mask

in which a pixel is considered to be part of the boundary if

its (4-connected) neighbors have a disparity that differs by

more than 1 from its own disparity. This mask is then di-

lated using a ρ × ρ kernel to enlarge the boundary region.

We report an analysis using different ρ values in the experi-

mental section. Given the total number of training pointsN ,

we randomly and uniformly select N/2 points from the do-

main of all pixels belonging to depth discontinuity regions

and N/2 points uniformly from the continuous domain of

all remaining pixels. At inference time, we leverage our

model to predict disparity values at each location of an (ar-

bitrary resolution) grid.

Stereo Super-Resolution: Our continuous formulation al-
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Figure 4: Ultra High-resolution Estimation. Comparison

of our model using the PSM backbone at 128Mpx resolution

(top) to the original PSM at 0.5Mpx resolution (bottom),

both taking stereo pairs at 0.5Mpx resolution as input. Each

column shows a different zoom-level. Note how our method

leads to sharper boundaries and high resolution outputs.

lows us to exploit ground truth at higher resolution than the

input I, which we refer to as stereo super-resolution. In

contrast, classical stereo methods cannot realize arbitrary

super-resolution without changing their architecture.

4. Experimental Results

In this section, we first describe the datasets used for

evaluation and implementation details. We then present an

extensive evaluation that demonstrates the benefits of the

proposed SMD Head in combination with different stereo

backbones on several distinct tasks.

4.1. Datasets

UnrealStereo4K: Motivated by the lack of large-scale, re-

alistic and high-resolution stereo datasets, we introduce a

new photo-realistic binocular stereo dataset at 3840× 2160
resolution with pixel-accurate ground truth. We create this

synthetic dataset using the popular game engine Unreal En-

gine combined with the open-source plugin UnrealCV [37].

We additionally create a synthetic active monocular dataset

(mimicking the Kinect setup) at 4112× 3008 resolution by

warping a gray-scale reference dot pattern to each image,

following [38]. We split the dataset into 7720 training pairs,

80 validation pairs and 200 in-domain test pairs. To evalu-

ate the generalization ability of our method, we also create

an out-of-domain test set by rendering 200 stereo pairs from

an unseen scene. Similarly, the active dataset contains 3856
training images, 40 validation images, 100 test images.

RealActive4K: We further collect a small real-world ac-

tive dataset of an indoor room with a Kinect-like stereo sen-

sor, including 2570 images at a resolution 4112×3008 pix-

els from which we use 2500 for training, 20 for validation

and 50 for testing. We perform Block Matching with left-

right consistency check to use as co-supervision for training

models jointly on synthetic (UnrealStereo4K) and real data.

KITTI 2015 [26]: The KITTI dataset is a collection of

real-world stereo images depicting driving scenarios. It

contains 200 training pairs with sparse ground truth depth

maps collected by a LiDAR and 200 testing pairs. We di-

vide the KITTI training set into 160 training stereo pairs and

40 validation stereo pairs, following [45].

Middlebury v3 [40]: Middlebury v3 is a small high-

resolution stereo dataset depicting indoor scenes under con-

trolled lighting conditions containing 10 training pairs and

10 testing pairs with dense ground truth disparities.

4.2. Implementation Details

Architecture: In principle, our SMD Head is compati-

ble with any stereo backbone ψθ from the literature. In our

implementation, we build on top of two state-of-the-art 3D

stereo architectures: Pyramid Stereo Matching (PSM) net-

work [4] and Hierarchical Stereo Matching (HSM) network

[51]. PSM is a well-known and popular stereo network

while HSM represents a method with good trade-off be-

tween accuracy and computation. Moreover, we also adopt

a naı̈ve U-Net structure [12] that takes as input concatenated

images of a stereo pair in order to show the effectiveness of

our model on 2D architectures. For the aforementioned net-

works, we follow the official code provided by the authors.

Our SMD Head fθ is implemented as a multi-layer per-

ceptron (MLP) following [39]. More specifically, the num-

ber of neurons is (D, 1024, 512, 256, 128, 5). We use sine

activations [44] except for the last layer that uses a sigmoid

activation for regressing the five-parameter output. For the

3D backbone, we select the matching probabilities from the

cost volume in combination with features of Ψθ at different

resolutions as input to our SMD Head. For the 2D backbone

case, instead, we select features from different layers of the

decoder. We refer the reader to the supplementary material

for details.

Training: We implement our approach in PyTorch [34]

and use Adam with β1 = 0.9 and β2 = 0.999 as opti-

mizer [19]. We train all models from scratch using a sin-

gle NVIDIA V100 GPU. During training, we use random

crops from I as input to the stereo backbone and sample

N = 50, 000 training points from each crop. We scale the

ground truth disparity to [0, 1] for each dataset for numer-

ical stability. Moreover, for RGB inputs we perform chro-

matic augmentations on the fly, including random bright-

ness, gamma and color shifts sampled from uniform distri-

butions. We further apply horizontal and vertical random

flipping while adapting the ground truth disparities accord-

ingly. Please see the supplementary material for details re-

garding the training procedure for each dataset.

Evaluation Metrics: Following [5], we evaluate the Soft

Edge Error (SEEk) metric on pixels belonging to object
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boundaries, defined as the minimum absolute error between

the predicted disparity and the corresponding local ground

truth patch of size k × k (k = {3, 5} in our experiments).

Intuitively, SEE penalizes over-smoothing artifacts stronger

compared to small misalignments in a local window, where

the former is more harmful to subsequent applications.

While not our main focus, we also report the End Point

Error (EPE) as the standard error metric obtained by av-

eraging the absolute difference between predictions and

ground truth disparity values to evaluate the overall perfor-

mance. For both SEE and EPE, we compute the average

(Avg) and σ(∆) metrics, with the latter one representing

the percentage of pixels having errors greater than ∆.

4.3. Ablation Study

We first examine the impact of different components

and training choices of the proposed SMD-Nets on the in-

domain UnrealStereo4K test set. Unless specified other-

wise, we use 960×540 as resolution for the binocular input

I and 3840×2160 for the corresponding ground truth, used

for both supervision and testing purposes. The active input

images consist of random dot patterns where the dots be-

come indistinguishable at low resolution (e.g., 960 × 540).

Therefore we use 2056 × 1504 as active input size while

keeping the ground truth dimension at 4112× 3008.

Output Representation: In Tab. 1, we evaluate the effec-

tiveness of our mixture density output representation across

both, 2D and 3D stereo backbones on multiple tasks includ-

ing binocular stereo, monocular depth and active depth. We

adopt U-Net and PSM on the binocular stereo dataset as

representatives of 2D and 3D backbones and report results

of HSM in the supplementary for the sake of space. We also

use the same U-Net backbone for a monocular depth estima-

tion task by replacing the input with only the reference im-

age of a binocular stereo pair to show the advantage of our

method on various tasks. For the active setup, we choose

HSM as it represents a network designed specifically for

high-resolution inputs which takes as input the monocular

active image and the fixed reference dot pattern.

We compare our bimodal distribution to two other out-

put representations, standard disparity regression and a uni-

modal Laplacian distribution [16]. For fairness, we imple-

ment these baselines by replacing the last layer of our SMD

Head to predict the disparity d or the unimodal parameters

(µ, b), respectively, where the former is trained with a stan-

dard L1 loss while the latter with a negative log-likelihood

loss. For all cases we use the proposed bilinear feature in-

terpolation and the naı̈ve random sampling strategy.

Tab. 1 shows that the proposed method effectively ad-

dresses the over-smoothing problem at object boundaries,

achieving the lowest SEE for all backbones on all tasks,

compared to both the standard disparity regression and the

unimodal representation. Moreover, we observe that the

Ψθ Dim.
SEE3 SEE5 EPE

Avg σ(1) σ(2) Avg σ(1) σ(2) Avg σ(3)

B
in

o
cu

la
r

S
te

re
o U-Net

(2D )

[12]

1 2.15 41.69 24.16 2.03 39.65 22.98 1.48 8.18

2 2.38 42.28 25.74 2.26 40.42 24.57 1.97 10.44

5 1.57 30.06 14.77 1.45 28.05 16.57 1.28 5.94

PSM

(3D)

[4]

1 1.98 36.32 20.35 1.85 34.42 19.21 1.10 5.52

2 2.50 39.40 23.63 2.37 37.57 22.51 1.88 7.73

5 1.52 26.98 12.68 1.38 24.93 11.49 1.11 4.80

M
o

n
o

. U-Net

(2D)

[12]

1 3.29 60.18 41.37 3.25 58.49 40.08 4.21 35.92

2 4.01 61.06 43.19 3.86 59.40 41.90 5.49 41.88

5 2.92 51.32 32.33 2.78 49.54 31.06 4.06 30.59

A
ct

iv
e HSM

(3D)

[51]

1 3.40 47.87 24.80 3.18 46.14 23.76 1.29 5.84

2 4.93 57.05 33.44 4.69 55.47 32.41 2.83 10.70

5 2.69 41.84 17.35 2.43 39.83 16.17 1.42 5.48

Table 1: Output Representation analysis on the Unreal-

Stereo4K test set. “Dim.” refers to the output dimension

of the SMD Head where 1 indicates the point estimate d,

2 the unimodal output representation (µ, b) [16] and 5 our

bimodal formulation (π, µ1, b1, µ2, b2).

Sampling ρ
SEE3 SEE5 EPE

Avg σ(1) σ(2) Avg σ(1) σ(2) Avg σ(3)
Random - 1.52 26.98 12.68 1.38 24.93 11.49 1.11 4.80

DDA 0 1.34 21.62 9.77 1.19 19.58 8.59 1.08 4.44

DDA 10 1.13 18.64 8.69 0.98 16.67 7.55 0.92 3.88

DDA 20 1.30 20.42 9.88 1.15 18.40 8.71 1.11 4.44

Table 2: Sampling Strategy analysis on the Unreal-

Stereo4K test set using the PSM backbone.

Eval. GT Training GT
SEE3 SEE5 EPE

Avg σ(1) σ(2) Avg σ(1) σ(2) Avg σ(3)
960× 540 960× 540 1.19 20.36 9.16 0.93 16.55 7.08 1.02 4.30

960× 540 3840× 2160 0.98 15.42 7.05 0.78 12.44 5.54 0.89 3.81

3840× 2160 960× 540 1.33 23.35 10.82 1.19 21.34 9.63 1.03 4.30

3840× 2160 3840× 2160 1.13 18.64 8.69 0.98 16.67 7.55 0.92 3.88

Table 3: Ground Truth Resolution analysis on the Unre-

alStereo4K test set using the PSM backbone.

unimodal representation sacrifices EPE for capturing the

uncertainty, while our method is on par with the standard L1

regression. On the stereo dataset, the 3D backbone (PSM)

consistently outperforms the 2D backbone (U-Net), there-

fore we use PSM for the following ablation experiments.

Sampling Strategy: In Tab. 2, we show the impact of the

sampling strategy adopted during training. More specifi-

cally, we compare the naı̈ve uniform sampling strategy and

the proposed DDA approach using different dilation kernel

sizes ρ×ρ. As can be observed, DDA enables SMD-Nets to

focus on depth discontinuities, resulting in better SEE com-

pared to random point selection. Moreover, we observe that

sampling exactly at depth boundaries (i.e., ρ = 0) leads to

slightly degraded EPE and is less effective on SEE which

penalizes small misalignment in a local window. Instead,

setting ρ = 10 allows the network to focus on larger re-

gions near edges and results in the best performance, while

increasing ρ does not improve performance further. Finally,

it is worth to notice that this strategy also allows our model

to improve the overall performance, achieving lower EPE

metrics. In the following experiments, we thus adopt the

DDA strategy using ρ = 10 for our SMD-Nets.
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Method

In-domain Out-of-domain

SEE3 SEE5 EPE SEE3 SEE5 EPE

Avg σ(1) σ(2) Avg σ(1) σ(2) Avg σ(1) σ(2) σ(3) Avg σ(1) σ(3) Avg σ(1) σ(3) Avg σ(1) σ(2) σ(3)
PSM [4] 1.73 33.06 16.57 1.61 31.11 15.44 1.09 11.88 6.94 5.19 2.19 36.94 20.07 1.99 34.09 18.25 1.53 16.92 10.25 7.83

PSM [4] + BF [23] 1.65 30.93 15.26 1.52 28.92 14.10 1.10 11.81 6.95 5.23 2.16 35.64 19.16 1.95 32.76 17.32 1.56 18.89 10.28 7.89

PSM [4] + SM [5] 1.50 29.22 12.71 1.37 27.16 11.54 1.10 11.65 6.69 4.97 2.03 33.91 16.74 1.82 30.92 14.82 1.54 16.43 9.73 7.36

PSM [4] + CE + SM [5] 1.33 27.31 10.14 1.19 25.25 8.99 0.86 10.40 4.93 3.50 1.84 29.87 13.30 1.62 26.84 11.46 1.37 13.29 7.84 6.03

PSM [4] + Ours 1.13 18.64 8.69 0.98 16.67 7.55 0.92 8.24 5.06 3.88 1.59 24.58 12.54 1.38 21.63 10.73 1.27 12.11 7.69 6.06

HSM [51] 2.01 41.63 23.81 1.89 39.69 22.62 1.16 14.81 8.20 5.84 2.43 44.49 26.17 2.24 41.74 24.33 1.75 22.03 12.73 9.23

HSM [51] + BF [23] 1.88 39.68 21.70 1.77 37.67 20.49 1.19 14.78 8.21 5.88 2.39 43.60 24.14 2.19 40.82 23.28 1.80 22.05 12.79 9.33

HSM [51] + SM [5] 1.83 40.52 22.30 1.70 38.53 21.07 1.17 14.73 8.11 5.74 2.31 43.76 25.16 2.11 40.97 23.29 1.76 21.88 12.54 9.03

HSM [51] + CE + SM [5] 2.00 45.71 25.99 1.87 43.72 24.71 1.17 16.17 8.12 5.46 2.61 48.27 28.84 2.41 45.56 26.98 1.91 26.12 14.40 10.14

HSM [51] + Ours 1.31 24.31 10.81 1.17 22.30 9.67 1.00 11.40 6.09 4.34 2.03 34.82 17.75 1.82 31.88 15.83 1.66 19.16 10.72 7.77

Table 4: Comparison on UnrealStereo4K. All methods evaluated on ground truth at 3840×2160 given input size 960×540.

(a) PSM [4] (b) PSM [4] + CE + SM [5] (c) PSM + Ours (d) GT, Input

Figure 5: Qualitative Results on UnrealStereo4K. The first row shows the predicted disparity maps while the second row

depicts the corresponding error maps. We zoom-in a patch in all images to better perceive details near depth boundaries.

Ground Truth Resolution: Tab. 3 shows the results of our

model trained and tested on the stereo data using ground

truth maps at different resolutions, while maintaining the

input size at 960 × 540. Towards this goal, we train our

model adopting ground truth disparities 1) resized to the

same resolution as the input using nearest interpolation and

2) at the original resolution (i.e. 3840 × 2160). We notice

that sampling points from higher resolution disparity maps

always leads to better results compared to using low reso-

lution ground truth. We remark that the proposed model ef-

fectively leverages high resolution ground truth thanks to its

continuous formulation, without requiring additional mem-

ory compared to standard stereo networks based on CNNs.

4.4. Comparison to Existing Baselines

We now compare to several baselines [23, 5] which aim

to address the over-smoothing problem. Bilateral median

filtering (BF) is often adopted to sharpen disparity predic-

tions [23, 43]. Chen et al. [5] address the over-smoothing

problem of 3D stereo backbones using 1) a post-processing

step to extract a single-modal (SM) distribution from the

full discrete distribution; 2) a cross-entropy (CE) loss to en-

force a unimodal distribution during training. We reimple-

ment [5] as no official code is available. As [5] has been

proposed for 3D backbones only, we use PSM [4] and HSM

[51] as the stereo backbones in the following experiments.

UnrealStereo4K: Tab. 4 collects results obtained from dif-

ferent models on both in-domain and out-of-domain test

splits of the binocular UnrealStereo4K dataset. We use

the same input resolution of 960 × 540 for all methods.

While our baseline methods can only use supervision with

the same size as the input, we leverage our continuous

formulation to supervise SMD-Nets using ground truth at

3840 × 2160, on which we also evaluate all methods. For

our competitors, we upsample their outcome using nearest

neighbor interpolation during testing. Both original PSM

and HSM follow the same training setting of our SMD-Nets.

Tab. 4 suggests that BF [23] and SM [5] slightly improve

SEE on both backbones while leading to degraded perfor-

mance on EPE metrics. Using the CE loss combined with

SM [5] leads to effective improvement on both SEE and

EPE on the PSM backbone. Interestingly, we notice that

adopting the same CE + SM strategy leads to worse perfor-

mance on HSM. A possible explanation is that the CE loss

requires to trilinearly interpolate a matching cost probabil-

ity distribution to the full resolution W ×H ×Dmax (with

Dmax denoting the maximum disparity), where HSM pre-

dicts a less fine-grained cost distribution compared to PSM,

thus making the cross-entropy loss less effective. Moreover,

we remark that the CE loss is more expensive to compute,

compared to our simple continuous likelihood-based formu-

lation and CE + SM can only be applied on 3D backbones.

In contrast, our approach based on the bimodal output rep-

resentation notably outperforms our competitors on SEE on

both the in-domain and out-of-domain test sets, showing
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Method
SEE3 SEE5 EPE

Avg σ(1) σ(2) Avg σ(1) σ(2) Avg σ(3)
PSM [4] 1.10 20.57 9.74 0.99 17.83 9.02 0.73 2.49

PSM [4] + CE + SM [5] 1.02 16.12 7.53 0.90 13.80 6.94 0.66 2.09

PSM [4] + Ours 0.90 13.09 6.66 0.79 10.93 6.01 0.59 1.95

Table 5: Comparison on KITTI 2015 Validation Set us-

ing boundaries extracted from instance segmentation masks

to evaluate on depth discontinuity regions.

Method
All Areas Non Occluded

Bg Fg All Bg Fg All

GANet-deep [57] 1.48 3.46 1.81 1.34 3.11 1.63

HD3-Stereo [54] 1.70 3.63 2.02 1.56 3.43 1.87

GwcNet-g [14] 1.74 3.93 2.11 1.61 3.49 1.92

PSM [4] 1.86 4.62 2.31 1.71 4.31 2.14

PSM [4] + CE + SM [5] 1.54 4.33 2.14 1.70 3.90 1.93

PSM [4] + Ours 1.69 4.01 2.08 1.54 3.70 1.89

Table 6: Comparison on KITTI 2015 Test Set, evaluated

on the official online benchmark. All the reported numbers

represent official submissions from the authors.

Method
SEE3 SEE5 EPE

Avg σ(1) σ(2) Avg σ(1) σ(2) Avg σ(3)
PSM [4] 3.35 46.50 29.40 2.61 41.04 24.87 4.12 17.43

PSM [4] + CE + SM [5] 2.62 34.80 19.02 1.83 28.92 14.11 2.80 12.12

PSM [4] + Ours 2.61 34.26 19.83 1.88 28.71 15.32 3.03 13.60

Table 7: Generalization on Middlebury v3. All models

are trained on UnrealStereo4K and evaluated on the training

set of Middlebury v3 dataset.

how our strategy predicts better disparities near boundaries.

Moreover, we highlight that we achieve consistently better

estimates on standard EPE metrics compared to the orig-

inal backbone while performing comparably to the CE +

SM baseline. Fig. 5 shows our gains at object boundaries.

KITTI 2015: We fine-tune all methods trained using Un-

realStereo4K on the KITTI 2015 training set. Since the pro-

vided ground truth disparities are sparse, we rely on the

naı̈ve random sampling strategy to train our model. On

the validation set, we evaluate SEE on boundaries of in-

stance segmentation maps from the KITTI dataset, follow-

ing the evaluation procedure described in [5]. Furthermore,

we predict disparities on the test set using the same fine-

tuned model and submit to the online benchmark. Tab. 5

and Tab. 6 show our results using PSM as backbone (we

provide additional results on the validation set adopting

HSM in the supplement). Note that our SMD-Net not only

achieves superior performance on both SEE and EPE met-

rics on the validation set compared to the original PSM and

[5] (Tab. 5), but also outperforms both on the test set and

is on par with state-of-the-art stereo networks on standard

metrics of the KITTI benchmark (Tab. 6).

4.5. Synthetic­to­Real Generalization

Lastly, we demonstrate how models trained on the syn-

thetic dataset generalize to the real-world domain for both

binocular stereo and active depth estimation.

(a) Disparity Regression (L1) (b) SMD Head (Bimodal)

Figure 6: Generalization on RealActive4K using the HSM

backbone. The point clouds of standard disparity regres-

sion using L1 loss (a) show bleeding artifacts whereas our

bimodal distribution (b) leads to clean reconstructions.

Middlebury v3: Tab. 7 reports the performance of su-

pervised methods trained on the UnrealStereo4K and tested

without fine-tuning on the training set of the Middlebury v3

dataset. We evaluate them using the high-resolution ground

truth. Compared to the original PSM baseline, our SMD-

Net achieves much better generalization on both SEE and

EPE metrics while performing on par with [5].

RealActive4K: Moreover, we fine-tune our active depth

models jointly on active UnrealStereo4K and RealActive4K

with pseudo-ground truth from Block Matching. Fig. 6

shows that this allows for estimating sharp disparity edges

for real captures even though Block Matching does not pro-

vide supervision in these areas. In contrast, standard dispar-

ity regression fails to predict clean object boundaries.

5. Conclusion

In this paper, we propose SMD-Nets, a novel stereo

matching framework aimed at improving depth accuracy

near object boundaries and suited for disparity super-

resolution. By exploiting bimodal mixture densities as

output representation combined with a continuous function

formulation, our method is capable of predicting sharp

and precise disparity values at arbitrary spatial resolution,

notably alleviating the common over-smoothing problem in

learning-based stereo networks. Our model is compatible

with a broad spectrum of 2D and 3D stereo backbones.

Our extensive experiments demonstrate the advantages

of our strategy on a new high-resolution synthetic stereo

dataset and on real-world stereo pairs. We plan to extend

our bimodal output representation to other regression tasks

such as optical flow and self-supervised depth estimation.

Acknowledgements. This work was supported by the Intel

Network on Intelligent Systems, the BMBF through the Tüebingen
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